Predicting Students’ Outcome in an Introductory Programming Course: Leveraging the Student Background
For a lot of beginners, learning to program is challenging; similarly, for teachers, it is difficult to draw on students’ prior knowledge to help the process because it is not quite obvious which abilities are significant for developing programming skills. This paper seeks to shed some light on the...
Saved in:
| Published in: | Applied sciences Vol. 13; no. 21; p. 11994 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.11.2023
|
| Subjects: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | For a lot of beginners, learning to program is challenging; similarly, for teachers, it is difficult to draw on students’ prior knowledge to help the process because it is not quite obvious which abilities are significant for developing programming skills. This paper seeks to shed some light on the subject by identifying which previously recorded variables have the strongest correlation with passing an introductory programming course. To do this, a data set was collected including data from four cohorts of students who attended an introductory programming course, common to all Engineering programmes at a Chilean university. With this data set, several classifiers were built, using different Machine Learning methods, to determine whether students pass or fail the course. In addition, models were trained on subsets of students by programme duration and engineering specialisation. An accuracy of 68% was achieved, but the analysis by specialisation shows that both accuracy and the significant variables vary depending on the programme. The fact that classification methods select different predictors depending on the specialisation suggests that there is a variety of factors that affect a student’s ability to succeed in a programming course, such as overall academic performance, language proficiency, and mathematical and scientific skills. |
|---|---|
| AbstractList | For a lot of beginners, learning to program is challenging; similarly, for teachers, it is difficult to draw on students’ prior knowledge to help the process because it is not quite obvious which abilities are significant for developing programming skills. This paper seeks to shed some light on the subject by identifying which previously recorded variables have the strongest correlation with passing an introductory programming course. To do this, a data set was collected including data from four cohorts of students who attended an introductory programming course, common to all Engineering programmes at a Chilean university. With this data set, several classifiers were built, using different Machine Learning methods, to determine whether students pass or fail the course. In addition, models were trained on subsets of students by programme duration and engineering specialisation. An accuracy of 68% was achieved, but the analysis by specialisation shows that both accuracy and the significant variables vary depending on the programme. The fact that classification methods select different predictors depending on the specialisation suggests that there is a variety of factors that affect a student’s ability to succeed in a programming course, such as overall academic performance, language proficiency, and mathematical and scientific skills. |
| Audience | Academic |
| Author | Köhler, Jacqueline Hidalgo, Luciano Jara, José Luis |
| Author_xml | – sequence: 1 givenname: Jacqueline orcidid: 0000-0002-9506-2989 surname: Köhler fullname: Köhler, Jacqueline – sequence: 2 givenname: Luciano orcidid: 0000-0001-8875-172X surname: Hidalgo fullname: Hidalgo, Luciano – sequence: 3 givenname: José Luis orcidid: 0000-0002-3348-7017 surname: Jara fullname: Jara, José Luis |
| BookMark | eNptUU2LFDEQDbKC67o3f0CDV2dNOul04m0d_BgY2AX1HKqTSptxOhnTaWFv_g3_nr_EjOPCItalisd7j6p6T8lZTBEJec7oFeeavoLDgfGWMaa1eETOW9rLFResP3swPyGX87yjtTTjitFzMt5mdMGWEMfmY1kcxjL_-vGzuVmKTRM2ITYQm00sObnFlpTvmtucxgzTdJSs05JnfN1s8TtmGI9Q-YL3Ts0bsF_HnJbonpHHHvYzXv7tF-Tzu7ef1h9W25v3m_X1dmUFlWXVOSutRC84WNBeM6RglfOovZXcd96BBs7twDw4OnjrUQ66FS1XvZJi4Bdkc_J1CXbmkMME-c4kCOYPkPJoIJdg92hakBa5dFq1XICSMCghJaO66xwXAqvXi5PXIadvC87F7Oq5sa5vWqVUfbXitLKuTqwRqmmIPpVcl7fgcAq2ZuRDxa_7vu04k4xXQXsS2JzmOaM3NhQoIdUnQ9gbRs0xUPMw0Cp6-Y_o_rb_0n8DM6mlsA |
| CitedBy_id | crossref_primary_10_3390_computers13090219 crossref_primary_10_31571_saintek_v14i1_8875 crossref_primary_10_3389_feduc_2025_1562586 |
| Cites_doi | 10.1109/TE.2018.2864133 10.1007/s10639-020-10346-6 10.1007/s10639-022-11146-w 10.1016/j.iheduc.2018.02.002 10.1109/ICCE-TW46550.2019.8992001 10.1016/j.ece.2018.01.002 10.1007/s10758-020-09476-0 10.37624/IJERT/13.10.2020.2895-2908 10.1038/nbt1206-1565 10.1145/1404520.1404531 10.3390/app12178403 10.1109/SCCC49216.2019.8966447 10.1016/j.caeai.2023.100141 10.5539/jel.v5n2p73 10.1145/2960310.2960334 10.1016/j.chb.2015.05.047 10.1177/07356331221085595 10.1007/s11162-019-09546-y 10.1038/s41598-020-60661-8 10.1016/j.chb.2018.11.038 10.1080/00031305.2000.10474502 10.1007/s10758-019-09408-7 10.32614/RJ-2019-051 10.1145/953051.801357 10.1145/3230977.3230981 10.1145/2311917.2311927 10.1145/3341525.3387403 10.1145/3445982 10.1145/2939672.2939785 10.1007/978-981-19-3590-9 10.30935/cedtech/8247 10.1145/1142635.1142637 10.1109/SCCC57464.2022.10000367 10.1145/952978.801037 10.1155/2022/4151487 10.1109/SCCC51225.2020.9281280 10.1109/FIE.2016.7757569 10.1145/3340631.3394853 10.1016/j.chb.2017.01.047 10.1109/SCCC57464.2022.10000360 10.1145/1047344.1047480 10.1023/A:1012487302797 10.7554/eLife.58906 10.1155/2022/4043992 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
| DOI | 10.3390/app132111994 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_2a6ce36d98234a86ab846610955d344e A772531613 10_3390_app132111994 |
| GeographicLocations | Chile |
| GeographicLocations_xml | – name: Chile |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c406t-5dc6c6ef43aca9f91e0ac8dfe9fc63f5fda9a33cb1fad0bfcfe6b9242387864b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001100537300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:44:19 EDT 2025 Sun Nov 09 07:56:42 EST 2025 Tue Nov 04 18:38:22 EST 2025 Tue Nov 18 21:59:59 EST 2025 Sat Nov 29 07:10:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-5dc6c6ef43aca9f91e0ac8dfe9fc63f5fda9a33cb1fad0bfcfe6b9242387864b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8875-172X 0000-0002-9506-2989 0000-0002-3348-7017 |
| OpenAccessLink | https://doaj.org/article/2a6ce36d98234a86ab846610955d344e |
| PQID | 2888111830 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2a6ce36d98234a86ab846610955d344e proquest_journals_2888111830 gale_infotracacademiconefile_A772531613 crossref_citationtrail_10_3390_app132111994 crossref_primary_10_3390_app132111994 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Noble (ref_46) 2006; 24 ref_14 (ref_32) 2020; 13 ref_13 Shaalan (ref_30) 2019; 24 ref_19 Alsariera (ref_29) 2022; 2022 ref_18 ref_17 ref_15 Moonsamy (ref_26) 2021; 12 Deconinck (ref_42) 2023; 61 Qian (ref_21) 2016; 5 Guyon (ref_45) 2002; 46 ref_24 Aluko (ref_37) 2018; 16 ref_23 ref_22 ref_20 Medeiros (ref_11) 2019; 62 ref_27 Ivanova (ref_51) 2020; 9 Menard (ref_47) 2000; 54 Barker (ref_38) 1983; 15 Bellino (ref_25) 2021; 21 ref_34 (ref_4) 2015; 52 Alturki (ref_28) 2022; 27 Cheah (ref_10) 2020; 12 Shen (ref_41) 2023; 28 Ismail (ref_31) 2023; 5 Costa (ref_39) 2017; 73 ref_44 ref_43 Chen (ref_5) 2022; 2022 Vianna (ref_6) 2018; 22 Tsai (ref_12) 2019; 95 Sandoval (ref_33) 2018; 37 Prat (ref_52) 2020; 10 Gil (ref_36) 2021; 26 ref_40 ref_1 ref_3 Friedrich (ref_50) 2019; 11 ref_2 ref_49 ref_48 ref_9 ref_8 Leeper (ref_16) 1982; 14 Beaulac (ref_35) 2019; 60 ref_7 |
| References_xml | – volume: 62 start-page: 77 year: 2019 ident: ref_11 article-title: A Systematic Literature Review on Teaching and Learning Introductory Programming in Higher Education publication-title: IEEE Trans. Educ. doi: 10.1109/TE.2018.2864133 – volume: 26 start-page: 2165 year: 2021 ident: ref_36 article-title: A data-driven approach to predict first-year students’ academic success in higher education institutions publication-title: Educ. Inf. Technol. doi: 10.1007/s10639-020-10346-6 – volume: 28 start-page: 725 year: 2023 ident: ref_41 article-title: The prediction of programming performance using student profiles publication-title: Educ. Inf. Technol. doi: 10.1007/s10639-022-11146-w – volume: 37 start-page: 76 year: 2018 ident: ref_33 article-title: Centralized student performance prediction in large courses based on low-cost variables in an institutional context publication-title: Internet High. Educ. doi: 10.1016/j.iheduc.2018.02.002 – ident: ref_8 doi: 10.1109/ICCE-TW46550.2019.8992001 – volume: 22 start-page: 69 year: 2018 ident: ref_6 article-title: Programming skills in the industry 4.0: Are chemical engineering students able to face new problems? publication-title: Educ. Chem. Eng. doi: 10.1016/j.ece.2018.01.002 – volume: 27 start-page: 275 year: 2022 ident: ref_28 article-title: Predicting Academic Outcomes: A Survey from 2007 Till 2018 publication-title: Technol. Knowl. Learn. doi: 10.1007/s10758-020-09476-0 – volume: 13 start-page: 2895 year: 2020 ident: ref_32 article-title: Students performance: From detection of failures and anomaly cases to the solutions-based mining algorithms publication-title: Int. J. Eng. Res. Technol. doi: 10.37624/IJERT/13.10.2020.2895-2908 – volume: 24 start-page: 1565 year: 2006 ident: ref_46 article-title: What is a support vector machine? publication-title: Nat. Biotechnol. doi: 10.1038/nbt1206-1565 – ident: ref_1 – ident: ref_20 doi: 10.1145/1404520.1404531 – ident: ref_34 doi: 10.3390/app12178403 – volume: 16 start-page: 385 year: 2018 ident: ref_37 article-title: Towards reliable prediction of academic performance of architecture students using data mining techniques publication-title: J. Eng. Des. Technol. – ident: ref_23 doi: 10.1109/SCCC49216.2019.8966447 – volume: 5 start-page: 100141 year: 2023 ident: ref_31 article-title: A systematic literature review: Recent techniques of predicting STEM stream students publication-title: Comput. Educ. Artif. Intell. doi: 10.1016/j.caeai.2023.100141 – volume: 5 start-page: 73 year: 2016 ident: ref_21 article-title: Correlates of success in introductory programming: A study with middle school students publication-title: J. Educ. Learn. doi: 10.5539/jel.v5n2p73 – ident: ref_18 doi: 10.1145/2960310.2960334 – volume: 52 start-page: 200 year: 2015 ident: ref_4 article-title: A new way of teaching programming skills to K-12 students: Code. org publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2015.05.047 – volume: 61 start-page: 68 year: 2023 ident: ref_42 article-title: Pass/Fail Prediction in Programming Courses publication-title: J. Educ. Comput. Res. doi: 10.1177/07356331221085595 – volume: 60 start-page: 1048 year: 2019 ident: ref_35 article-title: Predicting University Students’ Academic Success and Major Using Random Forests publication-title: Res. High. Educ. doi: 10.1007/s11162-019-09546-y – ident: ref_48 – volume: 10 start-page: 3817 year: 2020 ident: ref_52 article-title: Relating natural language aptitude to individual differences in learning programming languages publication-title: Sci. Rep. doi: 10.1038/s41598-020-60661-8 – volume: 95 start-page: 224 year: 2019 ident: ref_12 article-title: Improving students’ understanding of basic programming concepts through visual programming language: The role of self-efficacy publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2018.11.038 – volume: 54 start-page: 17 year: 2000 ident: ref_47 article-title: Coefficients of determination for multiple logistic regression analysis publication-title: Am. Stat. doi: 10.1080/00031305.2000.10474502 – ident: ref_7 – volume: 24 start-page: 567 year: 2019 ident: ref_30 article-title: Factors Affecting Students’ Performance in Higher Education: A Systematic Review of Predictive Data Mining Techniques publication-title: Technol. Knowl. Learn. doi: 10.1007/s10758-019-09408-7 – volume: 11 start-page: 380 year: 2019 ident: ref_50 article-title: The R Journal: Resampling-Based Analysis of Multivariate Data and Repeated Measures Designs with the R Package MANOVA.RM publication-title: R J. doi: 10.32614/RJ-2019-051 – ident: ref_24 – volume: 14 start-page: 147 year: 1982 ident: ref_16 article-title: Predicting success in a first programming course publication-title: ACM SIGCSE Bull. doi: 10.1145/953051.801357 – ident: ref_19 doi: 10.1145/3230977.3230981 – ident: ref_9 doi: 10.1145/2311917.2311927 – ident: ref_14 – volume: 12 start-page: 97 year: 2021 ident: ref_26 article-title: A meta-analysis of educational data mining for predicting students performance in programming publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: ref_22 doi: 10.1145/3341525.3387403 – volume: 21 start-page: 1 year: 2021 ident: ref_25 article-title: A real-world approach to motivate students on the first class of a computer science course publication-title: ACM Trans. Comput. Educ. (TOCE) doi: 10.1145/3445982 – ident: ref_49 doi: 10.1145/2939672.2939785 – ident: ref_40 doi: 10.1007/978-981-19-3590-9 – volume: 12 start-page: ep272 year: 2020 ident: ref_10 article-title: Factors contributing to the difficulties in teaching and learning of computer programming: A literature review publication-title: Contemp. Educ. Technol. doi: 10.30935/cedtech/8247 – ident: ref_15 doi: 10.1145/1142635.1142637 – ident: ref_43 doi: 10.1109/SCCC57464.2022.10000367 – ident: ref_2 – volume: 15 start-page: 154 year: 1983 ident: ref_38 article-title: A Predictor for Success in an Introductory Programming Class Based upon Abstract Reasoning Development publication-title: SIGCSE Bull. doi: 10.1145/952978.801037 – volume: 2022 start-page: 4151487 year: 2022 ident: ref_29 article-title: Assessment and Evaluation of Different Machine Learning Algorithms for Predicting Student Performance publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/4151487 – ident: ref_44 doi: 10.1109/SCCC51225.2020.9281280 – ident: ref_3 doi: 10.1109/FIE.2016.7757569 – ident: ref_13 doi: 10.1145/3340631.3394853 – volume: 73 start-page: 247 year: 2017 ident: ref_39 article-title: Evaluating the effectiveness of educational data mining techniques for early prediction of students’ academic failure in introductory programming courses publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2017.01.047 – ident: ref_27 doi: 10.1109/SCCC57464.2022.10000360 – ident: ref_17 doi: 10.1145/1047344.1047480 – volume: 46 start-page: 389 year: 2002 ident: ref_45 article-title: Gene Selection for Cancer Classification using Support Vector Machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – volume: 9 start-page: e58906 year: 2020 ident: ref_51 article-title: Comprehension of computer code relies primarily on domain-general executive brain regions publication-title: eLife doi: 10.7554/eLife.58906 – volume: 2022 start-page: 4043992 year: 2022 ident: ref_5 article-title: The Value of Python Programming in General Education and Comprehensive Quality Improvement of Medical Students Based on a Retrospective Cohort Study publication-title: J. Healthc. Eng. doi: 10.1155/2022/4043992 |
| SSID | ssj0000913810 |
| Score | 2.279199 |
| Snippet | For a lot of beginners, learning to program is challenging; similarly, for teachers, it is difficult to draw on students’ prior knowledge to help the process... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 11994 |
| SubjectTerms | Academic achievement Algorithms Computer programming cs01 Distance learning Engineering Machine learning Online instruction programming in engineering Regression analysis Skills Statistical analysis Students Success Support vector machines Variables |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgM9AC0gFgryAQQIRSTrxLG5oC5qBVK1rHipt2jiR1VRsiXZInHjb_D3-CXMJN6lHMqFa-I8522Pvw_gYWmLQGErkH1nJsm1KxOkyJZ4iqUSXfB531X56aCczfThoZnHCbcutlWufGLvqN3C8hz58wmVamSXWqYvT78mzBrFq6uRQuMybDBSWT6CjenebP5uPcvCqJc6S4eOd0n1Pa8LUwFGdzIm_ysW9ZD9FznmPtrsX__f97wB12KeKXYHxdiCS77Zhs1z6IPbsBXtuhNPIvj005twNG956YabocX7Afey-_Xjp3h7tqTne3HcCGzEG-5vZ6TYRftdzIcWry98CVPgdf6FOPBkIj0BkqAMc3UnMUX7mfeRNO4WfNzf-_DqdRLJGBJLMX-ZFM4qq3zIJVo0wWQ-RatJmCZYJUMRHBqU0tZZQJfWwQavasPZmi61ymt5G0bNovF3QGTB0U-yVPhpZkBDRFuiwiJoGbLU2DE8W4mlshGpnAkzTiqqWFiI1XkhjuHRevTpgNBxwbgpS3g9hnG1-wOL9qiKZlpNUFkvlTN6InPUCmvKzxiRviiczHM_hsesHxVbP72SxbiJgT6McbSqXSpWyKtRjjSGnZV-VNEtdNUf5bj779P34Crz2g-bHndgtGzP_H24Yr8tj7v2QdTy339pCRg priority: 102 providerName: ProQuest |
| Title | Predicting Students’ Outcome in an Introductory Programming Course: Leveraging the Student Background |
| URI | https://www.proquest.com/docview/2888111830 https://doaj.org/article/2a6ce36d98234a86ab846610955d344e |
| Volume | 13 |
| WOSCitedRecordID | wos001100537300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VbQ9wqPoAsVAqH6gAoYjNOnFsbl3UikplG_FSOVkTP1AFTdFmi8Stf6N_r7-kM0m2Wg4Vlx4TOdHY85ZnvgF4Ubg8ktuKpN-pSTLtiwTJsyWBfKlEH0PWVlV-OyomE31yYsqFUV9cE9bBA3cH93aEygWpvNEjmaFWWJHHZIzwPPcyywJbX4p6FpKp1gablKGrukp3SXk93wdT4kWabUz2jw9qofrvMsitlzlYh7U-PBR7HVkbsBTqTXi4ABq4CRu9OjbiVY8Z_XoLfpRTvnHhGmbxuYOrbK4vr8TxxYxEKojTWmAtDrksnQFez6d_RdlVZp3xJzy5rgnvxFEgyW7nFgkKDOd_EmN0P7n9o_aP4OvB_pf3H5J-hkLiyFXPktw75VSImUSHJpo0DNFp4oGJTsmYR48GpXRVGtEPq-hiUJXhIEsXWmWVfAzL9XkdnoBIo6d02VG-pnlwGSK6AhXmUctI_HADeDM_Vet6gHGec_HLUqLBPLCLPBjA7u3q3x2wxh3rxsyg2zUMh92-ICGxvZDY_wnJAF4yey0rLZHksO89oI0x_JXdoxyDjBGFNgPYnkuA7bW5sSPaN1Gj5fDpfVDzDB7w0Pquo3EblmfTi_AcVt2f2Wkz3YGV8f6k_LTTCjQ9lYcfy-83ZYv7-w |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLRJwAFqoWCjgAxUgFDWJ82MjIdQCVVfdLpEoqJyM49hVBWRLsgX1xmvwEjwUT8JMfpZyKLceuCaOZcef58ee-QbgQWpih2rL4f4OpBeJIvU0ajbPoi7lunA2aqIq343TyUTs78tsAX72uTAUVtnLxEZQF1NDZ-TrIbpquC8F958fffGoahTdrvYlNFpY7NiTb-iy1c9GL3F918Jw69Xei22vqyrgGVReMy8uTGIS6yKujZZOBtbXRuCopDMJd7ErtNScmzxwuvBzZ5xNcklmh0hFEuUc-70AixGCXQxgMRvtZu_npzrEsikCv42w51z6dA-NDh-OXMroL93XlAg4SxE02m3r2v_2X67D1c6OZhst8JdgwZbLcOUUu-IyLHVyq2aPOnLtxzfgIKvoaoqCvdmbltez_vX9B3t9PMP5WnZYMl2yEcXvExPutDphWRvC9pk-oRJ_tX3KxhZFQFPgiaEF3ffENrX5SHkyZXET3p7L9FdgUE5LewtY4ApcFIOOraAKb1prk-pEx05wF_jSDOFJDwNlOiZ2KgjySaFHRqBRp0EzhLV566OWgeSMdpuEqHkb4g1vHkyrA9WJIRXqxFieFFKEPNIi0Tnan8S4H8cFjyI7hIeER0XSDYdkdJekgRMjnjC1gc4YSm20AYew2uNRdWKvVn_AePvfr-_Dpe293bEajyY7d-ByiJZjm-C5CoNZdWzvwkXzdXZYV_e6Hcbgw3mD9zeIIGuo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VFiE4AC0gFgr4QAUIRU3i_NhICLW0K1ZdlkhQVE7GceyqArIl2YJ64zV4FR6HJ2EmP9tyKLceuCaOZcff_NnjbwAepiZ2aLYcyncgvUgUqafRsnkWbSnXhbNRk1X5fpxOJmJvT2YL8Ku_C0Nplb1ObBR1MTW0R74eYqiGcim4v-66tIhsa_ji8KtHFaTopLUvp9FCZMcef8fwrX4-2sK1XgvD4fa7l6-8rsKAZ9CQzby4MIlJrIu4Nlo6GVhfG4EjlM4k3MWu0FJzbvLA6cLPnXE2ySW5ICIVSZRz7PcCLKFLHqGMLWWj19mH-Q4PMW6KwG-z7TmXPp1JY_CHs5Ay-ssONuUCzjIKjaUbXvuf_9F1uNr512yjFYhlWLDlClw5xbq4AsudPqvZ4450-8kN2M8qOrKiJHD2tuX7rH__-MneHM1w7pYdlEyXbER5_cSQO62OWdamtn2hT6j0X22fsbFF1dAUfmLoWfc9sU1tPtH9mbK4CbvnMv1bsFhOS3sbWOAKXCCDAa-gym9aa5PqRMdOcBf40gzgaQ8JZTqGdioU8llhpEYAUqcBNIC1eevDlpnkjHabhK55G-ITbx5Mq33VqScV6sRYnhRShDzSItE5-qXExB_HBY8iO4BHhE1FWg-HZHR3eQMnRvxhagODNNTm6BsOYLXHpurUYa1OgHnn368fwCVErBqPJjt34XKIDmV773MVFmfVkb0HF8232UFd3e-EjcHH88buH1b9dGg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Students%E2%80%99+Outcome+in+an+Introductory+Programming+Course%3A+Leveraging+the+Student+Background&rft.jtitle=Applied+sciences&rft.au=Jacqueline+K%C3%B6hler&rft.au=Luciano+Hidalgo&rft.au=Jos%C3%A9+Luis+Jara&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=21&rft.spage=11994&rft_id=info:doi/10.3390%2Fapp132111994&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2a6ce36d98234a86ab846610955d344e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |