An Improved Machine Learning Model with Hybrid Technique in VANET for Robust Communication
The vehicular ad hoc network, VANET, is one of the most popular and promising technologies in intelligent transportation today. However, VANET is susceptible to several vulnerabilities that result in an intrusion. This intrusion must be solved before VANET technology can be adopted. In this study, w...
Saved in:
| Published in: | Mathematics (Basel) Vol. 10; no. 21; p. 4030 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.11.2022
|
| Subjects: | |
| ISSN: | 2227-7390, 2227-7390 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The vehicular ad hoc network, VANET, is one of the most popular and promising technologies in intelligent transportation today. However, VANET is susceptible to several vulnerabilities that result in an intrusion. This intrusion must be solved before VANET technology can be adopted. In this study, we suggest a unique machine learning technique to improve VANET’s effectiveness. The proposed method incorporates two phases. Phase I detects the DDoS attack using a novel machine learning technique called SVM-HHO, which provides information about the vehicle. Phase II mitigates the impact of a DDoS attack and allocates bandwidth using a reliable resources management technique based on the hybrid whale dragonfly optimization algorithm (H-WDFOA). This proposed model could be an effective technique predicting and utilizing reliable information that provides effective results in smart vehicles. The novel machine learning-based technique was implemented through MATLAB and NS2 platforms. Network quality measurements included congestion, transit, collision, and QoS awareness cost. Based on the constraints, a different cost framework was designed. In addition, data preprocessing of the QoS factor and total routing costs were considered. Rider integrated cuckoo search (RI-CS) is a novel optimization algorithm that combines the concepts of the rider optimization algorithm (ROA) and cuckoo search (CS) to determine the optimal route with the lowest routing cost. The enhanced hybrid ant colony optimization routing protocol (EHACORP) is a networking technology that increases efficiency by utilizing the shortest route. The shortest path of the proposed protocol had the lowest communication overhead and the fewest number of hops between sending and receiving vehicles. The EHACORP involved two stages. To find the distance between cars in phase 1, EHACORP employed a method for calculating distance. Using starting point ant colony optimization, the ants were guided in phase 2 to develop the shortest route with the least number of connections to send information. The relatively short approach increases protocol efficiency in every way. The pairing of DCM and SBACO at H-WDFOA-VANET accelerated packet processing, reduced ant search time, eliminated blind broadcasting, and prevented stagnation issues. The delivery ratio and throughput of the H-WDFOA-packet VANET benefitted from its use of the shortest channel without stagnation, its rapid packet processing, and its rapid convergence speed. In conclusion, the proposed hybrid whale dragonfly optimization approach (H-WDFOA-VANET) was compared with industry standard models, such as rider integrated cuckoo search (RI-CS) and enhanced hybrid ant colony optimization routing protocol (EHACORP). With the proposed method, throughput could be increased. The proposed system had energy consumption values of 2.00000 mJ, latency values of 15.61668 s, and a drop at node 60 of 0.15759. Additionally, a higher throughput was achieved with the new method. With the suggested method, it is possible to meet the energy consumption targets, delay value, and drop value at node 60. The proposed method reduces the drop value at node 80 to 0.15504, delay time to 15.64318 s, and energy consumption to 2.00000 mJ. These outcomes demonstrate the effectiveness of our proposed method. Thus, the proposed system is more efficient than existing systems. |
|---|---|
| AbstractList | The vehicular ad hoc network, VANET, is one of the most popular and promising technologies in intelligent transportation today. However, VANET is susceptible to several vulnerabilities that result in an intrusion. This intrusion must be solved before VANET technology can be adopted. In this study, we suggest a unique machine learning technique to improve VANET’s effectiveness. The proposed method incorporates two phases. Phase I detects the DDoS attack using a novel machine learning technique called SVM-HHO, which provides information about the vehicle. Phase II mitigates the impact of a DDoS attack and allocates bandwidth using a reliable resources management technique based on the hybrid whale dragonfly optimization algorithm (H-WDFOA). This proposed model could be an effective technique predicting and utilizing reliable information that provides effective results in smart vehicles. The novel machine learning-based technique was implemented through MATLAB and NS2 platforms. Network quality measurements included congestion, transit, collision, and QoS awareness cost. Based on the constraints, a different cost framework was designed. In addition, data preprocessing of the QoS factor and total routing costs were considered. Rider integrated cuckoo search (RI-CS) is a novel optimization algorithm that combines the concepts of the rider optimization algorithm (ROA) and cuckoo search (CS) to determine the optimal route with the lowest routing cost. The enhanced hybrid ant colony optimization routing protocol (EHACORP) is a networking technology that increases efficiency by utilizing the shortest route. The shortest path of the proposed protocol had the lowest communication overhead and the fewest number of hops between sending and receiving vehicles. The EHACORP involved two stages. To find the distance between cars in phase 1, EHACORP employed a method for calculating distance. Using starting point ant colony optimization, the ants were guided in phase 2 to develop the shortest route with the least number of connections to send information. The relatively short approach increases protocol efficiency in every way. The pairing of DCM and SBACO at H-WDFOA-VANET accelerated packet processing, reduced ant search time, eliminated blind broadcasting, and prevented stagnation issues. The delivery ratio and throughput of the H-WDFOA-packet VANET benefitted from its use of the shortest channel without stagnation, its rapid packet processing, and its rapid convergence speed. In conclusion, the proposed hybrid whale dragonfly optimization approach (H-WDFOA-VANET) was compared with industry standard models, such as rider integrated cuckoo search (RI-CS) and enhanced hybrid ant colony optimization routing protocol (EHACORP). With the proposed method, throughput could be increased. The proposed system had energy consumption values of 2.00000 mJ, latency values of 15.61668 s, and a drop at node 60 of 0.15759. Additionally, a higher throughput was achieved with the new method. With the suggested method, it is possible to meet the energy consumption targets, delay value, and drop value at node 60. The proposed method reduces the drop value at node 80 to 0.15504, delay time to 15.64318 s, and energy consumption to 2.00000 mJ. These outcomes demonstrate the effectiveness of our proposed method. Thus, the proposed system is more efficient than existing systems. |
| Audience | Academic |
| Author | Marwah, Gagan Preet Kour Tanwar, Sudeep Singh, Manwinder Safirescu, Calin Ovidiu Sharma, Ravi Alkhayyat, Ahmed Jain, Anuj Malik, Praveen Kumar Mihaltan, Traian Candin |
| Author_xml | – sequence: 1 givenname: Gagan Preet Kour surname: Marwah fullname: Marwah, Gagan Preet Kour – sequence: 2 givenname: Anuj surname: Jain fullname: Jain, Anuj – sequence: 3 givenname: Praveen Kumar orcidid: 0000-0003-3433-8248 surname: Malik fullname: Malik, Praveen Kumar – sequence: 4 givenname: Manwinder orcidid: 0000-0002-0543-2625 surname: Singh fullname: Singh, Manwinder – sequence: 5 givenname: Sudeep orcidid: 0000-0002-1776-4651 surname: Tanwar fullname: Tanwar, Sudeep – sequence: 6 givenname: Calin Ovidiu orcidid: 0000-0003-2697-2986 surname: Safirescu fullname: Safirescu, Calin Ovidiu – sequence: 7 givenname: Traian Candin surname: Mihaltan fullname: Mihaltan, Traian Candin – sequence: 8 givenname: Ravi surname: Sharma fullname: Sharma, Ravi – sequence: 9 givenname: Ahmed orcidid: 0000-0002-0962-3453 surname: Alkhayyat fullname: Alkhayyat, Ahmed |
| BookMark | eNptUctOWzEUtCqQymvXD7DUbQN-XtvLKKIQKYCEAgs2lq8fiaNcm_o6VPx9DWklVOGzsHXOzMhz5hgcpJw8AN8wOqdUoYvB1DVGBDNE0RdwRAgRE9EGBx_eX8HZOG5QOwpTydQReJomOB-eS37xDt4Yu47Jw4U3JcW0gjfZ-S38HesaXr_2JTq49Had4q-dhzHBx-nt5RKGXOB97ndjhbM8DLsUrakxp1NwGMx29Gd_7xPw8PNyObueLO6u5rPpYmIZ6uqES-4sEsRbilAnOAkK4Z4Sr5RlxnYmSGk465oH7IIkfc8ZDkRJ2QXDmKMnYL7Xddls9HOJgymvOpuo3xu5rLQpNdqt16YJWGwD4gEzIa1y1omuY5w67hhWTev7XqttpJkcq97kXUnt-5oIyjpOpZINdb5HrUwTjSnkWoxt5fwQbYslxNafCsYEZ5SRRiB7gi15HIsP2sb6vqRGjFuNkX7LUH_MsJF-_Ef65-1T-B_QEJ1Z |
| CitedBy_id | crossref_primary_10_3390_s23010294 crossref_primary_10_1109_TITS_2023_3314737 crossref_primary_10_3390_math11030700 crossref_primary_10_1088_1755_1315_1285_1_012013 crossref_primary_10_1007_s00500_023_08399_z crossref_primary_10_1002_nem_2256 crossref_primary_10_1016_j_compeleceng_2023_108933 crossref_primary_10_1002_ett_70068 crossref_primary_10_1007_s00500_023_08340_4 crossref_primary_10_1038_s41598_024_82313_x crossref_primary_10_1007_s10723_024_09747_5 crossref_primary_10_1109_ACCESS_2025_3548640 crossref_primary_10_3390_s23115259 crossref_primary_10_3390_app13020780 crossref_primary_10_1002_ett_4857 crossref_primary_10_1002_dac_5630 crossref_primary_10_1007_s00500_023_08417_0 crossref_primary_10_1016_j_icte_2024_05_008 crossref_primary_10_32604_cmc_2025_059043 |
| Cites_doi | 10.3233/JIFS-169669 10.1109/ACCESS.2020.3021435 10.1007/s12652-021-03176-y 10.1155/2018/2874509 10.1016/j.future.2017.11.043 10.3390/sym13010047 10.1109/ACCESS.2020.2967478 10.1109/TSIPN.2018.2801622 10.1002/dac.4954 10.1155/2018/9804061 10.1007/s00607-021-01001-0 10.1109/MNET.2018.1700460 10.4018/IJSPPC.2020100101 10.1109/ACCESS.2019.2960367 10.1007/s11277-020-07549-y 10.1109/TITS.2019.2904953 10.1109/TVT.2019.2899627 10.1186/s13677-018-0109-4 10.1016/j.eswa.2015.12.006 10.3390/agriculture12060793 10.1109/ACCESS.2021.3120626 10.1109/ACCESS.2020.3009733 10.1109/LCOMM.2017.2766636 10.1109/ACCESS.2021.3072922 10.1109/ACCESS.2019.2948382 10.1038/s41598-022-14255-1 10.1016/j.isatra.2021.07.017 10.1109/ACCESS.2018.2875678 10.1007/978-3-030-31239-8_22 10.1049/iet-com.2020.0477 10.1109/MCOM.2017.1601105 10.1007/s11276-020-02413-0 10.1007/s11036-016-0676-x |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/math10214030 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_adf8c1cf05f1478c9dcd766453d5d419 A744754342 10_3390_math10214030 |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c406t-585dc072ec3006752f901b32e99c4ac6af88a5462271df82bb541f29886fa44d3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000881088000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-7390 |
| IngestDate | Mon Nov 10 04:32:06 EST 2025 Fri Jul 25 12:01:10 EDT 2025 Tue Nov 04 18:20:41 EST 2025 Tue Nov 18 22:37:35 EST 2025 Sat Nov 29 07:10:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-585dc072ec3006752f901b32e99c4ac6af88a5462271df82bb541f29886fa44d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3433-8248 0000-0002-0543-2625 0000-0002-0962-3453 0000-0002-1776-4651 0000-0003-2697-2986 |
| OpenAccessLink | https://www.proquest.com/docview/2734653898?pq-origsite=%requestingapplication% |
| PQID | 2734653898 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_adf8c1cf05f1478c9dcd766453d5d419 proquest_journals_2734653898 gale_infotracacademiconefile_A744754342 crossref_citationtrail_10_3390_math10214030 crossref_primary_10_3390_math10214030 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Adhikary (ref_18) 2020; 114 Zhang (ref_36) 2018; 6 Zhijun (ref_6) 2020; 8 ref_34 Kadam (ref_14) 2021; 12 Hossain (ref_28) 2021; 9 ref_31 ref_30 Ye (ref_12) 2018; 2018 Kolandaisamy (ref_19) 2018; 2018 Correia (ref_4) 2017; 55 Hong (ref_13) 2018; 22 Tan (ref_5) 2020; 8 Ramamoorthy (ref_25) 2022; 13 ref_16 Bangui (ref_21) 2022; 104 Tang (ref_22) 2019; 68 Khan (ref_3) 2019; 20 Poongodi (ref_17) 2019; 7 Gnanasekar (ref_24) 2021; 34 Walia (ref_32) 2022; 70 Thilak (ref_37) 2018; 82 Zhang (ref_23) 2018; 4 Bouyeddou (ref_11) 2020; 23 Shu (ref_7) 2016; 21 Polat (ref_8) 2020; 14 Gad (ref_15) 2021; 9 Wahab (ref_35) 2016; 50 Gao (ref_1) 2019; 7 Singh (ref_33) 2018; 35 Abusitta (ref_26) 2018; 7 Prabakeran (ref_29) 2020; 26 Cheng (ref_2) 2018; 32 Adhikary (ref_9) 2020; 12 Marwah (ref_20) 2022; 12 Yao (ref_27) 2022; 126 Sahoo (ref_10) 2020; 8 |
| References_xml | – ident: ref_30 – volume: 35 start-page: 1253 year: 2018 ident: ref_33 article-title: Energy efficient cognitive body area network (CBAN) using lookup table and energy harvesting publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-169669 – volume: 8 start-page: 161908 year: 2020 ident: ref_5 article-title: A New Framework for DDoS Attack Detectionand Defensein SDN Environment publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3021435 – volume: 13 start-page: 3837 year: 2022 ident: ref_25 article-title: An enhanced hybrid ant colony optimization routing protocol for vehicular ad-hoc networks publication-title: J. Ambient. Intell. Hum. Comput. doi: 10.1007/s12652-021-03176-y – volume: 2018 start-page: 2874509 year: 2018 ident: ref_19 article-title: A Multivariant Stream Analysis Approachto Detectand Mitigate DDoS Attacksin Vehicular AdHoc Networks publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2018/2874509 – volume: 82 start-page: 304 year: 2018 ident: ref_37 article-title: Cellular automata-based improved ant colony-based optimization algorithm for mitigating ddos attacks in vanets publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.11.043 – ident: ref_31 doi: 10.3390/sym13010047 – volume: 8 start-page: 17404 year: 2020 ident: ref_6 article-title: Low-Rate DDoS Attack Detection Basedon Factorization Machinein Software Defined Network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2967478 – volume: 4 start-page: 148 year: 2018 ident: ref_23 article-title: Distributed Privacy-Preserving Collaborative Intrusion Detection Systems for VANETs publication-title: IEEE Trans. Signal Inf. Processing Over Netw. doi: 10.1109/TSIPN.2018.2801622 – volume: 34 start-page: e4954 year: 2021 ident: ref_24 article-title: VANET routing Protocols: Implementation and Analysis Using NS3 and SUMO publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.4954 – volume: 12 start-page: 718 year: 2021 ident: ref_14 article-title: Machine Learning Approach of Hybrid KSVN Algorithmto Detect DDoS Attackin VANET publication-title: Int. J. Adv. Comput. Sci. Appl. IJACSA – volume: 2018 start-page: 9804061 year: 2018 ident: ref_12 article-title: A DDoS Attack Detection Method Based on SVM in Software Defined Network publication-title: Secur. Commun. Netw. doi: 10.1155/2018/9804061 – volume: 104 start-page: 503 year: 2022 ident: ref_21 article-title: A hybrid machine learning model for intrusion detection in VANET publication-title: Computing doi: 10.1007/s00607-021-01001-0 – volume: 32 start-page: 160 year: 2018 ident: ref_2 article-title: Big Data Driven Vehicular Networks publication-title: IEEE Netw. doi: 10.1109/MNET.2018.1700460 – volume: 12 start-page: 1 year: 2020 ident: ref_9 article-title: Evaluatingthe Impactof DDo SAttacksin Vehicular Ad-Hoc Networks publication-title: Int. J. Secur. Priv. Pervasive Comput. doi: 10.4018/IJSPPC.2020100101 – volume: 7 start-page: 183532 year: 2019 ident: ref_17 article-title: DDoS Detection Mechanism Using Trust-Based Evaluation Systemin VANET publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960367 – volume: 114 start-page: 3613 year: 2020 ident: ref_18 article-title: Hybrid Algorithm to Detect DDoS Attacksin VANETs publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-020-07549-y – volume: 20 start-page: 3844 year: 2019 ident: ref_3 article-title: An Unsupervised Cluster-Based VANET-Oriented Evolving Graph (CVo EG) Modeland Associated Reliable Routing Scheme publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2904953 – volume: 68 start-page: 3967 year: 2019 ident: ref_22 article-title: Delay-Minimization Routing for Heterogeneous VANETs With Machine Learning Based Mobility Prediction publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2899627 – volume: 7 start-page: 9 year: 2018 ident: ref_26 article-title: An SVM-based framework for detecting DoS attacks in virtualized clouds under changing environment publication-title: J. Cloud Comp. doi: 10.1186/s13677-018-0109-4 – volume: 50 start-page: 40 year: 2016 ident: ref_35 article-title: CEAP: SVM-based intelligent detection model for clustered vehicular ad hoc networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.12.006 – ident: ref_16 doi: 10.3390/agriculture12060793 – volume: 9 start-page: 142206 year: 2021 ident: ref_15 article-title: Intrusion Detection System Using Machine Learning for Vehicular Ad Hoc Networks Based on To N-IoT Dataset publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3120626 – volume: 8 start-page: 132502 year: 2020 ident: ref_10 article-title: An Evolutionary SVM Modelfor DDOS Attack Detectionin Software Defined Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3009733 – volume: 23 start-page: 870 year: 2020 ident: ref_11 article-title: DDOS-attacks detection using an efficient measurement-based statistical mechanism publication-title: Eng. Sci. Technol. Int. J. – volume: 22 start-page: 688 year: 2018 ident: ref_13 article-title: SDN-Assisted Slow HTTP DDoS Attack Defense Method publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2017.2766636 – volume: 9 start-page: 58230 year: 2021 ident: ref_28 article-title: Multi-Objective Harris Hawks Optimization Algorithm based 2-Hop Routing Algorithm for CR-VANET publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3072922 – volume: 7 start-page: 154560 year: 2019 ident: ref_1 article-title: A Distributed Network Intrusion Detection Systemfor Distributed Denialof Service Attacksin Vehicular Ad Hoc Network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2948382 – volume: 12 start-page: 10287 year: 2022 ident: ref_20 article-title: A hybrid optimization with ensemble learning to ensure VANET network stability based on performance analysis publication-title: Sci. Rep. doi: 10.1038/s41598-022-14255-1 – volume: 126 start-page: 691 year: 2022 ident: ref_27 article-title: A novel mathematical morphology spectrument ropy based on scale-adaptive techniques publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.07.017 – volume: 6 start-page: 59860 year: 2018 ident: ref_36 article-title: Misbehavior detection based on support vector machine and Dempster-Shafer theory of evidence in VANETs publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2875678 – ident: ref_34 doi: 10.1007/978-3-030-31239-8_22 – volume: 14 start-page: 4089 year: 2020 ident: ref_8 article-title: Deep network approach with stacked sparse autoencoders in detection of DDoS attacks on SDN-based VANET publication-title: IET Commun. doi: 10.1049/iet-com.2020.0477 – volume: 55 start-page: 80 year: 2017 ident: ref_4 article-title: An Architecture for Hierarchical Software-Defined Vehicular Networks publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2017.1601105 – volume: 26 start-page: 5897 year: 2020 ident: ref_29 article-title: Optimal solution for malicious node detection and prevention using hybrid chaotic particle dragonfly swarm algorithm in VANETs publication-title: Wirel. Netw. doi: 10.1007/s11276-020-02413-0 – volume: 21 start-page: 764 year: 2016 ident: ref_7 article-title: Securityin Software-Defined Networking: Threatsand Countermeasures publication-title: Mob. Netw. Appl. doi: 10.1007/s11036-016-0676-x – volume: 70 start-page: 305 year: 2022 ident: ref_32 article-title: Three Dimensional Optimum Node Localization in Dynamic Wireless Sensor Networks publication-title: Comput. Mater. Contin. |
| SSID | ssj0000913849 |
| Score | 2.4217236 |
| Snippet | The vehicular ad hoc network, VANET, is one of the most popular and promising technologies in intelligent transportation today. However, VANET is susceptible... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 4030 |
| SubjectTerms | Ad hoc networks (Computer networks) Algorithms Ant colony optimization Assaults Automobiles Bandwidths Communication Control cuckoo search Delay time Denial of service attacks dragonfly Effectiveness Energy consumption Industry standards Intelligent vehicles Intrusion Machine learning Mobile ad hoc networks Network latency Nodes Optimization Public safety Quality of service architectures Resource management rider optimization algorithm Robust statistics Routing (telecommunications) Search algorithms Shortest-path problems Software Stagnation support vector machine Tolls Traffic congestion Transportation planning VANET Vehicles whale optimization algorithm |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LSwMxEICDFA96EJ9YX-SgeJClu0k2j2OVSg-2iFQRLyFPFcoqtgr-e5PsttRD8eJ1yWF2ZpKZhJlvADilVNuidDpzIXhmxHOaKS5oxnWulEKeIZMgrjdsOOSPj-J2YdRXrAmr8cC14jrKem4K4_PSF4RxI6yxjFJSYltakoCfKGdi4TKVzmBRYE5EXemOw72-E_K_lzTGOhU8L8SghOpfdiCnKHO9CTaa9BB2a7G2wIqrtsH6YM5WneyAp24F66cAZ-Eg1UI62GBSn2GcbTaG8XUV9r9jNxYczSit8LWCD91hbwRDogrv3vTnZAp_NYjsgvvr3uiqnzUTEjITAvE0C7m-NTlDzuAYdkrkQ3jXGDkhDFGGKs-5KglFiBVBj0jrkhQeCc6pV4RYvAda1Vvl9gHU3BoeNqMKViWYO459yP1yXZQeMV2INriY6UyaBh8ep1iMZbhGRA3LRQ23wdl89XuNzViy7jKqf74mwq7Th-ACsnEB-ZcLtMF5NJ6MWzKIZFTTWRB-LMKtZJdFqiHBBLXB0cy-stmrExkBPzSc-4If_Ic0h2ANxRaJ1K94BFrTj093DFbN1_R18nGS3PQHzDnr9A priority: 102 providerName: Directory of Open Access Journals |
| Title | An Improved Machine Learning Model with Hybrid Technique in VANET for Robust Communication |
| URI | https://www.proquest.com/docview/2734653898 https://doaj.org/article/adf8c1cf05f1478c9dcd766453d5d419 |
| Volume | 10 |
| WOSCitedRecordID | wos000881088000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: K7- dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELag5UAPvCsCJfIBxAFZzXq9fpxQilIVQaKoBFS4WH6WStWmzaZIXPjteBwnlEO5cNnD2ofZHc_TM98g9JJz66smWBKS8SQsSk6MVJxIOzDG0CioyyCuH8VkIk9O1LQk3LpSVrnWiVlR-7mDHPk-wLDwJJ1Kvr24JDA1Cm5XywiN22i7ojQL5gdBNjkWwLyUTK3q3esU3e8nL_B7Hmady56vWaIM2H-TWs625vD-_1L5AN0rXiYero7FQ3QrtI_QzngD0do9Rt-GLV5lFILH41xSGXBBWz3FMCLtHEOSFh_9hKYuPFuDveKzFn8ZTkYznPxdfDy3V90S_9Vn8gR9PhzN3h2RMmiBuGTPlySFDN4NBA2uBuvV0Ji8BFvToJRjxnETpTQN45SKykdJrW1YFamSkkfDmK930VY7b8NThK30TiaZNulwsFoGWcfkQg5s1UQqbKV66M36p2tXUMhhGMa5TtEIsEhfZ1EPvdrsvlihb9yw7wD4t9kDmNn5xXxxqosIapNId5WLgyZWTEinvPOCc9bUvvEMSHsN3Ncg2YkkZ0qDQvowwMjSQwHgiKxmtIf21tzXReQ7_Yf1z_69_BzdpdBDkRsa99DWcnEVXqA77sfyrFv00fbBaDI97ufkQD-f5z4UpH6C569RWp--H0-__gbit_-z |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I26UMAHKg4oauI4iX1AaAtbbdXdVVUtqOJi_GwrVdmy2YL6p_iNePJYyqHceuCaWJEdf_5mMpn5BuBNnmubZE5HLhjPiHmeR4qLPOI6VkpRX1BTi7iOi-mUHx2JgzX41dXCYFplx4k1Udu5wRj5Nsqw5OF0Cv7h_HuEXaPw72rXQqOBxb67_Bk-2ar3e5_C_m5RujucfRxFbVeByATjtYyCf2xNXFBnUqTqjPpgEnVKnRCGKZMrz7nKWE5pkVjPqdYZSzwVnOdeMWbT8NxbsM5SxmgP1neG04PDVVQHVTY5E02GfZqKeDv4nSd1--w60fqK7atbBFxnCGrrtvvgf3svD-F-60eTQQP8R7Dmysdwb7ISoa2ewNdBSZqYibNkUieNOtLqyR4TbAJ3RjAMTUaXWLZGZp2cLTktyZfBdDgjwaMnh3N9US3JX5U0T-HzjSzuGfTKeek2gGhuDQ-spQL8WcodT31wkmOdZJ4WOhF9eNdtsjStzjq2-ziT4XsLISGvQqIPW6vR542-yDXjdhAvqzGoCl5fmC-OZUsyUoWpm8T4OPMJK7gR1tgiz1mW2swynNpbRJtE7gpTMqotwQgLQxUwOShQ_jEgm_Zhs0ObbEmtkn-g9vzft1_DndFsMpbjven-C7hLsWKkLt_chN5yceFewm3zY3laLV6154fAt5uG5m8lMFX3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQgOvBELBXyg4oCiTWzHsQ8ILbSrVm1XFSyo6sX4WSpV2bLZgvrX-HV4nGQph3LrgWtiRXb8zcPjmW8QesW5cUXpTeaj8cxYEDzTQvJMmFxrTUJFbCJx3a0mE3FwIPdX0K--FgbSKnudmBS1m1mIkQ-BhoVH6ZRiGLq0iP2N8bvT7xl0kIKb1r6dRguRHX_-Mx7fmrfbG3Gv1wkZb04_bGVdh4HMRkO2yKKv7GxeEW8pqO2ShGgeDSVeSsu05ToIoUvGCakKFwQxpmRFIFIIHjRjjsbvXkPXK1aKIqUNflrGd4BvUzDZ5tpTKvNh9EC_pUbaKeX6ghVMzQIuMwnJzo3v_s9_6B6603nXeNSKw3204usH6Pbekpq2eYgORzVuIyne4b2USupxxzJ7hKE13AmG4DTeOodiNjztSW7xcY2_jCabUxz9fPxxZs6aBf6rvuYR-nwli3uMVutZ7Z8gbISzIuoyHYWCUeEFDdF1zk1RBlKZQg7Qm37Dle3Y16EJyImKpzCAh7oIjwFaX44-bVlHLhn3HrCzHANc4enBbH6kOtWjdJy6LWzIy1CwSljprKs4ZyV1pWMwtdeAPAUaLU7J6q4wIy4MuMHUqAJSSEYZGaC1HnmqU3WN-gO7p_9-_RLdjHhUu9uTnWfoFoEyklTTuYZWF_Mz_xzdsD8Wx838RRIkjL5eNS5_AypHXXk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Machine+Learning+Model+with+Hybrid+Technique+in+VANET+for+Robust+Communication&rft.jtitle=Mathematics+%28Basel%29&rft.au=Marwah%2C+Gagan+Preet+Kour&rft.au=Jain%2C+Anuj&rft.au=Malik%2C+Praveen+Kumar&rft.au=Singh%2C+Manwinder&rft.date=2022-11-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=10&rft.issue=21&rft.spage=4030&rft_id=info:doi/10.3390%2Fmath10214030&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math10214030 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |