Optimization of a hydrogen supply chain network design under demand uncertainty by multi-objective genetic algorithms

•This paper addresses the multi-objective design of a hydrogen supply chais under demand uncertainty.•The potential of genetic algorithms is explored to cope with the multi-objective formulation.•Better compromise solutions are produced than those obtained with ε-constraint MILP approach.•Demand unc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & chemical engineering Ročník 140; s. 106853
Hlavní autoři: Robles, Jesus Ochoa, Azzaro-Pantel, Catherine, Aguilar-Lasserre, Alberto
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 02.09.2020
Elsevier
Témata:
ISSN:0098-1354, 1873-4375
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •This paper addresses the multi-objective design of a hydrogen supply chais under demand uncertainty.•The potential of genetic algorithms is explored to cope with the multi-objective formulation.•Better compromise solutions are produced than those obtained with ε-constraint MILP approach.•Demand uncertainty has also been modelled using fuzzy concepts.•The robustness of the configuration solutions has been assessed. Hydrogen is currently considered one of the most promising sustainable energy carriers for mobility applications. A model of the hydrogen supply chain (HSC) based on MILP formulation (mixed integer linear programming) in a multi-objective, multi-period formulation, implemented via the ε-constraint method to generate the Pareto front, was conducted in a previous work and applied to the Occitania region of France. Three objective functions have been considered, i.e., the levelized hydrogen cost, the global warming potential, and a safety risk index. However, the size of the problem mainly induced by the number of binary variables often leads to difficulties in problem solution. The first innovative part of this work explores the potential of genetic algorithms (GAs) via a variant of the non-dominated sorting genetic algorithm (NSGA-II) to manage multi-objective formulation to produce compromise solutions automatically. The values of the objective functions obtained by the GAs in the mono-objective formulation exhibit the same order of magnitude as those obtained with MILP, and the multi-objective GA yields a Pareto front of better quality with well-distributed compromise solutions. The differences observed between the GA and the MILP approaches can be explained by way of managing the constraints and their different logics. The second innovative contribution is the modelling of demand uncertainty using fuzzy concepts for HSC design. The solutions are compared with the original crisp models based on either MILP or GA, giving more robustness to the proposed approach.
AbstractList Hydrogen is currently considered one of the most promising sustainable energy carriers for mobility ap- plications. A model of the hydrogen supply chain (HSC) based on MILP formulation (mixed integer linear programming) in a multi-objective, multi-period formulation, implemented via the ε-constraint method to generate the Pareto front, was conducted in a previous work and applied to the Occitania region of France. Three objective functions have been considered, i.e., the levelized hydrogen cost, the global warm- ing potential, and a safety risk index. However, the size of the problem mainly induced by the number of binary variables often leads to difficulties in problem solution. The first innovative part of this work explores the potential of genetic algorithms (GAs) via a variant of the non-dominated sorting genetic al- gorithm (NSGA-II) to manage multi-objective formulation to produce compromise solutions automatically. The values of the objective functions obtained by the GAs in the mono-objective formulation exhibit the same order of magnitude as those obtained with MILP, and the multi-objective GA yields a Pareto front of better quality with well-distributed compromise solutions. The differences observed between the GA and the MILP approaches can be explained by way of managing the constraints and their different logics. The second innovative contribution is the modelling of demand uncertainty using fuzzy concepts for HSC design. The solutions are compared with the original crisp models based on either MILP or GA, giving more robustness to the proposed approach.
•This paper addresses the multi-objective design of a hydrogen supply chais under demand uncertainty.•The potential of genetic algorithms is explored to cope with the multi-objective formulation.•Better compromise solutions are produced than those obtained with ε-constraint MILP approach.•Demand uncertainty has also been modelled using fuzzy concepts.•The robustness of the configuration solutions has been assessed. Hydrogen is currently considered one of the most promising sustainable energy carriers for mobility applications. A model of the hydrogen supply chain (HSC) based on MILP formulation (mixed integer linear programming) in a multi-objective, multi-period formulation, implemented via the ε-constraint method to generate the Pareto front, was conducted in a previous work and applied to the Occitania region of France. Three objective functions have been considered, i.e., the levelized hydrogen cost, the global warming potential, and a safety risk index. However, the size of the problem mainly induced by the number of binary variables often leads to difficulties in problem solution. The first innovative part of this work explores the potential of genetic algorithms (GAs) via a variant of the non-dominated sorting genetic algorithm (NSGA-II) to manage multi-objective formulation to produce compromise solutions automatically. The values of the objective functions obtained by the GAs in the mono-objective formulation exhibit the same order of magnitude as those obtained with MILP, and the multi-objective GA yields a Pareto front of better quality with well-distributed compromise solutions. The differences observed between the GA and the MILP approaches can be explained by way of managing the constraints and their different logics. The second innovative contribution is the modelling of demand uncertainty using fuzzy concepts for HSC design. The solutions are compared with the original crisp models based on either MILP or GA, giving more robustness to the proposed approach.
ArticleNumber 106853
Author Azzaro-Pantel, Catherine
Aguilar-Lasserre, Alberto
Robles, Jesus Ochoa
Author_xml – sequence: 1
  givenname: Jesus Ochoa
  surname: Robles
  fullname: Robles, Jesus Ochoa
  organization: Université de Toulouse, Laboratoire de Génie Chimique, LGC UMR CNRS 5503 INP UPS TOULOUSE INP ENSIACET - 4 allée Emile Monso – BP 44362 - 31432, Toulouse Cedex 4, France
– sequence: 2
  givenname: Catherine
  surname: Azzaro-Pantel
  fullname: Azzaro-Pantel, Catherine
  email: catherine.azzaropantel@ensiacet.fr
  organization: Université de Toulouse, Laboratoire de Génie Chimique, LGC UMR CNRS 5503 INP UPS TOULOUSE INP ENSIACET - 4 allée Emile Monso – BP 44362 - 31432, Toulouse Cedex 4, France
– sequence: 3
  givenname: Alberto
  surname: Aguilar-Lasserre
  fullname: Aguilar-Lasserre, Alberto
  organization: Instituto Tecnológico de Orizaba, Oriente 9, Emiliano Zapata, Orizaba 94320, Ver., Mexico
BackLink https://hal.science/hal-03125630$$DView record in HAL
BookMark eNqNkE1rGzEQhkVJoY7b_6Ace1hHWu3nqQTTJgFDLslZyNKsd5xdaZFkl-2vjxyXEHLKaZjhfR-Y55JcWGeBkCvOVpzx6nq_0m6cdA8j2N0qZ_npXjWl-EIWvKlFVoi6vCALxtom46IsvpHLEPaMsbxomgU5PEwRR_ynIjpLXUcV7Wfj3Q4sDYdpGmaqe4WWWoh_nX-mBgLuLD1YAz4to7ImLRp8TKk40-1Mx8MQMXPbPeiIR6CJBRE1VcPOeYz9GL6Tr50aAvz4P5fk6c_vx_Vdtnm4vV_fbDJdsCpmVd6WNWzTO2VhOl0rxUzHdCc6U_NSV61uC6GabaO4yYUwqis1gChqU9cqN61Ykp9nbq8GOXkclZ-lUyjvbjbydGOC52Ul2JGnbHvOau9C8NC9FTiTJ9dyL9-5lifX8uw6dX996GqMr0qjVzh8irA-EyDpOCJ4GTRC8mrQJ43SOPwE5QVQmaiU
CitedBy_id crossref_primary_10_1007_s00500_021_06309_9
crossref_primary_10_1016_j_enconman_2025_119864
crossref_primary_10_1016_j_cie_2022_108513
crossref_primary_10_1016_j_ijhydene_2024_07_067
crossref_primary_10_1108_JSTPM_02_2023_0027
crossref_primary_10_1016_j_compchemeng_2025_109298
crossref_primary_10_1016_j_egyr_2021_10_071
crossref_primary_10_1016_j_ijhydene_2024_06_216
crossref_primary_10_1080_15435075_2025_2552485
crossref_primary_10_1016_j_cie_2024_110170
crossref_primary_10_3390_en18133318
crossref_primary_10_1007_s10098_024_03015_6
crossref_primary_10_3390_math10030437
crossref_primary_10_1061_JCEMD4_COENG_13615
crossref_primary_10_1016_j_ijhydene_2024_08_397
crossref_primary_10_1016_j_apenergy_2021_117740
crossref_primary_10_1007_s10098_021_02235_4
crossref_primary_10_1186_s12877_023_03924_z
crossref_primary_10_1109_TASE_2024_3381449
crossref_primary_10_1016_j_ijhydene_2023_03_474
crossref_primary_10_1051_e3sconf_202233402003
crossref_primary_10_1021_acs_iecr_4c04211
crossref_primary_10_3390_en16248081
crossref_primary_10_1016_j_cirpj_2024_06_008
crossref_primary_10_1016_j_ijhydene_2023_04_300
crossref_primary_10_1016_j_ijhydene_2025_151667
crossref_primary_10_3390_logistics9010035
crossref_primary_10_1016_j_compchemeng_2024_108820
crossref_primary_10_1016_j_ijhydene_2024_03_362
crossref_primary_10_1016_j_enconman_2022_115650
crossref_primary_10_3390_en16227672
crossref_primary_10_1007_s11356_024_32563_z
crossref_primary_10_1080_00207543_2022_2045377
crossref_primary_10_1139_cjce_2022_0299
Cites_doi 10.1016/j.ijhydene.2008.07.028
10.1016/j.ijhydene.2014.05.165
10.1016/j.ijhydene.2008.06.007
10.1016/j.compchemeng.2008.05.004
10.1016/j.ijhydene.2015.10.015
10.1016/j.compchemeng.2003.09.014
10.1016/j.ijhydene.2011.07.096
10.1016/j.ijhydene.2011.01.104
10.1016/j.omega.2015.01.006
10.1016/j.ijhydene.2011.11.091
10.1109/4235.996017
10.1016/j.ijhydene.2010.04.010
10.1007/s41660-017-0025-y
10.1016/j.ejor.2017.04.009
10.1109/4235.850651
10.1016/j.ijhydene.2011.02.127
10.1016/0165-0114(93)90400-C
10.1205/cherd.05193
10.1016/j.compchemeng.2004.06.006
10.1002/aic.12024
10.1002/9780470172261
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.compchemeng.2020.106853
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4375
ExternalDocumentID oai:HAL:hal-03125630v1
10_1016_j_compchemeng_2020_106853
S0098135419307161
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SST
SSZ
T5K
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLY
HLZ
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
VH1
WUQ
ZY4
~HD
1XC
VOOES
ID FETCH-LOGICAL-c406t-62957eb68554dfc7aa0df0cf3fd715c69c943a8b8a1d233daf5cee347d77a2d93
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000561589500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-1354
IngestDate Sat Oct 25 11:17:24 EDT 2025
Sat Nov 29 07:27:53 EST 2025
Tue Nov 18 20:49:36 EST 2025
Fri Feb 23 02:48:28 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords SCND
GWP
NSGA-II
Hydrogen supply chain
MILP
GHG
Fuzzy techniques
MINLP
CCS
TDC
Genetic algorithm
Multiobjective optimization
HSC
SMR
GA
MCDM
TOPSIS
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c406t-62957eb68554dfc7aa0df0cf3fd715c69c943a8b8a1d233daf5cee347d77a2d93
ORCID 0000-0001-5832-5199
OpenAccessLink https://hal.science/hal-03125630
ParticipantIDs hal_primary_oai_HAL_hal_03125630v1
crossref_primary_10_1016_j_compchemeng_2020_106853
crossref_citationtrail_10_1016_j_compchemeng_2020_106853
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2020_106853
PublicationCentury 2000
PublicationDate 2020-09-02
PublicationDateYYYYMMDD 2020-09-02
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-02
  day: 02
PublicationDecade 2020
PublicationTitle Computers & chemical engineering
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References McKinsey & Company, A., portfolio of power-trains for Europe: a fact-based analysis. Report, 2010.
[Accessed: 31-Dec-2017].
IEA, ‘International Energy Agency Technical Report. Key world energy statistics’, Sep- 2017. [Online]. Available
Almansoori, Shah (bib0016) 2012; 37
Delgado, Herrera, Verdegay, Vila (bib0026) 1993; 53
You, Grossmann (bib0014) 2008; 32
De-León Almaraz, Azzaro-Pantel, Montastruc, Domenech (bib0002) 2014; 39
Eskandarpour, Dejax, Miemczyk, Péton (bib0003) 2015; 54
Hydrogen Council, ‘Hydrogen scaling up. A sustainable pathway for the global energy transition’, Nov- 2017. [Online]. Available
Kim, Lee, Moon (bib0015) 2008; 33
Gen, M. and Cheng, R., Genetic Algorithms and Engineering Optimization. John Wiley & Sons, 2000.
De León Almaraz, S., ‘Multi-objective optimisation of a hydrogen supply chain’, 14-Feb- 2014. [Online]. Available
Deb, Pratap, Agarwal, Meyarivan (bib0024) 2002; 6
Ochoa Robles, Azzaro-Pantel, De-Leon Almaraz (bib0032) 2018
[Accessed: 29-Dec-2017].
Gomez, A., Azzaro-Pantel, C., L.Pibouleau, and Domenech, S., ‘Teaching Mono and Multi-objective Genetic Algorithms in Process Systems Engineering: an illustration with the MULTIGEN environment, ESCAPE 18’, in 18th European Symposium on Computer Aided Process Engineering, ESCAPE, 2008, vol. 18.
Bento, N., ‘La transition vers une économie de l'hydrogène: infrastructures et changement technique’, Université Pierre Mendès-France-Grenoble II, 2010.
McKinsey & Company, ‘A portfolio of power-trains for Europe: a fact-based analysis. The role of Battery Electric Vehicles, Plug-in Hybrids and Fuel Cell Electric Vehicles’, 2010.
Almansoori, Shah (bib0030) 2006; 84
Sabio, Gadalla, Guillén-Gosálbez, Jiménez (bib0009) 2010; 35
Verdegay (bib0018) 1982; 231
[Accessed: 04-Jan-2018].
Jung, Blau, Pekny, Reklaitis, Eversdyk (bib0013) 2004; 28
Kim, Moon (bib0034) 2008; 33
Villacorta, Rabelo, Pelta, Verdegay (bib0019) 2017
Ren, L., Zhang, Y., Wang, Y., and Sun, Z., ‘Comparative analysis of a novel M-TOPSIS method and TOPSIS’, Appl. Math. Res. EXpress, vol. 2007, p. abm005, 2007.
Kim, Lee, Moon (bib0023) 2011; 36
Ochoa Robles, J., De-León Almaraz, S., and Azzaro-Pantel, C., ‘Design of Experiments for Sensitivity Analysis of a Hydrogen Supply Chain Design Model’, Process Integr. Optim. Sustain., pp. 1–22, Dec. 2017.
Guillén-Gosálbez, Mele, Grossmann (bib0004) 2010; 56
Nunes, Oliveira, Hamacher, Almansoori (bib0017) 2015; 40
IEA, ‘Technology Roadmap. Hydrogen and Fuel Cells’, 2015. [Online]. Available
Dagdougui, Ouammi, Sacile (bib0033) 2012; 37
[Accessed: 5-July-2019].
Mavrotas, G., ‘Generation of efficient solutions in Multiobjective Mathematical Programming problems using GAMS. Effective implementation of the ε-constraint method’, Lect. Lab. Ind. Energy Econ. Sch. Chem. Eng. Natl. Tech. Univ. Athens, 2007.
Dimopoulos, Zalzala (bib0006) 2000; 4
Ebrahimnejad, Verdegay (bib0025) 2016
Ochoa Robles, Azzaro-Pantel, De-Leon Almaraz (bib0011) 2015
Chen, Lee (bib0012) 2004; 28
Murthy Konda, Shah, Brandon (bib0031) 2011; 36
(bib0035) 2008; 23123
Govindan, Fattahi, Keyvanshokooh (bib0020) 2017; 263
Mobilité Hydrogène France, ‘H2 MOBILITÉ FRANCE. Study for a Fuel Cell Electric Vehicle national deployment plan’, 2016. [Online]. Available
Eskandarpour (10.1016/j.compchemeng.2020.106853_bib0003) 2015; 54
Ochoa Robles (10.1016/j.compchemeng.2020.106853_bib0032) 2018
Sabio (10.1016/j.compchemeng.2020.106853_bib0009) 2010; 35
Chen (10.1016/j.compchemeng.2020.106853_bib0012) 2004; 28
Kim (10.1016/j.compchemeng.2020.106853_bib0034) 2008; 33
Verdegay (10.1016/j.compchemeng.2020.106853_bib0018) 1982; 231
You (10.1016/j.compchemeng.2020.106853_bib0014) 2008; 32
10.1016/j.compchemeng.2020.106853_bib0010
10.1016/j.compchemeng.2020.106853_bib0037
Deb (10.1016/j.compchemeng.2020.106853_bib0024) 2002; 6
10.1016/j.compchemeng.2020.106853_bib0036
10.1016/j.compchemeng.2020.106853_bib0038
Kim (10.1016/j.compchemeng.2020.106853_bib0023) 2011; 36
Murthy Konda (10.1016/j.compchemeng.2020.106853_bib0031) 2011; 36
Guillén-Gosálbez (10.1016/j.compchemeng.2020.106853_bib0004) 2010; 56
Delgado (10.1016/j.compchemeng.2020.106853_bib0026) 1993; 53
Dagdougui (10.1016/j.compchemeng.2020.106853_bib0033) 2012; 37
Ochoa Robles (10.1016/j.compchemeng.2020.106853_bib0011) 2015
De-León Almaraz (10.1016/j.compchemeng.2020.106853_bib0002) 2014; 39
Dimopoulos (10.1016/j.compchemeng.2020.106853_bib0006) 2000; 4
Kim (10.1016/j.compchemeng.2020.106853_bib0015) 2008; 33
10.1016/j.compchemeng.2020.106853_bib0008
10.1016/j.compchemeng.2020.106853_bib0007
10.1016/j.compchemeng.2020.106853_bib0029
Nunes (10.1016/j.compchemeng.2020.106853_bib0017) 2015; 40
Jung (10.1016/j.compchemeng.2020.106853_bib0013) 2004; 28
Govindan (10.1016/j.compchemeng.2020.106853_bib0020) 2017; 263
10.1016/j.compchemeng.2020.106853_bib0022
10.1016/j.compchemeng.2020.106853_bib0021
Villacorta (10.1016/j.compchemeng.2020.106853_bib0019) 2017
10.1016/j.compchemeng.2020.106853_bib0001
(10.1016/j.compchemeng.2020.106853_bib0035) 2008; 23123
10.1016/j.compchemeng.2020.106853_bib0028
10.1016/j.compchemeng.2020.106853_bib0005
10.1016/j.compchemeng.2020.106853_bib0027
Ebrahimnejad (10.1016/j.compchemeng.2020.106853_bib0025) 2016
Almansoori (10.1016/j.compchemeng.2020.106853_bib0030) 2006; 84
Almansoori (10.1016/j.compchemeng.2020.106853_bib0016) 2012; 37
References_xml – volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0024
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: Evol. Comput. IEEE Trans. On
– volume: 4
  start-page: 93
  year: 2000
  end-page: 113
  ident: bib0006
  article-title: Recent developments in evolutionary computation for manufacturing optimization: problems, solutions, and comparisons
  publication-title: IEEE Trans. Evol. Comput.
– reference: Gomez, A., Azzaro-Pantel, C., L.Pibouleau, and Domenech, S., ‘Teaching Mono and Multi-objective Genetic Algorithms in Process Systems Engineering: an illustration with the MULTIGEN environment, ESCAPE 18’, in 18th European Symposium on Computer Aided Process Engineering, ESCAPE, 2008, vol. 18.
– volume: 263
  start-page: 108
  year: 2017
  end-page: 141
  ident: bib0020
  article-title: Supply chain network design under uncertainty: A comprehensive review and future research directions
  publication-title: Eur. J. Oper. Res.
– reference: Gen, M. and Cheng, R., Genetic Algorithms and Engineering Optimization. John Wiley & Sons, 2000.
– reference: Mavrotas, G., ‘Generation of efficient solutions in Multiobjective Mathematical Programming problems using GAMS. Effective implementation of the ε-constraint method’, Lect. Lab. Ind. Energy Econ. Sch. Chem. Eng. Natl. Tech. Univ. Athens, 2007.
– reference: McKinsey & Company, A., portfolio of power-trains for Europe: a fact-based analysis. Report, 2010.
– volume: 23123
  year: 2008
  ident: bib0035
  article-title: HyWays the European Hydrogen Roadmap
  publication-title: EUR
– start-page: 327
  year: 2016
  end-page: 368
  ident: bib0025
  article-title: A Survey on Models and Methods for Solving Fuzzy Linear Programming Problems
  publication-title: in Fuzzy Logic in Its 50th Year
– reference: . [Accessed: 29-Dec-2017].
– reference: . [Accessed: 31-Dec-2017].
– reference: McKinsey & Company, ‘A portfolio of power-trains for Europe: a fact-based analysis. The role of Battery Electric Vehicles, Plug-in Hybrids and Fuel Cell Electric Vehicles’, 2010.
– volume: 56
  start-page: 650
  year: 2010
  end-page: 667
  ident: bib0004
  article-title: A bi-criterion optimization approach for the design and planning of hydrogen supply chains for vehicle use
  publication-title: AIChE J.
– reference: . [Accessed: 04-Jan-2018].
– reference: Hydrogen Council, ‘Hydrogen scaling up. A sustainable pathway for the global energy transition’, Nov- 2017. [Online]. Available:
– reference: Bento, N., ‘La transition vers une économie de l'hydrogène: infrastructures et changement technique’, Université Pierre Mendès-France-Grenoble II, 2010.
– volume: 231
  start-page: 237
  year: 1982
  ident: bib0018
  article-title: Fuzzy mathematical programming
  publication-title: Fuzzy Inf. Decis. Process.
– start-page: 209
  year: 2017
  end-page: 230
  ident: bib0019
  article-title: FuzzyLP: An R Package for Solving Fuzzy Linear Programming Problems
  publication-title: in Granular, Soft and Fuzzy Approaches for Intelligent Systems
– volume: 54
  start-page: 11
  year: 2015
  end-page: 32
  ident: bib0003
  article-title: Sustainable supply chain network design: An optimization-oriented review
  publication-title: Omega
– volume: 84
  start-page: 423
  year: 2006
  end-page: 438
  ident: bib0030
  article-title: Design and Operation of a Future Hydrogen Supply Chain: Snapshot Model
  publication-title: Chem. Eng. Res. Des.
– volume: 36
  start-page: 4619
  year: 2011
  end-page: 4635
  ident: bib0031
  article-title: Optimal transition towards a large-scale hydrogen infrastructure for the transport sector: the case for the Netherlands
  publication-title: Int. J. Hydrog. Energy
– reference: . [Accessed: 5-July-2019].
– volume: 40
  start-page: 16408
  year: 2015
  end-page: 16418
  ident: bib0017
  article-title: Design of a hydro-gen supply chain with uncertainty
  publication-title: Int. J. Hydrog. Energy
– year: 2015
  ident: bib0011
  article-title: Design of experiments for sensitivity analysis in multi-objective optimization of hydrogen supply chain
  publication-title: in 28th Internacional conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems
– reference: IEA, ‘International Energy Agency Technical Report. Key world energy statistics’, Sep- 2017. [Online]. Available:
– reference: Ochoa Robles, J., De-León Almaraz, S., and Azzaro-Pantel, C., ‘Design of Experiments for Sensitivity Analysis of a Hydrogen Supply Chain Design Model’, Process Integr. Optim. Sustain., pp. 1–22, Dec. 2017.
– volume: 33
  start-page: 5887
  year: 2008
  end-page: 5896
  ident: bib0034
  article-title: Strategic design of hydrogen infrastructure considering cost and safety using multiobjective optimization
  publication-title: Int. J. Hydrog. Energy
– volume: 53
  start-page: 289
  year: 1993
  end-page: 297
  ident: bib0026
  article-title: Post-optimality analysis on the membership functions of a fuzzy linear programming problem
  publication-title: Fuzzy Sets Syst.
– volume: 32
  start-page: 3090
  year: 2008
  end-page: 3111
  ident: bib0014
  article-title: Design of responsive supply chains under demand uncertainty
  publication-title: Comput. Chem. Eng.
– start-page: 352
  year: 2018
  ident: bib0032
  article-title: Hydrogen Supply Chain Design: key technological components and sustainable assessment
  publication-title: in Design, Deployment and Operation of a Hydrogen Supply Chain, 1st Edition.
– reference: De León Almaraz, S., ‘Multi-objective optimisation of a hydrogen supply chain’, 14-Feb- 2014. [Online]. Available:
– volume: 36
  start-page: 6387
  year: 2011
  end-page: 6398
  ident: bib0023
  article-title: An index-based risk assessment model for hydrogen infrastructure
  publication-title: Int. J. Hydrog. Energy
– reference: Ren, L., Zhang, Y., Wang, Y., and Sun, Z., ‘Comparative analysis of a novel M-TOPSIS method and TOPSIS’, Appl. Math. Res. EXpress, vol. 2007, p. abm005, 2007.
– volume: 37
  start-page: 5360
  year: 2012
  end-page: 5371
  ident: bib0033
  article-title: Modelling and control of hydrogen and energy flows in a network of green hydrogen refuelling stations powered by mixed renewable energy systems
  publication-title: Int. J. Hydrog. Energy
– volume: 37
  start-page: 3965
  year: 2012
  end-page: 3977
  ident: bib0016
  article-title: Design and operation of a stochastic hydrogen supply chain network under demand uncertainty
  publication-title: Int. J. Hydrog. Energy
– volume: 28
  start-page: 2087
  year: 2004
  end-page: 2106
  ident: bib0013
  article-title: A simulation based optimization approach to supply chain management under demand uncertainty
  publication-title: Comput. Chem. Eng.
– reference: Mobilité Hydrogène France, ‘H2 MOBILITÉ FRANCE. Study for a Fuel Cell Electric Vehicle national deployment plan’, 2016. [Online]. Available:
– volume: 28
  start-page: 1131
  year: 2004
  end-page: 1144
  ident: bib0012
  article-title: Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices
  publication-title: Comput. Chem. Eng.
– volume: 39
  start-page: 11831
  year: 2014
  end-page: 11845
  ident: bib0002
  article-title: Hydrogen supply chain optimization for deployment scenarios in the Midi-Pyrénées region, France
  publication-title: Int. J. Hydrog. Energy
– volume: 35
  start-page: 6836
  year: 2010
  end-page: 6852
  ident: bib0009
  article-title: Strategic planning with risk control of hydrogen supply chains for vehicle use under uncertainty in operating costs: a case study of Spain
  publication-title: Int. J. Hydrog. Energy
– reference: IEA, ‘Technology Roadmap. Hydrogen and Fuel Cells’, 2015. [Online]. Available:
– volume: 33
  start-page: 4715
  year: 2008
  end-page: 4729
  ident: bib0015
  article-title: Optimization of a hydrogen supply chain under demand uncertainty
  publication-title: Int. J. Hydrog. Energy
– volume: 33
  start-page: 5887
  issue: 21
  year: 2008
  ident: 10.1016/j.compchemeng.2020.106853_bib0034
  article-title: Strategic design of hydrogen infrastructure considering cost and safety using multiobjective optimization
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2008.07.028
– ident: 10.1016/j.compchemeng.2020.106853_bib0022
– ident: 10.1016/j.compchemeng.2020.106853_bib0001
– volume: 39
  start-page: 11831
  issue: 23
  year: 2014
  ident: 10.1016/j.compchemeng.2020.106853_bib0002
  article-title: Hydrogen supply chain optimization for deployment scenarios in the Midi-Pyrénées region, France
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2014.05.165
– volume: 23123
  year: 2008
  ident: 10.1016/j.compchemeng.2020.106853_bib0035
  article-title: HyWays the European Hydrogen Roadmap
  publication-title: EUR
– volume: 33
  start-page: 4715
  issue: 18
  year: 2008
  ident: 10.1016/j.compchemeng.2020.106853_bib0015
  article-title: Optimization of a hydrogen supply chain under demand uncertainty
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2008.06.007
– ident: 10.1016/j.compchemeng.2020.106853_bib0005
– volume: 32
  start-page: 3090
  issue: 12
  year: 2008
  ident: 10.1016/j.compchemeng.2020.106853_bib0014
  article-title: Design of responsive supply chains under demand uncertainty
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2008.05.004
– ident: 10.1016/j.compchemeng.2020.106853_bib0028
– ident: 10.1016/j.compchemeng.2020.106853_bib0037
– volume: 40
  start-page: 16408
  issue: 46
  year: 2015
  ident: 10.1016/j.compchemeng.2020.106853_bib0017
  article-title: Design of a hydro-gen supply chain with uncertainty
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.10.015
– volume: 231
  start-page: 237
  year: 1982
  ident: 10.1016/j.compchemeng.2020.106853_bib0018
  article-title: Fuzzy mathematical programming
  publication-title: Fuzzy Inf. Decis. Process.
– volume: 28
  start-page: 1131
  issue: 6
  year: 2004
  ident: 10.1016/j.compchemeng.2020.106853_bib0012
  article-title: Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2003.09.014
– volume: 37
  start-page: 5360
  issue: 6
  year: 2012
  ident: 10.1016/j.compchemeng.2020.106853_bib0033
  article-title: Modelling and control of hydrogen and energy flows in a network of green hydrogen refuelling stations powered by mixed renewable energy systems
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.07.096
– volume: 36
  start-page: 4619
  issue: 8
  year: 2011
  ident: 10.1016/j.compchemeng.2020.106853_bib0031
  article-title: Optimal transition towards a large-scale hydrogen infrastructure for the transport sector: the case for the Netherlands
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.01.104
– volume: 54
  start-page: 11
  year: 2015
  ident: 10.1016/j.compchemeng.2020.106853_bib0003
  article-title: Sustainable supply chain network design: An optimization-oriented review
  publication-title: Omega
  doi: 10.1016/j.omega.2015.01.006
– volume: 37
  start-page: 3965
  issue: 5
  year: 2012
  ident: 10.1016/j.compchemeng.2020.106853_bib0016
  article-title: Design and operation of a stochastic hydrogen supply chain network under demand uncertainty
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.11.091
– ident: 10.1016/j.compchemeng.2020.106853_bib0021
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.compchemeng.2020.106853_bib0024
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: Evol. Comput. IEEE Trans. On
  doi: 10.1109/4235.996017
– volume: 35
  start-page: 6836
  issue: 13
  year: 2010
  ident: 10.1016/j.compchemeng.2020.106853_bib0009
  article-title: Strategic planning with risk control of hydrogen supply chains for vehicle use under uncertainty in operating costs: a case study of Spain
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2010.04.010
– start-page: 327
  year: 2016
  ident: 10.1016/j.compchemeng.2020.106853_bib0025
  article-title: A Survey on Models and Methods for Solving Fuzzy Linear Programming Problems
– ident: 10.1016/j.compchemeng.2020.106853_bib0010
  doi: 10.1007/s41660-017-0025-y
– start-page: 209
  year: 2017
  ident: 10.1016/j.compchemeng.2020.106853_bib0019
  article-title: FuzzyLP: An R Package for Solving Fuzzy Linear Programming Problems
– volume: 263
  start-page: 108
  issue: 1
  year: 2017
  ident: 10.1016/j.compchemeng.2020.106853_bib0020
  article-title: Supply chain network design under uncertainty: A comprehensive review and future research directions
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.04.009
– ident: 10.1016/j.compchemeng.2020.106853_bib0038
– volume: 4
  start-page: 93
  issue: 2
  year: 2000
  ident: 10.1016/j.compchemeng.2020.106853_bib0006
  article-title: Recent developments in evolutionary computation for manufacturing optimization: problems, solutions, and comparisons
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.850651
– volume: 36
  start-page: 6387
  issue: 11
  year: 2011
  ident: 10.1016/j.compchemeng.2020.106853_bib0023
  article-title: An index-based risk assessment model for hydrogen infrastructure
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.02.127
– volume: 53
  start-page: 289
  issue: 3
  year: 1993
  ident: 10.1016/j.compchemeng.2020.106853_bib0026
  article-title: Post-optimality analysis on the membership functions of a fuzzy linear programming problem
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(93)90400-C
– ident: 10.1016/j.compchemeng.2020.106853_bib0008
– start-page: 352
  year: 2018
  ident: 10.1016/j.compchemeng.2020.106853_bib0032
  article-title: Hydrogen Supply Chain Design: key technological components and sustainable assessment
– volume: 84
  start-page: 423
  issue: 6
  year: 2006
  ident: 10.1016/j.compchemeng.2020.106853_bib0030
  article-title: Design and Operation of a Future Hydrogen Supply Chain: Snapshot Model
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/cherd.05193
– ident: 10.1016/j.compchemeng.2020.106853_bib0027
– volume: 28
  start-page: 2087
  issue: 10
  year: 2004
  ident: 10.1016/j.compchemeng.2020.106853_bib0013
  article-title: A simulation based optimization approach to supply chain management under demand uncertainty
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2004.06.006
– ident: 10.1016/j.compchemeng.2020.106853_bib0029
– ident: 10.1016/j.compchemeng.2020.106853_bib0036
– year: 2015
  ident: 10.1016/j.compchemeng.2020.106853_bib0011
  article-title: Design of experiments for sensitivity analysis in multi-objective optimization of hydrogen supply chain
– volume: 56
  start-page: 650
  issue: 3
  year: 2010
  ident: 10.1016/j.compchemeng.2020.106853_bib0004
  article-title: A bi-criterion optimization approach for the design and planning of hydrogen supply chains for vehicle use
  publication-title: AIChE J.
  doi: 10.1002/aic.12024
– ident: 10.1016/j.compchemeng.2020.106853_bib0007
  doi: 10.1002/9780470172261
SSID ssj0002488
Score 2.5376961
Snippet •This paper addresses the multi-objective design of a hydrogen supply chais under demand uncertainty.•The potential of genetic algorithms is explored to cope...
Hydrogen is currently considered one of the most promising sustainable energy carriers for mobility ap- plications. A model of the hydrogen supply chain (HSC)...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 106853
SubjectTerms Chemical and Process Engineering
Engineering Sciences
Fuzzy techniques
Genetic algorithm
Hydrogen supply chain
Multiobjective optimization
TOPSIS
Title Optimization of a hydrogen supply chain network design under demand uncertainty by multi-objective genetic algorithms
URI https://dx.doi.org/10.1016/j.compchemeng.2020.106853
https://hal.science/hal-03125630
Volume 140
WOSCitedRecordID wos000561589500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: AIEXJ
  dateStart: 19950611
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBabpJT2UPqk6Qu19LY4xJY2kqGXpaSkISQ5pLA3I1lWdpeNveyLbP5U_2JnLPmRlNBtoRdjhCVbns8zI3nmG0I-W6GNEcIGGbc84PgpyozLYJ9bFnOsRZCastiEOD2Vg0F83un8rHJhVhOR5_L6Op7-V1FDGwgbU2f_Qtz1oNAA5yB0OILY4biR4M9ACVz57EqX_Thcm1kB13fnWMJzjcm-o7ybuwDwriljOMp6uFgs_Ap30sHYuVABcNHBPy2jDoNCj512xLLLWUn0OrksZqPF0DOeV4QHvlDEvIRVWjESZA3zYfOXR_uS28fZfDnvnoEurs1E_-ZGzYrgHEU_uZWsWF9xuRzBwjw4URhT4OOFkbNrUbQ3M2Dlir9m2vubSG8aMscrXStoR-jkVSysYaXjF_5N-7uNiDEKb4qzg4nt4V32mj63GbfvWMI6PrEKfRsnraESHCpxQ22RnUj0YrAEO_3vh4Pj2vhHXMqKphXn8ZB8bEIK73mu-1yirWG1uV86OxdPyRO_SqF9h65npJPlz8njFnflC7Js44wWlipa4Yw6nNESZ9TjjDqc0RJn1OGMtnBG9ZrewRn1OKMNzl6SH98OL74eBb6GR5CCq7gIDqK4h2V3MBrS2FQotW_sfmqZNSLspQdxGnOmpJYqNBFjRtkeuG2MC1AgKjIxe0W28yLPXhNq4HVG4D5rJThXmsVpqEPBYmOZ1Fpnu0RWrzFJPcE91lmZJH8U5y6J6q5Tx_KySacvlawS7646NzQBPG7S_RPIt74d0rwf9U8SbANDGyFv3yp88y8P9pY8ar6td2R7MVtm78mDdLUYzWcfPGJ_AZjl0dY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+a+hydrogen+supply+chain+network+design+under+demand+uncertainty+by+multi-objective+genetic+algorithms&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Robles%2C+Jesus+Ochoa&rft.au=Azzaro-Pantel%2C+Catherine&rft.au=Aguilar-Lasserre%2C+Alberto&rft.date=2020-09-02&rft.issn=0098-1354&rft.volume=140&rft.spage=106853&rft_id=info:doi/10.1016%2Fj.compchemeng.2020.106853&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2020_106853
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon