Urban Greenway Planning and Designing Based on MGWR and the Entropy Weight Method

Travelers’ attention to high-quality human habitats is increasing, and the role of urban greenways in improving the quality of travelling spaces has also been appreciated. This research aims at making the weight calculation of suitability more scientific and reasonable, clustering the shared bicycle...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 14; číslo 24; s. 11670
Hlavní autori: Li, Weijia, Ji, Xinge, Bai, Hua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.12.2024
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Travelers’ attention to high-quality human habitats is increasing, and the role of urban greenways in improving the quality of travelling spaces has also been appreciated. This research aims at making the weight calculation of suitability more scientific and reasonable, clustering the shared bicycle travelling OD points according to suitability, and analyzing the distribution of OD points. Taking Xiamen as an example, multiscale geographically weighted regression and entropy weight methods were used to calculate the weights of variables using multi-source big data. The clustering of origin-destination (OD) points for shared bicycle travel are identified using the DBSCAN clustering algorithm, which can provide accurate support for greenway planning and shared bicycle placement. The results show that the density of tourist attractions, POI entropy index, road density, and intermediate are four important factors affecting the suitability of greenways. The clustering results of the shared bicycle OD points show that the high-aggregation areas of origin and destination points are located in the northeast and southwest directions as well as west and east directions. This study provides a theoretical and modelling analysis reference for greenway planning and design.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app142411670