Predicting Students’ Outcome in an Introductory Programming Course: Leveraging the Student Background

For a lot of beginners, learning to program is challenging; similarly, for teachers, it is difficult to draw on students’ prior knowledge to help the process because it is not quite obvious which abilities are significant for developing programming skills. This paper seeks to shed some light on the...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 13; no. 21; p. 11994
Main Authors: Köhler, Jacqueline, Hidalgo, Luciano, Jara, José Luis
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.11.2023
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract For a lot of beginners, learning to program is challenging; similarly, for teachers, it is difficult to draw on students’ prior knowledge to help the process because it is not quite obvious which abilities are significant for developing programming skills. This paper seeks to shed some light on the subject by identifying which previously recorded variables have the strongest correlation with passing an introductory programming course. To do this, a data set was collected including data from four cohorts of students who attended an introductory programming course, common to all Engineering programmes at a Chilean university. With this data set, several classifiers were built, using different Machine Learning methods, to determine whether students pass or fail the course. In addition, models were trained on subsets of students by programme duration and engineering specialisation. An accuracy of 68% was achieved, but the analysis by specialisation shows that both accuracy and the significant variables vary depending on the programme. The fact that classification methods select different predictors depending on the specialisation suggests that there is a variety of factors that affect a student’s ability to succeed in a programming course, such as overall academic performance, language proficiency, and mathematical and scientific skills.
AbstractList For a lot of beginners, learning to program is challenging; similarly, for teachers, it is difficult to draw on students’ prior knowledge to help the process because it is not quite obvious which abilities are significant for developing programming skills. This paper seeks to shed some light on the subject by identifying which previously recorded variables have the strongest correlation with passing an introductory programming course. To do this, a data set was collected including data from four cohorts of students who attended an introductory programming course, common to all Engineering programmes at a Chilean university. With this data set, several classifiers were built, using different Machine Learning methods, to determine whether students pass or fail the course. In addition, models were trained on subsets of students by programme duration and engineering specialisation. An accuracy of 68% was achieved, but the analysis by specialisation shows that both accuracy and the significant variables vary depending on the programme. The fact that classification methods select different predictors depending on the specialisation suggests that there is a variety of factors that affect a student’s ability to succeed in a programming course, such as overall academic performance, language proficiency, and mathematical and scientific skills.
Audience Academic
Author Köhler, Jacqueline
Hidalgo, Luciano
Jara, José Luis
Author_xml – sequence: 1
  givenname: Jacqueline
  orcidid: 0000-0002-9506-2989
  surname: Köhler
  fullname: Köhler, Jacqueline
– sequence: 2
  givenname: Luciano
  orcidid: 0000-0001-8875-172X
  surname: Hidalgo
  fullname: Hidalgo, Luciano
– sequence: 3
  givenname: José Luis
  orcidid: 0000-0002-3348-7017
  surname: Jara
  fullname: Jara, José Luis
BookMark eNptUU2LFDEQDbKC67o3f0CDV2dNOul04m0d_BgY2AX1HKqTSptxOhnTaWFv_g3_nr_EjOPCItalisd7j6p6T8lZTBEJec7oFeeavoLDgfGWMaa1eETOW9rLFResP3swPyGX87yjtTTjitFzMt5mdMGWEMfmY1kcxjL_-vGzuVmKTRM2ITYQm00sObnFlpTvmtucxgzTdJSs05JnfN1s8TtmGI9Q-YL3Ts0bsF_HnJbonpHHHvYzXv7tF-Tzu7ef1h9W25v3m_X1dmUFlWXVOSutRC84WNBeM6RglfOovZXcd96BBs7twDw4OnjrUQ66FS1XvZJi4Bdkc_J1CXbmkMME-c4kCOYPkPJoIJdg92hakBa5dFq1XICSMCghJaO66xwXAqvXi5PXIadvC87F7Oq5sa5vWqVUfbXitLKuTqwRqmmIPpVcl7fgcAq2ZuRDxa_7vu04k4xXQXsS2JzmOaM3NhQoIdUnQ9gbRs0xUPMw0Cp6-Y_o_rb_0n8DM6mlsA
CitedBy_id crossref_primary_10_3390_computers13090219
crossref_primary_10_31571_saintek_v14i1_8875
crossref_primary_10_3389_feduc_2025_1562586
Cites_doi 10.1109/TE.2018.2864133
10.1007/s10639-020-10346-6
10.1007/s10639-022-11146-w
10.1016/j.iheduc.2018.02.002
10.1109/ICCE-TW46550.2019.8992001
10.1016/j.ece.2018.01.002
10.1007/s10758-020-09476-0
10.37624/IJERT/13.10.2020.2895-2908
10.1038/nbt1206-1565
10.1145/1404520.1404531
10.3390/app12178403
10.1109/SCCC49216.2019.8966447
10.1016/j.caeai.2023.100141
10.5539/jel.v5n2p73
10.1145/2960310.2960334
10.1016/j.chb.2015.05.047
10.1177/07356331221085595
10.1007/s11162-019-09546-y
10.1038/s41598-020-60661-8
10.1016/j.chb.2018.11.038
10.1080/00031305.2000.10474502
10.1007/s10758-019-09408-7
10.32614/RJ-2019-051
10.1145/953051.801357
10.1145/3230977.3230981
10.1145/2311917.2311927
10.1145/3341525.3387403
10.1145/3445982
10.1145/2939672.2939785
10.1007/978-981-19-3590-9
10.30935/cedtech/8247
10.1145/1142635.1142637
10.1109/SCCC57464.2022.10000367
10.1145/952978.801037
10.1155/2022/4151487
10.1109/SCCC51225.2020.9281280
10.1109/FIE.2016.7757569
10.1145/3340631.3394853
10.1016/j.chb.2017.01.047
10.1109/SCCC57464.2022.10000360
10.1145/1047344.1047480
10.1023/A:1012487302797
10.7554/eLife.58906
10.1155/2022/4043992
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app132111994
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_2a6ce36d98234a86ab846610955d344e
A772531613
10_3390_app132111994
GeographicLocations Chile
GeographicLocations_xml – name: Chile
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c406t-5dc6c6ef43aca9f91e0ac8dfe9fc63f5fda9a33cb1fad0bfcfe6b9242387864b3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001100537300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:44:19 EDT 2025
Sun Nov 09 07:56:42 EST 2025
Tue Nov 04 18:38:22 EST 2025
Tue Nov 18 21:59:59 EST 2025
Sat Nov 29 07:10:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-5dc6c6ef43aca9f91e0ac8dfe9fc63f5fda9a33cb1fad0bfcfe6b9242387864b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8875-172X
0000-0002-9506-2989
0000-0002-3348-7017
OpenAccessLink https://doaj.org/article/2a6ce36d98234a86ab846610955d344e
PQID 2888111830
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_2a6ce36d98234a86ab846610955d344e
proquest_journals_2888111830
gale_infotracacademiconefile_A772531613
crossref_citationtrail_10_3390_app132111994
crossref_primary_10_3390_app132111994
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Noble (ref_46) 2006; 24
ref_14
(ref_32) 2020; 13
ref_13
Shaalan (ref_30) 2019; 24
ref_19
Alsariera (ref_29) 2022; 2022
ref_18
ref_17
ref_15
Moonsamy (ref_26) 2021; 12
Deconinck (ref_42) 2023; 61
Qian (ref_21) 2016; 5
Guyon (ref_45) 2002; 46
ref_24
Aluko (ref_37) 2018; 16
ref_23
ref_22
ref_20
Medeiros (ref_11) 2019; 62
ref_27
Ivanova (ref_51) 2020; 9
Menard (ref_47) 2000; 54
Barker (ref_38) 1983; 15
Bellino (ref_25) 2021; 21
ref_34
(ref_4) 2015; 52
Alturki (ref_28) 2022; 27
Cheah (ref_10) 2020; 12
Shen (ref_41) 2023; 28
Ismail (ref_31) 2023; 5
Costa (ref_39) 2017; 73
ref_44
ref_43
Chen (ref_5) 2022; 2022
Vianna (ref_6) 2018; 22
Tsai (ref_12) 2019; 95
Sandoval (ref_33) 2018; 37
Prat (ref_52) 2020; 10
Gil (ref_36) 2021; 26
ref_40
ref_1
ref_3
Friedrich (ref_50) 2019; 11
ref_2
ref_49
ref_48
ref_9
ref_8
Leeper (ref_16) 1982; 14
Beaulac (ref_35) 2019; 60
ref_7
References_xml – volume: 62
  start-page: 77
  year: 2019
  ident: ref_11
  article-title: A Systematic Literature Review on Teaching and Learning Introductory Programming in Higher Education
  publication-title: IEEE Trans. Educ.
  doi: 10.1109/TE.2018.2864133
– volume: 26
  start-page: 2165
  year: 2021
  ident: ref_36
  article-title: A data-driven approach to predict first-year students’ academic success in higher education institutions
  publication-title: Educ. Inf. Technol.
  doi: 10.1007/s10639-020-10346-6
– volume: 28
  start-page: 725
  year: 2023
  ident: ref_41
  article-title: The prediction of programming performance using student profiles
  publication-title: Educ. Inf. Technol.
  doi: 10.1007/s10639-022-11146-w
– volume: 37
  start-page: 76
  year: 2018
  ident: ref_33
  article-title: Centralized student performance prediction in large courses based on low-cost variables in an institutional context
  publication-title: Internet High. Educ.
  doi: 10.1016/j.iheduc.2018.02.002
– ident: ref_8
  doi: 10.1109/ICCE-TW46550.2019.8992001
– volume: 22
  start-page: 69
  year: 2018
  ident: ref_6
  article-title: Programming skills in the industry 4.0: Are chemical engineering students able to face new problems?
  publication-title: Educ. Chem. Eng.
  doi: 10.1016/j.ece.2018.01.002
– volume: 27
  start-page: 275
  year: 2022
  ident: ref_28
  article-title: Predicting Academic Outcomes: A Survey from 2007 Till 2018
  publication-title: Technol. Knowl. Learn.
  doi: 10.1007/s10758-020-09476-0
– volume: 13
  start-page: 2895
  year: 2020
  ident: ref_32
  article-title: Students performance: From detection of failures and anomaly cases to the solutions-based mining algorithms
  publication-title: Int. J. Eng. Res. Technol.
  doi: 10.37624/IJERT/13.10.2020.2895-2908
– volume: 24
  start-page: 1565
  year: 2006
  ident: ref_46
  article-title: What is a support vector machine?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1206-1565
– ident: ref_1
– ident: ref_20
  doi: 10.1145/1404520.1404531
– ident: ref_34
  doi: 10.3390/app12178403
– volume: 16
  start-page: 385
  year: 2018
  ident: ref_37
  article-title: Towards reliable prediction of academic performance of architecture students using data mining techniques
  publication-title: J. Eng. Des. Technol.
– ident: ref_23
  doi: 10.1109/SCCC49216.2019.8966447
– volume: 5
  start-page: 100141
  year: 2023
  ident: ref_31
  article-title: A systematic literature review: Recent techniques of predicting STEM stream students
  publication-title: Comput. Educ. Artif. Intell.
  doi: 10.1016/j.caeai.2023.100141
– volume: 5
  start-page: 73
  year: 2016
  ident: ref_21
  article-title: Correlates of success in introductory programming: A study with middle school students
  publication-title: J. Educ. Learn.
  doi: 10.5539/jel.v5n2p73
– ident: ref_18
  doi: 10.1145/2960310.2960334
– volume: 52
  start-page: 200
  year: 2015
  ident: ref_4
  article-title: A new way of teaching programming skills to K-12 students: Code. org
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2015.05.047
– volume: 61
  start-page: 68
  year: 2023
  ident: ref_42
  article-title: Pass/Fail Prediction in Programming Courses
  publication-title: J. Educ. Comput. Res.
  doi: 10.1177/07356331221085595
– volume: 60
  start-page: 1048
  year: 2019
  ident: ref_35
  article-title: Predicting University Students’ Academic Success and Major Using Random Forests
  publication-title: Res. High. Educ.
  doi: 10.1007/s11162-019-09546-y
– ident: ref_48
– volume: 10
  start-page: 3817
  year: 2020
  ident: ref_52
  article-title: Relating natural language aptitude to individual differences in learning programming languages
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-60661-8
– volume: 95
  start-page: 224
  year: 2019
  ident: ref_12
  article-title: Improving students’ understanding of basic programming concepts through visual programming language: The role of self-efficacy
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2018.11.038
– volume: 54
  start-page: 17
  year: 2000
  ident: ref_47
  article-title: Coefficients of determination for multiple logistic regression analysis
  publication-title: Am. Stat.
  doi: 10.1080/00031305.2000.10474502
– ident: ref_7
– volume: 24
  start-page: 567
  year: 2019
  ident: ref_30
  article-title: Factors Affecting Students’ Performance in Higher Education: A Systematic Review of Predictive Data Mining Techniques
  publication-title: Technol. Knowl. Learn.
  doi: 10.1007/s10758-019-09408-7
– volume: 11
  start-page: 380
  year: 2019
  ident: ref_50
  article-title: The R Journal: Resampling-Based Analysis of Multivariate Data and Repeated Measures Designs with the R Package MANOVA.RM
  publication-title: R J.
  doi: 10.32614/RJ-2019-051
– ident: ref_24
– volume: 14
  start-page: 147
  year: 1982
  ident: ref_16
  article-title: Predicting success in a first programming course
  publication-title: ACM SIGCSE Bull.
  doi: 10.1145/953051.801357
– ident: ref_19
  doi: 10.1145/3230977.3230981
– ident: ref_9
  doi: 10.1145/2311917.2311927
– ident: ref_14
– volume: 12
  start-page: 97
  year: 2021
  ident: ref_26
  article-title: A meta-analysis of educational data mining for predicting students performance in programming
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: ref_22
  doi: 10.1145/3341525.3387403
– volume: 21
  start-page: 1
  year: 2021
  ident: ref_25
  article-title: A real-world approach to motivate students on the first class of a computer science course
  publication-title: ACM Trans. Comput. Educ. (TOCE)
  doi: 10.1145/3445982
– ident: ref_49
  doi: 10.1145/2939672.2939785
– ident: ref_40
  doi: 10.1007/978-981-19-3590-9
– volume: 12
  start-page: ep272
  year: 2020
  ident: ref_10
  article-title: Factors contributing to the difficulties in teaching and learning of computer programming: A literature review
  publication-title: Contemp. Educ. Technol.
  doi: 10.30935/cedtech/8247
– ident: ref_15
  doi: 10.1145/1142635.1142637
– ident: ref_43
  doi: 10.1109/SCCC57464.2022.10000367
– ident: ref_2
– volume: 15
  start-page: 154
  year: 1983
  ident: ref_38
  article-title: A Predictor for Success in an Introductory Programming Class Based upon Abstract Reasoning Development
  publication-title: SIGCSE Bull.
  doi: 10.1145/952978.801037
– volume: 2022
  start-page: 4151487
  year: 2022
  ident: ref_29
  article-title: Assessment and Evaluation of Different Machine Learning Algorithms for Predicting Student Performance
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/4151487
– ident: ref_44
  doi: 10.1109/SCCC51225.2020.9281280
– ident: ref_3
  doi: 10.1109/FIE.2016.7757569
– ident: ref_13
  doi: 10.1145/3340631.3394853
– volume: 73
  start-page: 247
  year: 2017
  ident: ref_39
  article-title: Evaluating the effectiveness of educational data mining techniques for early prediction of students’ academic failure in introductory programming courses
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2017.01.047
– ident: ref_27
  doi: 10.1109/SCCC57464.2022.10000360
– ident: ref_17
  doi: 10.1145/1047344.1047480
– volume: 46
  start-page: 389
  year: 2002
  ident: ref_45
  article-title: Gene Selection for Cancer Classification using Support Vector Machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: 9
  start-page: e58906
  year: 2020
  ident: ref_51
  article-title: Comprehension of computer code relies primarily on domain-general executive brain regions
  publication-title: eLife
  doi: 10.7554/eLife.58906
– volume: 2022
  start-page: 4043992
  year: 2022
  ident: ref_5
  article-title: The Value of Python Programming in General Education and Comprehensive Quality Improvement of Medical Students Based on a Retrospective Cohort Study
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2022/4043992
SSID ssj0000913810
Score 2.279199
Snippet For a lot of beginners, learning to program is challenging; similarly, for teachers, it is difficult to draw on students’ prior knowledge to help the process...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 11994
SubjectTerms Academic achievement
Algorithms
Computer programming
cs01
Distance learning
Engineering
Machine learning
Online instruction
programming in engineering
Regression analysis
Skills
Statistical analysis
Students
Success
Support vector machines
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgM9AC0gFgryAQQIRSTrxLG5oC5qBVK1rHipt2jiR1VRsiXZInHjb_D3-CXMJN6lHMqFa-I8522Pvw_gYWmLQGErkH1nJsm1KxOkyJZ4iqUSXfB531X56aCczfThoZnHCbcutlWufGLvqN3C8hz58wmVamSXWqYvT78mzBrFq6uRQuMybDBSWT6CjenebP5uPcvCqJc6S4eOd0n1Pa8LUwFGdzIm_ysW9ZD9FznmPtrsX__f97wB12KeKXYHxdiCS77Zhs1z6IPbsBXtuhNPIvj005twNG956YabocX7Afey-_Xjp3h7tqTne3HcCGzEG-5vZ6TYRftdzIcWry98CVPgdf6FOPBkIj0BkqAMc3UnMUX7mfeRNO4WfNzf-_DqdRLJGBJLMX-ZFM4qq3zIJVo0wWQ-RatJmCZYJUMRHBqU0tZZQJfWwQavasPZmi61ymt5G0bNovF3QGTB0U-yVPhpZkBDRFuiwiJoGbLU2DE8W4mlshGpnAkzTiqqWFiI1XkhjuHRevTpgNBxwbgpS3g9hnG1-wOL9qiKZlpNUFkvlTN6InPUCmvKzxiRviiczHM_hsesHxVbP72SxbiJgT6McbSqXSpWyKtRjjSGnZV-VNEtdNUf5bj779P34Crz2g-bHndgtGzP_H24Yr8tj7v2QdTy339pCRg
  priority: 102
  providerName: ProQuest
Title Predicting Students’ Outcome in an Introductory Programming Course: Leveraging the Student Background
URI https://www.proquest.com/docview/2888111830
https://doaj.org/article/2a6ce36d98234a86ab846610955d344e
Volume 13
WOSCitedRecordID wos001100537300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VbQ9wqPoAsVAqH6gAoYjNOnFsbl3UikplG_FSOVkTP1AFTdFmi8Stf6N_r7-kM0m2Wg4Vlx4TOdHY85ZnvgF4Ubg8ktuKpN-pSTLtiwTJsyWBfKlEH0PWVlV-OyomE31yYsqFUV9cE9bBA3cH93aEygWpvNEjmaFWWJHHZIzwPPcyywJbX4p6FpKp1gablKGrukp3SXk93wdT4kWabUz2jw9qofrvMsitlzlYh7U-PBR7HVkbsBTqTXi4ABq4CRu9OjbiVY8Z_XoLfpRTvnHhGmbxuYOrbK4vr8TxxYxEKojTWmAtDrksnQFez6d_RdlVZp3xJzy5rgnvxFEgyW7nFgkKDOd_EmN0P7n9o_aP4OvB_pf3H5J-hkLiyFXPktw75VSImUSHJpo0DNFp4oGJTsmYR48GpXRVGtEPq-hiUJXhIEsXWmWVfAzL9XkdnoBIo6d02VG-pnlwGSK6AhXmUctI_HADeDM_Vet6gHGec_HLUqLBPLCLPBjA7u3q3x2wxh3rxsyg2zUMh92-ICGxvZDY_wnJAF4yey0rLZHksO89oI0x_JXdoxyDjBGFNgPYnkuA7bW5sSPaN1Gj5fDpfVDzDB7w0Pquo3EblmfTi_AcVt2f2Wkz3YGV8f6k_LTTCjQ9lYcfy-83ZYv7-w
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLRJwAFqoWCjgAxUgFDWJ82MjIdQCVVfdLpEoqJyM49hVBWRLsgX1xmvwEjwUT8JMfpZyKLceuCaOZcef58ee-QbgQWpih2rL4f4OpBeJIvU0ajbPoi7lunA2aqIq343TyUTs78tsAX72uTAUVtnLxEZQF1NDZ-TrIbpquC8F958fffGoahTdrvYlNFpY7NiTb-iy1c9GL3F918Jw69Xei22vqyrgGVReMy8uTGIS6yKujZZOBtbXRuCopDMJd7ErtNScmzxwuvBzZ5xNcklmh0hFEuUc-70AixGCXQxgMRvtZu_npzrEsikCv42w51z6dA-NDh-OXMroL93XlAg4SxE02m3r2v_2X67D1c6OZhst8JdgwZbLcOUUu-IyLHVyq2aPOnLtxzfgIKvoaoqCvdmbltez_vX9B3t9PMP5WnZYMl2yEcXvExPutDphWRvC9pk-oRJ_tX3KxhZFQFPgiaEF3ffENrX5SHkyZXET3p7L9FdgUE5LewtY4ApcFIOOraAKb1prk-pEx05wF_jSDOFJDwNlOiZ2KgjySaFHRqBRp0EzhLV566OWgeSMdpuEqHkb4g1vHkyrA9WJIRXqxFieFFKEPNIi0Tnan8S4H8cFjyI7hIeER0XSDYdkdJekgRMjnjC1gc4YSm20AYew2uNRdWKvVn_AePvfr-_Dpe293bEajyY7d-ByiJZjm-C5CoNZdWzvwkXzdXZYV_e6Hcbgw3mD9zeIIGuo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VFiE4AC0gFgr4QAUIRU3i_NhICLW0K1ZdlkhQVE7GceyqArIl2YJ64zV4FR6HJ2EmP9tyKLceuCaOZcff_NnjbwAepiZ2aLYcyncgvUgUqafRsnkWbSnXhbNRk1X5fpxOJmJvT2YL8Ku_C0Nplb1ObBR1MTW0R74eYqiGcim4v-66tIhsa_ji8KtHFaTopLUvp9FCZMcef8fwrX4-2sK1XgvD4fa7l6-8rsKAZ9CQzby4MIlJrIu4Nlo6GVhfG4EjlM4k3MWu0FJzbvLA6cLPnXE2ySW5ICIVSZRz7PcCLKFLHqGMLWWj19mH-Q4PMW6KwG-z7TmXPp1JY_CHs5Ay-ssONuUCzjIKjaUbXvuf_9F1uNr512yjFYhlWLDlClw5xbq4AsudPqvZ4450-8kN2M8qOrKiJHD2tuX7rH__-MneHM1w7pYdlEyXbER5_cSQO62OWdamtn2hT6j0X22fsbFF1dAUfmLoWfc9sU1tPtH9mbK4CbvnMv1bsFhOS3sbWOAKXCCDAa-gym9aa5PqRMdOcBf40gzgaQ8JZTqGdioU8llhpEYAUqcBNIC1eevDlpnkjHabhK55G-ITbx5Mq33VqScV6sRYnhRShDzSItE5-qXExB_HBY8iO4BHhE1FWg-HZHR3eQMnRvxhagODNNTm6BsOYLXHpurUYa1OgHnn368fwCVErBqPJjt34XKIDmV773MVFmfVkb0HF8232UFd3e-EjcHH88buH1b9dGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Students%E2%80%99+Outcome+in+an+Introductory+Programming+Course%3A+Leveraging+the+Student+Background&rft.jtitle=Applied+sciences&rft.au=Jacqueline+K%C3%B6hler&rft.au=Luciano+Hidalgo&rft.au=Jos%C3%A9+Luis+Jara&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=21&rft.spage=11994&rft_id=info:doi/10.3390%2Fapp132111994&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2a6ce36d98234a86ab846610955d344e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon