Optimization of a hydrogen supply chain network design under demand uncertainty by multi-objective genetic algorithms
•This paper addresses the multi-objective design of a hydrogen supply chais under demand uncertainty.•The potential of genetic algorithms is explored to cope with the multi-objective formulation.•Better compromise solutions are produced than those obtained with ε-constraint MILP approach.•Demand unc...
Uloženo v:
| Vydáno v: | Computers & chemical engineering Ročník 140; s. 106853 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
02.09.2020
Elsevier |
| Témata: | |
| ISSN: | 0098-1354, 1873-4375 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •This paper addresses the multi-objective design of a hydrogen supply chais under demand uncertainty.•The potential of genetic algorithms is explored to cope with the multi-objective formulation.•Better compromise solutions are produced than those obtained with ε-constraint MILP approach.•Demand uncertainty has also been modelled using fuzzy concepts.•The robustness of the configuration solutions has been assessed.
Hydrogen is currently considered one of the most promising sustainable energy carriers for mobility applications. A model of the hydrogen supply chain (HSC) based on MILP formulation (mixed integer linear programming) in a multi-objective, multi-period formulation, implemented via the ε-constraint method to generate the Pareto front, was conducted in a previous work and applied to the Occitania region of France. Three objective functions have been considered, i.e., the levelized hydrogen cost, the global warming potential, and a safety risk index. However, the size of the problem mainly induced by the number of binary variables often leads to difficulties in problem solution. The first innovative part of this work explores the potential of genetic algorithms (GAs) via a variant of the non-dominated sorting genetic algorithm (NSGA-II) to manage multi-objective formulation to produce compromise solutions automatically. The values of the objective functions obtained by the GAs in the mono-objective formulation exhibit the same order of magnitude as those obtained with MILP, and the multi-objective GA yields a Pareto front of better quality with well-distributed compromise solutions. The differences observed between the GA and the MILP approaches can be explained by way of managing the constraints and their different logics. The second innovative contribution is the modelling of demand uncertainty using fuzzy concepts for HSC design. The solutions are compared with the original crisp models based on either MILP or GA, giving more robustness to the proposed approach. |
|---|---|
| AbstractList | Hydrogen is currently considered one of the most promising sustainable energy carriers for mobility ap- plications. A model of the hydrogen supply chain (HSC) based on MILP formulation (mixed integer linear programming) in a multi-objective, multi-period formulation, implemented via the ε-constraint method to generate the Pareto front, was conducted in a previous work and applied to the Occitania region of France. Three objective functions have been considered, i.e., the levelized hydrogen cost, the global warm- ing potential, and a safety risk index. However, the size of the problem mainly induced by the number of binary variables often leads to difficulties in problem solution. The first innovative part of this work explores the potential of genetic algorithms (GAs) via a variant of the non-dominated sorting genetic al- gorithm (NSGA-II) to manage multi-objective formulation to produce compromise solutions automatically. The values of the objective functions obtained by the GAs in the mono-objective formulation exhibit the same order of magnitude as those obtained with MILP, and the multi-objective GA yields a Pareto front of better quality with well-distributed compromise solutions. The differences observed between the GA and the MILP approaches can be explained by way of managing the constraints and their different logics. The second innovative contribution is the modelling of demand uncertainty using fuzzy concepts for HSC design. The solutions are compared with the original crisp models based on either MILP or GA, giving more robustness to the proposed approach. •This paper addresses the multi-objective design of a hydrogen supply chais under demand uncertainty.•The potential of genetic algorithms is explored to cope with the multi-objective formulation.•Better compromise solutions are produced than those obtained with ε-constraint MILP approach.•Demand uncertainty has also been modelled using fuzzy concepts.•The robustness of the configuration solutions has been assessed. Hydrogen is currently considered one of the most promising sustainable energy carriers for mobility applications. A model of the hydrogen supply chain (HSC) based on MILP formulation (mixed integer linear programming) in a multi-objective, multi-period formulation, implemented via the ε-constraint method to generate the Pareto front, was conducted in a previous work and applied to the Occitania region of France. Three objective functions have been considered, i.e., the levelized hydrogen cost, the global warming potential, and a safety risk index. However, the size of the problem mainly induced by the number of binary variables often leads to difficulties in problem solution. The first innovative part of this work explores the potential of genetic algorithms (GAs) via a variant of the non-dominated sorting genetic algorithm (NSGA-II) to manage multi-objective formulation to produce compromise solutions automatically. The values of the objective functions obtained by the GAs in the mono-objective formulation exhibit the same order of magnitude as those obtained with MILP, and the multi-objective GA yields a Pareto front of better quality with well-distributed compromise solutions. The differences observed between the GA and the MILP approaches can be explained by way of managing the constraints and their different logics. The second innovative contribution is the modelling of demand uncertainty using fuzzy concepts for HSC design. The solutions are compared with the original crisp models based on either MILP or GA, giving more robustness to the proposed approach. |
| ArticleNumber | 106853 |
| Author | Azzaro-Pantel, Catherine Aguilar-Lasserre, Alberto Robles, Jesus Ochoa |
| Author_xml | – sequence: 1 givenname: Jesus Ochoa surname: Robles fullname: Robles, Jesus Ochoa organization: Université de Toulouse, Laboratoire de Génie Chimique, LGC UMR CNRS 5503 INP UPS TOULOUSE INP ENSIACET - 4 allée Emile Monso – BP 44362 - 31432, Toulouse Cedex 4, France – sequence: 2 givenname: Catherine surname: Azzaro-Pantel fullname: Azzaro-Pantel, Catherine email: catherine.azzaropantel@ensiacet.fr organization: Université de Toulouse, Laboratoire de Génie Chimique, LGC UMR CNRS 5503 INP UPS TOULOUSE INP ENSIACET - 4 allée Emile Monso – BP 44362 - 31432, Toulouse Cedex 4, France – sequence: 3 givenname: Alberto surname: Aguilar-Lasserre fullname: Aguilar-Lasserre, Alberto organization: Instituto Tecnológico de Orizaba, Oriente 9, Emiliano Zapata, Orizaba 94320, Ver., Mexico |
| BackLink | https://hal.science/hal-03125630$$DView record in HAL |
| BookMark | eNqNkE1rGzEQhkVJoY7b_6Ace1hHWu3nqQTTJgFDLslZyNKsd5xdaZFkl-2vjxyXEHLKaZjhfR-Y55JcWGeBkCvOVpzx6nq_0m6cdA8j2N0qZ_npXjWl-EIWvKlFVoi6vCALxtom46IsvpHLEPaMsbxomgU5PEwRR_ynIjpLXUcV7Wfj3Q4sDYdpGmaqe4WWWoh_nX-mBgLuLD1YAz4to7ImLRp8TKk40-1Mx8MQMXPbPeiIR6CJBRE1VcPOeYz9GL6Tr50aAvz4P5fk6c_vx_Vdtnm4vV_fbDJdsCpmVd6WNWzTO2VhOl0rxUzHdCc6U_NSV61uC6GabaO4yYUwqis1gChqU9cqN61Ykp9nbq8GOXkclZ-lUyjvbjbydGOC52Ul2JGnbHvOau9C8NC9FTiTJ9dyL9-5lifX8uw6dX996GqMr0qjVzh8irA-EyDpOCJ4GTRC8mrQJ43SOPwE5QVQmaiU |
| CitedBy_id | crossref_primary_10_1007_s00500_021_06309_9 crossref_primary_10_1016_j_enconman_2025_119864 crossref_primary_10_1016_j_cie_2022_108513 crossref_primary_10_1016_j_ijhydene_2024_07_067 crossref_primary_10_1108_JSTPM_02_2023_0027 crossref_primary_10_1016_j_compchemeng_2025_109298 crossref_primary_10_1016_j_egyr_2021_10_071 crossref_primary_10_1016_j_ijhydene_2024_06_216 crossref_primary_10_1080_15435075_2025_2552485 crossref_primary_10_1016_j_cie_2024_110170 crossref_primary_10_3390_en18133318 crossref_primary_10_1007_s10098_024_03015_6 crossref_primary_10_3390_math10030437 crossref_primary_10_1061_JCEMD4_COENG_13615 crossref_primary_10_1016_j_ijhydene_2024_08_397 crossref_primary_10_1016_j_apenergy_2021_117740 crossref_primary_10_1007_s10098_021_02235_4 crossref_primary_10_1186_s12877_023_03924_z crossref_primary_10_1109_TASE_2024_3381449 crossref_primary_10_1016_j_ijhydene_2023_03_474 crossref_primary_10_1051_e3sconf_202233402003 crossref_primary_10_1021_acs_iecr_4c04211 crossref_primary_10_3390_en16248081 crossref_primary_10_1016_j_cirpj_2024_06_008 crossref_primary_10_1016_j_ijhydene_2023_04_300 crossref_primary_10_1016_j_ijhydene_2025_151667 crossref_primary_10_3390_logistics9010035 crossref_primary_10_1016_j_compchemeng_2024_108820 crossref_primary_10_1016_j_ijhydene_2024_03_362 crossref_primary_10_1016_j_enconman_2022_115650 crossref_primary_10_3390_en16227672 crossref_primary_10_1007_s11356_024_32563_z crossref_primary_10_1080_00207543_2022_2045377 crossref_primary_10_1139_cjce_2022_0299 |
| Cites_doi | 10.1016/j.ijhydene.2008.07.028 10.1016/j.ijhydene.2014.05.165 10.1016/j.ijhydene.2008.06.007 10.1016/j.compchemeng.2008.05.004 10.1016/j.ijhydene.2015.10.015 10.1016/j.compchemeng.2003.09.014 10.1016/j.ijhydene.2011.07.096 10.1016/j.ijhydene.2011.01.104 10.1016/j.omega.2015.01.006 10.1016/j.ijhydene.2011.11.091 10.1109/4235.996017 10.1016/j.ijhydene.2010.04.010 10.1007/s41660-017-0025-y 10.1016/j.ejor.2017.04.009 10.1109/4235.850651 10.1016/j.ijhydene.2011.02.127 10.1016/0165-0114(93)90400-C 10.1205/cherd.05193 10.1016/j.compchemeng.2004.06.006 10.1002/aic.12024 10.1002/9780470172261 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC VOOES |
| DOI | 10.1016/j.compchemeng.2020.106853 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-4375 |
| ExternalDocumentID | oai:HAL:hal-03125630v1 10_1016_j_compchemeng_2020_106853 S0098135419307161 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SBC SDF SDG SDP SES SPC SPCBC SSG SST SSZ T5K ~G- 29F 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD FEDTE FGOYB HLY HLZ HVGLF HZ~ NDZJH R2- SCE SEW VH1 WUQ ZY4 ~HD 1XC VOOES |
| ID | FETCH-LOGICAL-c406t-62957eb68554dfc7aa0df0cf3fd715c69c943a8b8a1d233daf5cee347d77a2d93 |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000561589500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-1354 |
| IngestDate | Sat Oct 25 11:17:24 EDT 2025 Sat Nov 29 07:27:53 EST 2025 Tue Nov 18 20:49:36 EST 2025 Fri Feb 23 02:48:28 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | SCND GWP NSGA-II Hydrogen supply chain MILP GHG Fuzzy techniques MINLP CCS TDC Genetic algorithm Multiobjective optimization HSC SMR GA MCDM TOPSIS |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c406t-62957eb68554dfc7aa0df0cf3fd715c69c943a8b8a1d233daf5cee347d77a2d93 |
| ORCID | 0000-0001-5832-5199 |
| OpenAccessLink | https://hal.science/hal-03125630 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03125630v1 crossref_primary_10_1016_j_compchemeng_2020_106853 crossref_citationtrail_10_1016_j_compchemeng_2020_106853 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2020_106853 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-02 |
| PublicationDateYYYYMMDD | 2020-09-02 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & chemical engineering |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | McKinsey & Company, A., portfolio of power-trains for Europe: a fact-based analysis. Report, 2010. [Accessed: 31-Dec-2017]. IEA, ‘International Energy Agency Technical Report. Key world energy statistics’, Sep- 2017. [Online]. Available Almansoori, Shah (bib0016) 2012; 37 Delgado, Herrera, Verdegay, Vila (bib0026) 1993; 53 You, Grossmann (bib0014) 2008; 32 De-León Almaraz, Azzaro-Pantel, Montastruc, Domenech (bib0002) 2014; 39 Eskandarpour, Dejax, Miemczyk, Péton (bib0003) 2015; 54 Hydrogen Council, ‘Hydrogen scaling up. A sustainable pathway for the global energy transition’, Nov- 2017. [Online]. Available Kim, Lee, Moon (bib0015) 2008; 33 Gen, M. and Cheng, R., Genetic Algorithms and Engineering Optimization. John Wiley & Sons, 2000. De León Almaraz, S., ‘Multi-objective optimisation of a hydrogen supply chain’, 14-Feb- 2014. [Online]. Available Deb, Pratap, Agarwal, Meyarivan (bib0024) 2002; 6 Ochoa Robles, Azzaro-Pantel, De-Leon Almaraz (bib0032) 2018 [Accessed: 29-Dec-2017]. Gomez, A., Azzaro-Pantel, C., L.Pibouleau, and Domenech, S., ‘Teaching Mono and Multi-objective Genetic Algorithms in Process Systems Engineering: an illustration with the MULTIGEN environment, ESCAPE 18’, in 18th European Symposium on Computer Aided Process Engineering, ESCAPE, 2008, vol. 18. Bento, N., ‘La transition vers une économie de l'hydrogène: infrastructures et changement technique’, Université Pierre Mendès-France-Grenoble II, 2010. McKinsey & Company, ‘A portfolio of power-trains for Europe: a fact-based analysis. The role of Battery Electric Vehicles, Plug-in Hybrids and Fuel Cell Electric Vehicles’, 2010. Almansoori, Shah (bib0030) 2006; 84 Sabio, Gadalla, Guillén-Gosálbez, Jiménez (bib0009) 2010; 35 Verdegay (bib0018) 1982; 231 [Accessed: 04-Jan-2018]. Jung, Blau, Pekny, Reklaitis, Eversdyk (bib0013) 2004; 28 Kim, Moon (bib0034) 2008; 33 Villacorta, Rabelo, Pelta, Verdegay (bib0019) 2017 Ren, L., Zhang, Y., Wang, Y., and Sun, Z., ‘Comparative analysis of a novel M-TOPSIS method and TOPSIS’, Appl. Math. Res. EXpress, vol. 2007, p. abm005, 2007. Kim, Lee, Moon (bib0023) 2011; 36 Ochoa Robles, J., De-León Almaraz, S., and Azzaro-Pantel, C., ‘Design of Experiments for Sensitivity Analysis of a Hydrogen Supply Chain Design Model’, Process Integr. Optim. Sustain., pp. 1–22, Dec. 2017. Guillén-Gosálbez, Mele, Grossmann (bib0004) 2010; 56 Nunes, Oliveira, Hamacher, Almansoori (bib0017) 2015; 40 IEA, ‘Technology Roadmap. Hydrogen and Fuel Cells’, 2015. [Online]. Available Dagdougui, Ouammi, Sacile (bib0033) 2012; 37 [Accessed: 5-July-2019]. Mavrotas, G., ‘Generation of efficient solutions in Multiobjective Mathematical Programming problems using GAMS. Effective implementation of the ε-constraint method’, Lect. Lab. Ind. Energy Econ. Sch. Chem. Eng. Natl. Tech. Univ. Athens, 2007. Dimopoulos, Zalzala (bib0006) 2000; 4 Ebrahimnejad, Verdegay (bib0025) 2016 Ochoa Robles, Azzaro-Pantel, De-Leon Almaraz (bib0011) 2015 Chen, Lee (bib0012) 2004; 28 Murthy Konda, Shah, Brandon (bib0031) 2011; 36 (bib0035) 2008; 23123 Govindan, Fattahi, Keyvanshokooh (bib0020) 2017; 263 Mobilité Hydrogène France, ‘H2 MOBILITÉ FRANCE. Study for a Fuel Cell Electric Vehicle national deployment plan’, 2016. [Online]. Available Eskandarpour (10.1016/j.compchemeng.2020.106853_bib0003) 2015; 54 Ochoa Robles (10.1016/j.compchemeng.2020.106853_bib0032) 2018 Sabio (10.1016/j.compchemeng.2020.106853_bib0009) 2010; 35 Chen (10.1016/j.compchemeng.2020.106853_bib0012) 2004; 28 Kim (10.1016/j.compchemeng.2020.106853_bib0034) 2008; 33 Verdegay (10.1016/j.compchemeng.2020.106853_bib0018) 1982; 231 You (10.1016/j.compchemeng.2020.106853_bib0014) 2008; 32 10.1016/j.compchemeng.2020.106853_bib0010 10.1016/j.compchemeng.2020.106853_bib0037 Deb (10.1016/j.compchemeng.2020.106853_bib0024) 2002; 6 10.1016/j.compchemeng.2020.106853_bib0036 10.1016/j.compchemeng.2020.106853_bib0038 Kim (10.1016/j.compchemeng.2020.106853_bib0023) 2011; 36 Murthy Konda (10.1016/j.compchemeng.2020.106853_bib0031) 2011; 36 Guillén-Gosálbez (10.1016/j.compchemeng.2020.106853_bib0004) 2010; 56 Delgado (10.1016/j.compchemeng.2020.106853_bib0026) 1993; 53 Dagdougui (10.1016/j.compchemeng.2020.106853_bib0033) 2012; 37 Ochoa Robles (10.1016/j.compchemeng.2020.106853_bib0011) 2015 De-León Almaraz (10.1016/j.compchemeng.2020.106853_bib0002) 2014; 39 Dimopoulos (10.1016/j.compchemeng.2020.106853_bib0006) 2000; 4 Kim (10.1016/j.compchemeng.2020.106853_bib0015) 2008; 33 10.1016/j.compchemeng.2020.106853_bib0008 10.1016/j.compchemeng.2020.106853_bib0007 10.1016/j.compchemeng.2020.106853_bib0029 Nunes (10.1016/j.compchemeng.2020.106853_bib0017) 2015; 40 Jung (10.1016/j.compchemeng.2020.106853_bib0013) 2004; 28 Govindan (10.1016/j.compchemeng.2020.106853_bib0020) 2017; 263 10.1016/j.compchemeng.2020.106853_bib0022 10.1016/j.compchemeng.2020.106853_bib0021 Villacorta (10.1016/j.compchemeng.2020.106853_bib0019) 2017 10.1016/j.compchemeng.2020.106853_bib0001 (10.1016/j.compchemeng.2020.106853_bib0035) 2008; 23123 10.1016/j.compchemeng.2020.106853_bib0028 10.1016/j.compchemeng.2020.106853_bib0005 10.1016/j.compchemeng.2020.106853_bib0027 Ebrahimnejad (10.1016/j.compchemeng.2020.106853_bib0025) 2016 Almansoori (10.1016/j.compchemeng.2020.106853_bib0030) 2006; 84 Almansoori (10.1016/j.compchemeng.2020.106853_bib0016) 2012; 37 |
| References_xml | – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib0024 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: Evol. Comput. IEEE Trans. On – volume: 4 start-page: 93 year: 2000 end-page: 113 ident: bib0006 article-title: Recent developments in evolutionary computation for manufacturing optimization: problems, solutions, and comparisons publication-title: IEEE Trans. Evol. Comput. – reference: Gomez, A., Azzaro-Pantel, C., L.Pibouleau, and Domenech, S., ‘Teaching Mono and Multi-objective Genetic Algorithms in Process Systems Engineering: an illustration with the MULTIGEN environment, ESCAPE 18’, in 18th European Symposium on Computer Aided Process Engineering, ESCAPE, 2008, vol. 18. – volume: 263 start-page: 108 year: 2017 end-page: 141 ident: bib0020 article-title: Supply chain network design under uncertainty: A comprehensive review and future research directions publication-title: Eur. J. Oper. Res. – reference: Gen, M. and Cheng, R., Genetic Algorithms and Engineering Optimization. John Wiley & Sons, 2000. – reference: Mavrotas, G., ‘Generation of efficient solutions in Multiobjective Mathematical Programming problems using GAMS. Effective implementation of the ε-constraint method’, Lect. Lab. Ind. Energy Econ. Sch. Chem. Eng. Natl. Tech. Univ. Athens, 2007. – reference: McKinsey & Company, A., portfolio of power-trains for Europe: a fact-based analysis. Report, 2010. – volume: 23123 year: 2008 ident: bib0035 article-title: HyWays the European Hydrogen Roadmap publication-title: EUR – start-page: 327 year: 2016 end-page: 368 ident: bib0025 article-title: A Survey on Models and Methods for Solving Fuzzy Linear Programming Problems publication-title: in Fuzzy Logic in Its 50th Year – reference: . [Accessed: 29-Dec-2017]. – reference: . [Accessed: 31-Dec-2017]. – reference: McKinsey & Company, ‘A portfolio of power-trains for Europe: a fact-based analysis. The role of Battery Electric Vehicles, Plug-in Hybrids and Fuel Cell Electric Vehicles’, 2010. – volume: 56 start-page: 650 year: 2010 end-page: 667 ident: bib0004 article-title: A bi-criterion optimization approach for the design and planning of hydrogen supply chains for vehicle use publication-title: AIChE J. – reference: . [Accessed: 04-Jan-2018]. – reference: Hydrogen Council, ‘Hydrogen scaling up. A sustainable pathway for the global energy transition’, Nov- 2017. [Online]. Available: – reference: Bento, N., ‘La transition vers une économie de l'hydrogène: infrastructures et changement technique’, Université Pierre Mendès-France-Grenoble II, 2010. – volume: 231 start-page: 237 year: 1982 ident: bib0018 article-title: Fuzzy mathematical programming publication-title: Fuzzy Inf. Decis. Process. – start-page: 209 year: 2017 end-page: 230 ident: bib0019 article-title: FuzzyLP: An R Package for Solving Fuzzy Linear Programming Problems publication-title: in Granular, Soft and Fuzzy Approaches for Intelligent Systems – volume: 54 start-page: 11 year: 2015 end-page: 32 ident: bib0003 article-title: Sustainable supply chain network design: An optimization-oriented review publication-title: Omega – volume: 84 start-page: 423 year: 2006 end-page: 438 ident: bib0030 article-title: Design and Operation of a Future Hydrogen Supply Chain: Snapshot Model publication-title: Chem. Eng. Res. Des. – volume: 36 start-page: 4619 year: 2011 end-page: 4635 ident: bib0031 article-title: Optimal transition towards a large-scale hydrogen infrastructure for the transport sector: the case for the Netherlands publication-title: Int. J. Hydrog. Energy – reference: . [Accessed: 5-July-2019]. – volume: 40 start-page: 16408 year: 2015 end-page: 16418 ident: bib0017 article-title: Design of a hydro-gen supply chain with uncertainty publication-title: Int. J. Hydrog. Energy – year: 2015 ident: bib0011 article-title: Design of experiments for sensitivity analysis in multi-objective optimization of hydrogen supply chain publication-title: in 28th Internacional conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems – reference: IEA, ‘International Energy Agency Technical Report. Key world energy statistics’, Sep- 2017. [Online]. Available: – reference: Ochoa Robles, J., De-León Almaraz, S., and Azzaro-Pantel, C., ‘Design of Experiments for Sensitivity Analysis of a Hydrogen Supply Chain Design Model’, Process Integr. Optim. Sustain., pp. 1–22, Dec. 2017. – volume: 33 start-page: 5887 year: 2008 end-page: 5896 ident: bib0034 article-title: Strategic design of hydrogen infrastructure considering cost and safety using multiobjective optimization publication-title: Int. J. Hydrog. Energy – volume: 53 start-page: 289 year: 1993 end-page: 297 ident: bib0026 article-title: Post-optimality analysis on the membership functions of a fuzzy linear programming problem publication-title: Fuzzy Sets Syst. – volume: 32 start-page: 3090 year: 2008 end-page: 3111 ident: bib0014 article-title: Design of responsive supply chains under demand uncertainty publication-title: Comput. Chem. Eng. – start-page: 352 year: 2018 ident: bib0032 article-title: Hydrogen Supply Chain Design: key technological components and sustainable assessment publication-title: in Design, Deployment and Operation of a Hydrogen Supply Chain, 1st Edition. – reference: De León Almaraz, S., ‘Multi-objective optimisation of a hydrogen supply chain’, 14-Feb- 2014. [Online]. Available: – volume: 36 start-page: 6387 year: 2011 end-page: 6398 ident: bib0023 article-title: An index-based risk assessment model for hydrogen infrastructure publication-title: Int. J. Hydrog. Energy – reference: Ren, L., Zhang, Y., Wang, Y., and Sun, Z., ‘Comparative analysis of a novel M-TOPSIS method and TOPSIS’, Appl. Math. Res. EXpress, vol. 2007, p. abm005, 2007. – volume: 37 start-page: 5360 year: 2012 end-page: 5371 ident: bib0033 article-title: Modelling and control of hydrogen and energy flows in a network of green hydrogen refuelling stations powered by mixed renewable energy systems publication-title: Int. J. Hydrog. Energy – volume: 37 start-page: 3965 year: 2012 end-page: 3977 ident: bib0016 article-title: Design and operation of a stochastic hydrogen supply chain network under demand uncertainty publication-title: Int. J. Hydrog. Energy – volume: 28 start-page: 2087 year: 2004 end-page: 2106 ident: bib0013 article-title: A simulation based optimization approach to supply chain management under demand uncertainty publication-title: Comput. Chem. Eng. – reference: Mobilité Hydrogène France, ‘H2 MOBILITÉ FRANCE. Study for a Fuel Cell Electric Vehicle national deployment plan’, 2016. [Online]. Available: – volume: 28 start-page: 1131 year: 2004 end-page: 1144 ident: bib0012 article-title: Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices publication-title: Comput. Chem. Eng. – volume: 39 start-page: 11831 year: 2014 end-page: 11845 ident: bib0002 article-title: Hydrogen supply chain optimization for deployment scenarios in the Midi-Pyrénées region, France publication-title: Int. J. Hydrog. Energy – volume: 35 start-page: 6836 year: 2010 end-page: 6852 ident: bib0009 article-title: Strategic planning with risk control of hydrogen supply chains for vehicle use under uncertainty in operating costs: a case study of Spain publication-title: Int. J. Hydrog. Energy – reference: IEA, ‘Technology Roadmap. Hydrogen and Fuel Cells’, 2015. [Online]. Available: – volume: 33 start-page: 4715 year: 2008 end-page: 4729 ident: bib0015 article-title: Optimization of a hydrogen supply chain under demand uncertainty publication-title: Int. J. Hydrog. Energy – volume: 33 start-page: 5887 issue: 21 year: 2008 ident: 10.1016/j.compchemeng.2020.106853_bib0034 article-title: Strategic design of hydrogen infrastructure considering cost and safety using multiobjective optimization publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2008.07.028 – ident: 10.1016/j.compchemeng.2020.106853_bib0022 – ident: 10.1016/j.compchemeng.2020.106853_bib0001 – volume: 39 start-page: 11831 issue: 23 year: 2014 ident: 10.1016/j.compchemeng.2020.106853_bib0002 article-title: Hydrogen supply chain optimization for deployment scenarios in the Midi-Pyrénées region, France publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2014.05.165 – volume: 23123 year: 2008 ident: 10.1016/j.compchemeng.2020.106853_bib0035 article-title: HyWays the European Hydrogen Roadmap publication-title: EUR – volume: 33 start-page: 4715 issue: 18 year: 2008 ident: 10.1016/j.compchemeng.2020.106853_bib0015 article-title: Optimization of a hydrogen supply chain under demand uncertainty publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2008.06.007 – ident: 10.1016/j.compchemeng.2020.106853_bib0005 – volume: 32 start-page: 3090 issue: 12 year: 2008 ident: 10.1016/j.compchemeng.2020.106853_bib0014 article-title: Design of responsive supply chains under demand uncertainty publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2008.05.004 – ident: 10.1016/j.compchemeng.2020.106853_bib0028 – ident: 10.1016/j.compchemeng.2020.106853_bib0037 – volume: 40 start-page: 16408 issue: 46 year: 2015 ident: 10.1016/j.compchemeng.2020.106853_bib0017 article-title: Design of a hydro-gen supply chain with uncertainty publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.10.015 – volume: 231 start-page: 237 year: 1982 ident: 10.1016/j.compchemeng.2020.106853_bib0018 article-title: Fuzzy mathematical programming publication-title: Fuzzy Inf. Decis. Process. – volume: 28 start-page: 1131 issue: 6 year: 2004 ident: 10.1016/j.compchemeng.2020.106853_bib0012 article-title: Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2003.09.014 – volume: 37 start-page: 5360 issue: 6 year: 2012 ident: 10.1016/j.compchemeng.2020.106853_bib0033 article-title: Modelling and control of hydrogen and energy flows in a network of green hydrogen refuelling stations powered by mixed renewable energy systems publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.07.096 – volume: 36 start-page: 4619 issue: 8 year: 2011 ident: 10.1016/j.compchemeng.2020.106853_bib0031 article-title: Optimal transition towards a large-scale hydrogen infrastructure for the transport sector: the case for the Netherlands publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.01.104 – volume: 54 start-page: 11 year: 2015 ident: 10.1016/j.compchemeng.2020.106853_bib0003 article-title: Sustainable supply chain network design: An optimization-oriented review publication-title: Omega doi: 10.1016/j.omega.2015.01.006 – volume: 37 start-page: 3965 issue: 5 year: 2012 ident: 10.1016/j.compchemeng.2020.106853_bib0016 article-title: Design and operation of a stochastic hydrogen supply chain network under demand uncertainty publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.11.091 – ident: 10.1016/j.compchemeng.2020.106853_bib0021 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.compchemeng.2020.106853_bib0024 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: Evol. Comput. IEEE Trans. On doi: 10.1109/4235.996017 – volume: 35 start-page: 6836 issue: 13 year: 2010 ident: 10.1016/j.compchemeng.2020.106853_bib0009 article-title: Strategic planning with risk control of hydrogen supply chains for vehicle use under uncertainty in operating costs: a case study of Spain publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2010.04.010 – start-page: 327 year: 2016 ident: 10.1016/j.compchemeng.2020.106853_bib0025 article-title: A Survey on Models and Methods for Solving Fuzzy Linear Programming Problems – ident: 10.1016/j.compchemeng.2020.106853_bib0010 doi: 10.1007/s41660-017-0025-y – start-page: 209 year: 2017 ident: 10.1016/j.compchemeng.2020.106853_bib0019 article-title: FuzzyLP: An R Package for Solving Fuzzy Linear Programming Problems – volume: 263 start-page: 108 issue: 1 year: 2017 ident: 10.1016/j.compchemeng.2020.106853_bib0020 article-title: Supply chain network design under uncertainty: A comprehensive review and future research directions publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2017.04.009 – ident: 10.1016/j.compchemeng.2020.106853_bib0038 – volume: 4 start-page: 93 issue: 2 year: 2000 ident: 10.1016/j.compchemeng.2020.106853_bib0006 article-title: Recent developments in evolutionary computation for manufacturing optimization: problems, solutions, and comparisons publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.850651 – volume: 36 start-page: 6387 issue: 11 year: 2011 ident: 10.1016/j.compchemeng.2020.106853_bib0023 article-title: An index-based risk assessment model for hydrogen infrastructure publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.02.127 – volume: 53 start-page: 289 issue: 3 year: 1993 ident: 10.1016/j.compchemeng.2020.106853_bib0026 article-title: Post-optimality analysis on the membership functions of a fuzzy linear programming problem publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(93)90400-C – ident: 10.1016/j.compchemeng.2020.106853_bib0008 – start-page: 352 year: 2018 ident: 10.1016/j.compchemeng.2020.106853_bib0032 article-title: Hydrogen Supply Chain Design: key technological components and sustainable assessment – volume: 84 start-page: 423 issue: 6 year: 2006 ident: 10.1016/j.compchemeng.2020.106853_bib0030 article-title: Design and Operation of a Future Hydrogen Supply Chain: Snapshot Model publication-title: Chem. Eng. Res. Des. doi: 10.1205/cherd.05193 – ident: 10.1016/j.compchemeng.2020.106853_bib0027 – volume: 28 start-page: 2087 issue: 10 year: 2004 ident: 10.1016/j.compchemeng.2020.106853_bib0013 article-title: A simulation based optimization approach to supply chain management under demand uncertainty publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2004.06.006 – ident: 10.1016/j.compchemeng.2020.106853_bib0029 – ident: 10.1016/j.compchemeng.2020.106853_bib0036 – year: 2015 ident: 10.1016/j.compchemeng.2020.106853_bib0011 article-title: Design of experiments for sensitivity analysis in multi-objective optimization of hydrogen supply chain – volume: 56 start-page: 650 issue: 3 year: 2010 ident: 10.1016/j.compchemeng.2020.106853_bib0004 article-title: A bi-criterion optimization approach for the design and planning of hydrogen supply chains for vehicle use publication-title: AIChE J. doi: 10.1002/aic.12024 – ident: 10.1016/j.compchemeng.2020.106853_bib0007 doi: 10.1002/9780470172261 |
| SSID | ssj0002488 |
| Score | 2.5376961 |
| Snippet | •This paper addresses the multi-objective design of a hydrogen supply chais under demand uncertainty.•The potential of genetic algorithms is explored to cope... Hydrogen is currently considered one of the most promising sustainable energy carriers for mobility ap- plications. A model of the hydrogen supply chain (HSC)... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 106853 |
| SubjectTerms | Chemical and Process Engineering Engineering Sciences Fuzzy techniques Genetic algorithm Hydrogen supply chain Multiobjective optimization TOPSIS |
| Title | Optimization of a hydrogen supply chain network design under demand uncertainty by multi-objective genetic algorithms |
| URI | https://dx.doi.org/10.1016/j.compchemeng.2020.106853 https://hal.science/hal-03125630 |
| Volume | 140 |
| WOSCitedRecordID | wos000561589500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002488 issn: 0098-1354 databaseCode: AIEXJ dateStart: 19950611 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBabpJT2UPqk6Qu19LY4xJY2kqGXpaSkISQ5pLA3I1lWdpeNveyLbP5U_2JnLPmRlNBtoRdjhCVbns8zI3nmG0I-W6GNEcIGGbc84PgpyozLYJ9bFnOsRZCastiEOD2Vg0F83un8rHJhVhOR5_L6Op7-V1FDGwgbU2f_Qtz1oNAA5yB0OILY4biR4M9ACVz57EqX_Thcm1kB13fnWMJzjcm-o7ybuwDwriljOMp6uFgs_Ap30sHYuVABcNHBPy2jDoNCj512xLLLWUn0OrksZqPF0DOeV4QHvlDEvIRVWjESZA3zYfOXR_uS28fZfDnvnoEurs1E_-ZGzYrgHEU_uZWsWF9xuRzBwjw4URhT4OOFkbNrUbQ3M2Dlir9m2vubSG8aMscrXStoR-jkVSysYaXjF_5N-7uNiDEKb4qzg4nt4V32mj63GbfvWMI6PrEKfRsnraESHCpxQ22RnUj0YrAEO_3vh4Pj2vhHXMqKphXn8ZB8bEIK73mu-1yirWG1uV86OxdPyRO_SqF9h65npJPlz8njFnflC7Js44wWlipa4Yw6nNESZ9TjjDqc0RJn1OGMtnBG9ZrewRn1OKMNzl6SH98OL74eBb6GR5CCq7gIDqK4h2V3MBrS2FQotW_sfmqZNSLspQdxGnOmpJYqNBFjRtkeuG2MC1AgKjIxe0W28yLPXhNq4HVG4D5rJThXmsVpqEPBYmOZ1Fpnu0RWrzFJPcE91lmZJH8U5y6J6q5Tx_KySacvlawS7646NzQBPG7S_RPIt74d0rwf9U8SbANDGyFv3yp88y8P9pY8ar6td2R7MVtm78mDdLUYzWcfPGJ_AZjl0dY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+a+hydrogen+supply+chain+network+design+under+demand+uncertainty+by+multi-objective+genetic+algorithms&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Robles%2C+Jesus+Ochoa&rft.au=Azzaro-Pantel%2C+Catherine&rft.au=Aguilar-Lasserre%2C+Alberto&rft.date=2020-09-02&rft.issn=0098-1354&rft.volume=140&rft.spage=106853&rft_id=info:doi/10.1016%2Fj.compchemeng.2020.106853&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2020_106853 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |