An Improved Machine Learning Model with Hybrid Technique in VANET for Robust Communication

The vehicular ad hoc network, VANET, is one of the most popular and promising technologies in intelligent transportation today. However, VANET is susceptible to several vulnerabilities that result in an intrusion. This intrusion must be solved before VANET technology can be adopted. In this study, w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 10; číslo 21; s. 4030
Hlavní autoři: Marwah, Gagan Preet Kour, Jain, Anuj, Malik, Praveen Kumar, Singh, Manwinder, Tanwar, Sudeep, Safirescu, Calin Ovidiu, Mihaltan, Traian Candin, Sharma, Ravi, Alkhayyat, Ahmed
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.11.2022
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The vehicular ad hoc network, VANET, is one of the most popular and promising technologies in intelligent transportation today. However, VANET is susceptible to several vulnerabilities that result in an intrusion. This intrusion must be solved before VANET technology can be adopted. In this study, we suggest a unique machine learning technique to improve VANET’s effectiveness. The proposed method incorporates two phases. Phase I detects the DDoS attack using a novel machine learning technique called SVM-HHO, which provides information about the vehicle. Phase II mitigates the impact of a DDoS attack and allocates bandwidth using a reliable resources management technique based on the hybrid whale dragonfly optimization algorithm (H-WDFOA). This proposed model could be an effective technique predicting and utilizing reliable information that provides effective results in smart vehicles. The novel machine learning-based technique was implemented through MATLAB and NS2 platforms. Network quality measurements included congestion, transit, collision, and QoS awareness cost. Based on the constraints, a different cost framework was designed. In addition, data preprocessing of the QoS factor and total routing costs were considered. Rider integrated cuckoo search (RI-CS) is a novel optimization algorithm that combines the concepts of the rider optimization algorithm (ROA) and cuckoo search (CS) to determine the optimal route with the lowest routing cost. The enhanced hybrid ant colony optimization routing protocol (EHACORP) is a networking technology that increases efficiency by utilizing the shortest route. The shortest path of the proposed protocol had the lowest communication overhead and the fewest number of hops between sending and receiving vehicles. The EHACORP involved two stages. To find the distance between cars in phase 1, EHACORP employed a method for calculating distance. Using starting point ant colony optimization, the ants were guided in phase 2 to develop the shortest route with the least number of connections to send information. The relatively short approach increases protocol efficiency in every way. The pairing of DCM and SBACO at H-WDFOA-VANET accelerated packet processing, reduced ant search time, eliminated blind broadcasting, and prevented stagnation issues. The delivery ratio and throughput of the H-WDFOA-packet VANET benefitted from its use of the shortest channel without stagnation, its rapid packet processing, and its rapid convergence speed. In conclusion, the proposed hybrid whale dragonfly optimization approach (H-WDFOA-VANET) was compared with industry standard models, such as rider integrated cuckoo search (RI-CS) and enhanced hybrid ant colony optimization routing protocol (EHACORP). With the proposed method, throughput could be increased. The proposed system had energy consumption values of 2.00000 mJ, latency values of 15.61668 s, and a drop at node 60 of 0.15759. Additionally, a higher throughput was achieved with the new method. With the suggested method, it is possible to meet the energy consumption targets, delay value, and drop value at node 60. The proposed method reduces the drop value at node 80 to 0.15504, delay time to 15.64318 s, and energy consumption to 2.00000 mJ. These outcomes demonstrate the effectiveness of our proposed method. Thus, the proposed system is more efficient than existing systems.
AbstractList The vehicular ad hoc network, VANET, is one of the most popular and promising technologies in intelligent transportation today. However, VANET is susceptible to several vulnerabilities that result in an intrusion. This intrusion must be solved before VANET technology can be adopted. In this study, we suggest a unique machine learning technique to improve VANET’s effectiveness. The proposed method incorporates two phases. Phase I detects the DDoS attack using a novel machine learning technique called SVM-HHO, which provides information about the vehicle. Phase II mitigates the impact of a DDoS attack and allocates bandwidth using a reliable resources management technique based on the hybrid whale dragonfly optimization algorithm (H-WDFOA). This proposed model could be an effective technique predicting and utilizing reliable information that provides effective results in smart vehicles. The novel machine learning-based technique was implemented through MATLAB and NS2 platforms. Network quality measurements included congestion, transit, collision, and QoS awareness cost. Based on the constraints, a different cost framework was designed. In addition, data preprocessing of the QoS factor and total routing costs were considered. Rider integrated cuckoo search (RI-CS) is a novel optimization algorithm that combines the concepts of the rider optimization algorithm (ROA) and cuckoo search (CS) to determine the optimal route with the lowest routing cost. The enhanced hybrid ant colony optimization routing protocol (EHACORP) is a networking technology that increases efficiency by utilizing the shortest route. The shortest path of the proposed protocol had the lowest communication overhead and the fewest number of hops between sending and receiving vehicles. The EHACORP involved two stages. To find the distance between cars in phase 1, EHACORP employed a method for calculating distance. Using starting point ant colony optimization, the ants were guided in phase 2 to develop the shortest route with the least number of connections to send information. The relatively short approach increases protocol efficiency in every way. The pairing of DCM and SBACO at H-WDFOA-VANET accelerated packet processing, reduced ant search time, eliminated blind broadcasting, and prevented stagnation issues. The delivery ratio and throughput of the H-WDFOA-packet VANET benefitted from its use of the shortest channel without stagnation, its rapid packet processing, and its rapid convergence speed. In conclusion, the proposed hybrid whale dragonfly optimization approach (H-WDFOA-VANET) was compared with industry standard models, such as rider integrated cuckoo search (RI-CS) and enhanced hybrid ant colony optimization routing protocol (EHACORP). With the proposed method, throughput could be increased. The proposed system had energy consumption values of 2.00000 mJ, latency values of 15.61668 s, and a drop at node 60 of 0.15759. Additionally, a higher throughput was achieved with the new method. With the suggested method, it is possible to meet the energy consumption targets, delay value, and drop value at node 60. The proposed method reduces the drop value at node 80 to 0.15504, delay time to 15.64318 s, and energy consumption to 2.00000 mJ. These outcomes demonstrate the effectiveness of our proposed method. Thus, the proposed system is more efficient than existing systems.
Audience Academic
Author Marwah, Gagan Preet Kour
Tanwar, Sudeep
Singh, Manwinder
Safirescu, Calin Ovidiu
Sharma, Ravi
Alkhayyat, Ahmed
Jain, Anuj
Malik, Praveen Kumar
Mihaltan, Traian Candin
Author_xml – sequence: 1
  givenname: Gagan Preet Kour
  surname: Marwah
  fullname: Marwah, Gagan Preet Kour
– sequence: 2
  givenname: Anuj
  surname: Jain
  fullname: Jain, Anuj
– sequence: 3
  givenname: Praveen Kumar
  orcidid: 0000-0003-3433-8248
  surname: Malik
  fullname: Malik, Praveen Kumar
– sequence: 4
  givenname: Manwinder
  orcidid: 0000-0002-0543-2625
  surname: Singh
  fullname: Singh, Manwinder
– sequence: 5
  givenname: Sudeep
  orcidid: 0000-0002-1776-4651
  surname: Tanwar
  fullname: Tanwar, Sudeep
– sequence: 6
  givenname: Calin Ovidiu
  orcidid: 0000-0003-2697-2986
  surname: Safirescu
  fullname: Safirescu, Calin Ovidiu
– sequence: 7
  givenname: Traian Candin
  surname: Mihaltan
  fullname: Mihaltan, Traian Candin
– sequence: 8
  givenname: Ravi
  surname: Sharma
  fullname: Sharma, Ravi
– sequence: 9
  givenname: Ahmed
  orcidid: 0000-0002-0962-3453
  surname: Alkhayyat
  fullname: Alkhayyat, Ahmed
BookMark eNptUctOWzEUtCqQymvXD7DUbQN-XtvLKKIQKYCEAgs2lq8fiaNcm_o6VPx9DWklVOGzsHXOzMhz5hgcpJw8AN8wOqdUoYvB1DVGBDNE0RdwRAgRE9EGBx_eX8HZOG5QOwpTydQReJomOB-eS37xDt4Yu47Jw4U3JcW0gjfZ-S38HesaXr_2JTq49Had4q-dhzHBx-nt5RKGXOB97ndjhbM8DLsUrakxp1NwGMx29Gd_7xPw8PNyObueLO6u5rPpYmIZ6uqES-4sEsRbilAnOAkK4Z4Sr5RlxnYmSGk465oH7IIkfc8ZDkRJ2QXDmKMnYL7Xddls9HOJgymvOpuo3xu5rLQpNdqt16YJWGwD4gEzIa1y1omuY5w67hhWTev7XqttpJkcq97kXUnt-5oIyjpOpZINdb5HrUwTjSnkWoxt5fwQbYslxNafCsYEZ5SRRiB7gi15HIsP2sb6vqRGjFuNkX7LUH_MsJF-_Ef65-1T-B_QEJ1Z
CitedBy_id crossref_primary_10_3390_s23010294
crossref_primary_10_1109_TITS_2023_3314737
crossref_primary_10_3390_math11030700
crossref_primary_10_1088_1755_1315_1285_1_012013
crossref_primary_10_1007_s00500_023_08399_z
crossref_primary_10_1002_nem_2256
crossref_primary_10_1016_j_compeleceng_2023_108933
crossref_primary_10_1002_ett_70068
crossref_primary_10_1007_s00500_023_08340_4
crossref_primary_10_1038_s41598_024_82313_x
crossref_primary_10_1007_s10723_024_09747_5
crossref_primary_10_1109_ACCESS_2025_3548640
crossref_primary_10_3390_s23115259
crossref_primary_10_3390_app13020780
crossref_primary_10_1002_ett_4857
crossref_primary_10_1002_dac_5630
crossref_primary_10_1007_s00500_023_08417_0
crossref_primary_10_1016_j_icte_2024_05_008
crossref_primary_10_32604_cmc_2025_059043
Cites_doi 10.3233/JIFS-169669
10.1109/ACCESS.2020.3021435
10.1007/s12652-021-03176-y
10.1155/2018/2874509
10.1016/j.future.2017.11.043
10.3390/sym13010047
10.1109/ACCESS.2020.2967478
10.1109/TSIPN.2018.2801622
10.1002/dac.4954
10.1155/2018/9804061
10.1007/s00607-021-01001-0
10.1109/MNET.2018.1700460
10.4018/IJSPPC.2020100101
10.1109/ACCESS.2019.2960367
10.1007/s11277-020-07549-y
10.1109/TITS.2019.2904953
10.1109/TVT.2019.2899627
10.1186/s13677-018-0109-4
10.1016/j.eswa.2015.12.006
10.3390/agriculture12060793
10.1109/ACCESS.2021.3120626
10.1109/ACCESS.2020.3009733
10.1109/LCOMM.2017.2766636
10.1109/ACCESS.2021.3072922
10.1109/ACCESS.2019.2948382
10.1038/s41598-022-14255-1
10.1016/j.isatra.2021.07.017
10.1109/ACCESS.2018.2875678
10.1007/978-3-030-31239-8_22
10.1049/iet-com.2020.0477
10.1109/MCOM.2017.1601105
10.1007/s11276-020-02413-0
10.1007/s11036-016-0676-x
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math10214030
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_adf8c1cf05f1478c9dcd766453d5d419
A744754342
10_3390_math10214030
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-585dc072ec3006752f901b32e99c4ac6af88a5462271df82bb541f29886fa44d3
IEDL.DBID DOA
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000881088000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Mon Nov 10 04:32:06 EST 2025
Fri Jul 25 12:01:10 EDT 2025
Tue Nov 04 18:20:41 EST 2025
Tue Nov 18 22:37:35 EST 2025
Sat Nov 29 07:10:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-585dc072ec3006752f901b32e99c4ac6af88a5462271df82bb541f29886fa44d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3433-8248
0000-0002-0543-2625
0000-0002-0962-3453
0000-0002-1776-4651
0000-0003-2697-2986
OpenAccessLink https://doaj.org/article/adf8c1cf05f1478c9dcd766453d5d419
PQID 2734653898
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_adf8c1cf05f1478c9dcd766453d5d419
proquest_journals_2734653898
gale_infotracacademiconefile_A744754342
crossref_citationtrail_10_3390_math10214030
crossref_primary_10_3390_math10214030
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Adhikary (ref_18) 2020; 114
Zhang (ref_36) 2018; 6
Zhijun (ref_6) 2020; 8
ref_34
Kadam (ref_14) 2021; 12
Hossain (ref_28) 2021; 9
ref_31
ref_30
Ye (ref_12) 2018; 2018
Kolandaisamy (ref_19) 2018; 2018
Correia (ref_4) 2017; 55
Hong (ref_13) 2018; 22
Tan (ref_5) 2020; 8
Ramamoorthy (ref_25) 2022; 13
ref_16
Bangui (ref_21) 2022; 104
Tang (ref_22) 2019; 68
Khan (ref_3) 2019; 20
Poongodi (ref_17) 2019; 7
Gnanasekar (ref_24) 2021; 34
Walia (ref_32) 2022; 70
Thilak (ref_37) 2018; 82
Zhang (ref_23) 2018; 4
Bouyeddou (ref_11) 2020; 23
Shu (ref_7) 2016; 21
Polat (ref_8) 2020; 14
Gad (ref_15) 2021; 9
Wahab (ref_35) 2016; 50
Gao (ref_1) 2019; 7
Singh (ref_33) 2018; 35
Abusitta (ref_26) 2018; 7
Prabakeran (ref_29) 2020; 26
Cheng (ref_2) 2018; 32
Adhikary (ref_9) 2020; 12
Marwah (ref_20) 2022; 12
Yao (ref_27) 2022; 126
Sahoo (ref_10) 2020; 8
References_xml – ident: ref_30
– volume: 35
  start-page: 1253
  year: 2018
  ident: ref_33
  article-title: Energy efficient cognitive body area network (CBAN) using lookup table and energy harvesting
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-169669
– volume: 8
  start-page: 161908
  year: 2020
  ident: ref_5
  article-title: A New Framework for DDoS Attack Detectionand Defensein SDN Environment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3021435
– volume: 13
  start-page: 3837
  year: 2022
  ident: ref_25
  article-title: An enhanced hybrid ant colony optimization routing protocol for vehicular ad-hoc networks
  publication-title: J. Ambient. Intell. Hum. Comput.
  doi: 10.1007/s12652-021-03176-y
– volume: 2018
  start-page: 2874509
  year: 2018
  ident: ref_19
  article-title: A Multivariant Stream Analysis Approachto Detectand Mitigate DDoS Attacksin Vehicular AdHoc Networks
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2018/2874509
– volume: 82
  start-page: 304
  year: 2018
  ident: ref_37
  article-title: Cellular automata-based improved ant colony-based optimization algorithm for mitigating ddos attacks in vanets
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.11.043
– ident: ref_31
  doi: 10.3390/sym13010047
– volume: 8
  start-page: 17404
  year: 2020
  ident: ref_6
  article-title: Low-Rate DDoS Attack Detection Basedon Factorization Machinein Software Defined Network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2967478
– volume: 4
  start-page: 148
  year: 2018
  ident: ref_23
  article-title: Distributed Privacy-Preserving Collaborative Intrusion Detection Systems for VANETs
  publication-title: IEEE Trans. Signal Inf. Processing Over Netw.
  doi: 10.1109/TSIPN.2018.2801622
– volume: 34
  start-page: e4954
  year: 2021
  ident: ref_24
  article-title: VANET routing Protocols: Implementation and Analysis Using NS3 and SUMO
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.4954
– volume: 12
  start-page: 718
  year: 2021
  ident: ref_14
  article-title: Machine Learning Approach of Hybrid KSVN Algorithmto Detect DDoS Attackin VANET
  publication-title: Int. J. Adv. Comput. Sci. Appl. IJACSA
– volume: 2018
  start-page: 9804061
  year: 2018
  ident: ref_12
  article-title: A DDoS Attack Detection Method Based on SVM in Software Defined Network
  publication-title: Secur. Commun. Netw.
  doi: 10.1155/2018/9804061
– volume: 104
  start-page: 503
  year: 2022
  ident: ref_21
  article-title: A hybrid machine learning model for intrusion detection in VANET
  publication-title: Computing
  doi: 10.1007/s00607-021-01001-0
– volume: 32
  start-page: 160
  year: 2018
  ident: ref_2
  article-title: Big Data Driven Vehicular Networks
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2018.1700460
– volume: 12
  start-page: 1
  year: 2020
  ident: ref_9
  article-title: Evaluatingthe Impactof DDo SAttacksin Vehicular Ad-Hoc Networks
  publication-title: Int. J. Secur. Priv. Pervasive Comput.
  doi: 10.4018/IJSPPC.2020100101
– volume: 7
  start-page: 183532
  year: 2019
  ident: ref_17
  article-title: DDoS Detection Mechanism Using Trust-Based Evaluation Systemin VANET
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960367
– volume: 114
  start-page: 3613
  year: 2020
  ident: ref_18
  article-title: Hybrid Algorithm to Detect DDoS Attacksin VANETs
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-020-07549-y
– volume: 20
  start-page: 3844
  year: 2019
  ident: ref_3
  article-title: An Unsupervised Cluster-Based VANET-Oriented Evolving Graph (CVo EG) Modeland Associated Reliable Routing Scheme
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2904953
– volume: 68
  start-page: 3967
  year: 2019
  ident: ref_22
  article-title: Delay-Minimization Routing for Heterogeneous VANETs With Machine Learning Based Mobility Prediction
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2899627
– volume: 7
  start-page: 9
  year: 2018
  ident: ref_26
  article-title: An SVM-based framework for detecting DoS attacks in virtualized clouds under changing environment
  publication-title: J. Cloud Comp.
  doi: 10.1186/s13677-018-0109-4
– volume: 50
  start-page: 40
  year: 2016
  ident: ref_35
  article-title: CEAP: SVM-based intelligent detection model for clustered vehicular ad hoc networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.12.006
– ident: ref_16
  doi: 10.3390/agriculture12060793
– volume: 9
  start-page: 142206
  year: 2021
  ident: ref_15
  article-title: Intrusion Detection System Using Machine Learning for Vehicular Ad Hoc Networks Based on To N-IoT Dataset
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3120626
– volume: 8
  start-page: 132502
  year: 2020
  ident: ref_10
  article-title: An Evolutionary SVM Modelfor DDOS Attack Detectionin Software Defined Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3009733
– volume: 23
  start-page: 870
  year: 2020
  ident: ref_11
  article-title: DDOS-attacks detection using an efficient measurement-based statistical mechanism
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 22
  start-page: 688
  year: 2018
  ident: ref_13
  article-title: SDN-Assisted Slow HTTP DDoS Attack Defense Method
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2017.2766636
– volume: 9
  start-page: 58230
  year: 2021
  ident: ref_28
  article-title: Multi-Objective Harris Hawks Optimization Algorithm based 2-Hop Routing Algorithm for CR-VANET
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3072922
– volume: 7
  start-page: 154560
  year: 2019
  ident: ref_1
  article-title: A Distributed Network Intrusion Detection Systemfor Distributed Denialof Service Attacksin Vehicular Ad Hoc Network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2948382
– volume: 12
  start-page: 10287
  year: 2022
  ident: ref_20
  article-title: A hybrid optimization with ensemble learning to ensure VANET network stability based on performance analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-14255-1
– volume: 126
  start-page: 691
  year: 2022
  ident: ref_27
  article-title: A novel mathematical morphology spectrument ropy based on scale-adaptive techniques
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.07.017
– volume: 6
  start-page: 59860
  year: 2018
  ident: ref_36
  article-title: Misbehavior detection based on support vector machine and Dempster-Shafer theory of evidence in VANETs
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2875678
– ident: ref_34
  doi: 10.1007/978-3-030-31239-8_22
– volume: 14
  start-page: 4089
  year: 2020
  ident: ref_8
  article-title: Deep network approach with stacked sparse autoencoders in detection of DDoS attacks on SDN-based VANET
  publication-title: IET Commun.
  doi: 10.1049/iet-com.2020.0477
– volume: 55
  start-page: 80
  year: 2017
  ident: ref_4
  article-title: An Architecture for Hierarchical Software-Defined Vehicular Networks
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2017.1601105
– volume: 26
  start-page: 5897
  year: 2020
  ident: ref_29
  article-title: Optimal solution for malicious node detection and prevention using hybrid chaotic particle dragonfly swarm algorithm in VANETs
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-020-02413-0
– volume: 21
  start-page: 764
  year: 2016
  ident: ref_7
  article-title: Securityin Software-Defined Networking: Threatsand Countermeasures
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-016-0676-x
– volume: 70
  start-page: 305
  year: 2022
  ident: ref_32
  article-title: Three Dimensional Optimum Node Localization in Dynamic Wireless Sensor Networks
  publication-title: Comput. Mater. Contin.
SSID ssj0000913849
Score 2.4217236
Snippet The vehicular ad hoc network, VANET, is one of the most popular and promising technologies in intelligent transportation today. However, VANET is susceptible...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4030
SubjectTerms Ad hoc networks (Computer networks)
Algorithms
Ant colony optimization
Assaults
Automobiles
Bandwidths
Communication
Control
cuckoo search
Delay time
Denial of service attacks
dragonfly
Effectiveness
Energy consumption
Industry standards
Intelligent vehicles
Intrusion
Machine learning
Mobile ad hoc networks
Network latency
Nodes
Optimization
Public safety
Quality of service architectures
Resource management
rider optimization algorithm
Robust statistics
Routing (telecommunications)
Search algorithms
Shortest-path problems
Software
Stagnation
support vector machine
Tolls
Traffic congestion
Transportation planning
VANET
Vehicles
whale optimization algorithm
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QAHyqvqQot8AHFAUWPHcewT2qJWlaquKrSgiovlZ1upypbNFol_j8frXcqhXHqNfZjk83gemfkG4H0XVHLLm7ZSpjYVF8xW0tGYQpUm1MK2VnCXh010k4k8O1OnJeE2lLLK1Z2YL2o_c5gj30MaFpG0U8nP1z8rnBqFf1fLCI2H8IgylhXzuKvWORbkvJRcLevdmxTd7yUv8CIPs85lz7csUSbsv-tazrbmcPO-Uj6HZ8XLJOPlsXgBD0L_Ep6erClah1fwY9yTZUYheHKSSyoDKWyr5wRHpF0RTNKSo9_Y1EWmK7JXctmT7-PJwZQkf5d8ndmbYUH-6TN5Dd8OD6ZfjqoyaKFyyZ4vqhQyeFd3LLgGrVfLYvISbMOCUo4bJ0yU0rQJSNZRHyWztuU0MiWliIZz32zBRj_rwzYQRaMLadkYFZPxt7LmITprfaB1FJSO4NPqo2tXWMhxGMaVTtEIQqRvQzSCD-vd10v2jTv27SN-6z3ImZ0fzObnuqigNkl0R12s20h5J53yzndC8LbxredUjeAjoq9Rs5NIzpQGhfRiyJGlxx2SI_KGsxHsrNDXReUH_Rf6N_9ffgtPGPZQ5IbGHdhYzG_CLjx2vxaXw_xdPsF_AFnw-WU
  priority: 102
  providerName: ProQuest
Title An Improved Machine Learning Model with Hybrid Technique in VANET for Robust Communication
URI https://www.proquest.com/docview/2734653898
https://doaj.org/article/adf8c1cf05f1478c9dcd766453d5d419
Volume 10
WOSCitedRecordID wos000881088000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYl7SE5hD5S4iY1OrTkUJasHqvH0SkOKcXGJG5JchF6toGwKbFT6KW_vSPt2riH0EsvOqxGoJ0ZaWbEzDcIvZNRg1vOmkrb2lZcUFcpTxKEKizWwjVOcF-aTcjpVF1e6tlGq6-cE9bBA3eMO7YhwWKf6iYRLpXXwQcpBG9YaAIvgJ-0lnojmCp3sCZMcd1lujOI64_B__te2liXhOcNG1Sg-h-7kIuVOX2Odnv3EI-6bb1AT2L7Eu1M1tiqi1foetTi7ikgBjwpuZAR9zCp33DubXaL8-sqPvuVq7HwfIXSim9a_HU0Hc8xOKr4_M49LJb4rwKRPfTldDz_eFb1HRIqD4Z4WYGvH3wtafQsm52GJjDvjtGotefWC5uUsg1IgEoCfKTONZwkqpUSyXIe2Gu01d61cR9hTZKPMG2tTmC1nap5TN65EEmdBCED9GHFM-N7-PDcxeLWQBiROWw2OTxA79fUPzrYjEfoTjL71zQZ7Lp8ABUwvQqYf6nAAB1l4Zl8JGFL3vaVBfBjGdzKjGRGNeSM0wE6XMnX9Gd1YTLAj4B7X6s3_2M3B2ib5hKJUq94iLaW9w_xLXrmfy5vFvdD9PRkPJ2dD4u6wvhZVsOcb3qRx99jmJ99msyu_gC4yfJV
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I1YKOADFQcUNX4ksQ8IbWGrrdqNqmpBFRfjZ6lUZctmC-qf4jdi57GUQ7n1wDW2Ijv-PDN2Zr4P4HXhRAjLaZYIlaqE5UQn3GAfjirUpbnOdM5MIzZRlCU_OhIHa_Crr4WJaZW9TWwMtZ2beEe-FWlY8rA7BX9_9j2JqlHx72ovodHCYs9d_AxHtvrd7sewvpuE7IxnHyZJpyqQmOC8lkmIj61JC-IMjaY6Iz64RE2JE8IwZXLlOVdZGDUpsPWcaJ0x7IngPPeKMUvDe2_AOqOMkQGsb4_Lg8PVrU5k2eRMtBn2lIp0K8Sd3xr57CbR-pLvayQCrnIEjXfbufe_fZf7cLeLo9GoBf4DWHPVQ7gzXZHQ1o_gy6hC7Z2Js2jaJI061PHJHqMoAneK4jU0mlzEsjU06-ls0UmFPo_K8QyFiB4dzvV5vUR_VdI8hk_XMrknMKjmlXsKSGBvXGhWSvgQ3mieMueN1tbh1OcYD-Ftv8jSdDzrUe7jVIbzVoSEvAyJIWyuep-1_CJX9NuOeFn1iazgzYP54lh2RkaqMHSDjU8zj1nBjbDGFnnOMmozy7AYwpuINhltVxiSUV0JRphYZAGToyLSPwZkkyFs9GiTnVGr5R-oPft38yu4NZlN9-X-brn3HG6TWDHSlG9uwGC5OHcv4Kb5sTypFy-7_YPg63VD8zeymFYT
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghA98I26UMAHKg4o2tixE_uA0EK7alW6qmBBFRfjz1KpypbNFtS_xq_DdpKlHMqtB66xFdnx88zYmXkP4EXlRAjLC5YJlauMlkRn3GAfjiqFy0vNdElNEpuoJhN-eCgOVuBXXwsT0yp7m5gMtZ2ZeEc-jDQsZdidgg99lxZxsDV-c_o9iwpS8U9rL6fRQmTPnf8Mx7fm9e5WWOtNQsbb03c7WacwkJngyBZZiJWtySviTBHNNiM-uEddECeEocqUynOuWJgBqbD1nGjNKPZEcF56RaktwnuvwfWKMo5T2uDH5f1O5NvkVLS59kUh8mGIQL8lIe2Ucn3BCyaxgMtcQvJz4zv_8xe6C7e76BqN2u1wD1ZcfR_W9pfUtM0D-DKqUXuT4izaT6mkDnUss0coSsOdoHg5jXbOYzEbmvYkt-i4Rp9Hk-0pCnE--jDTZ80C_VVf8xA-XcnkHsFqPavdOiCBvXGhWSnhQ9CjeU6dN1pbh3NfYjyAV_2CS9Oxr0cRkBMZTmERHvIiPAawuex92rKOXNLvbcTOsk_kCk8PZvMj2ZkeqcLQDTY-Zx7Tihthja3KkrLCMkuxGMDLiDwZLVoYklFdYUaYWOQGk6MqkkLSgpIBbPTIk52pa-Qf2D3-d_NzuBnwKN_vTvaewC0Sy0hSTecGrC7mZ-4p3DA_FsfN_FnaSAi-XjUufwOrEV2V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Machine+Learning+Model+with+Hybrid+Technique+in+VANET+for+Robust+Communication&rft.jtitle=Mathematics+%28Basel%29&rft.au=Gagan+Preet+Kour+Marwah&rft.au=Anuj+Jain&rft.au=Praveen+Kumar+Malik&rft.au=Manwinder+Singh&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=21&rft.spage=4030&rft_id=info:doi/10.3390%2Fmath10214030&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_adf8c1cf05f1478c9dcd766453d5d419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon