Entropy-Rate Clustering: Cluster Analysis via Maximizing a Submodular Function Subject to a Matroid Constraint
We propose a new objective function for clustering. This objective function consists of two components: the entropy rate of a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the balancing function encourages clusters with simi...
Saved in:
| Published in: | IEEE transactions on pattern analysis and machine intelligence Vol. 36; no. 1; pp. 99 - 112 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Los Alamitos, CA
IEEE
01.01.2014
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We propose a new objective function for clustering. This objective function consists of two components: the entropy rate of a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the balancing function encourages clusters with similar sizes and penalizes larger clusters that aggressively group samples. We present a novel graph construction for the graph associated with the data and show that this construction induces a matroid--a combinatorial structure that generalizes the concept of linear independence in vector spaces. The clustering result is given by the graph topology that maximizes the objective function under the matroid constraint. By exploiting the submodular and monotonic properties of the objective function, we develop an efficient greedy algorithm. Furthermore, we prove an approximation bound of 1/2 for the optimality of the greedy solution. We validate the proposed algorithm on various benchmarks and show its competitive performances with respect to popular clustering algorithms. We further apply it for the task of superpixel segmentation. Experiments on the Berkeley segmentation data set reveal its superior performances over the state-of-the-art superpixel segmentation algorithms in all the standard evaluation metrics. |
|---|---|
| AbstractList | We propose a new objective function for clustering. This objective function consists of two components: the entropy rate of a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the balancing function encourages clusters with similar sizes and penalizes larger clusters that aggressively group samples. We present a novel graph construction for the graph associated with the data and show that this construction induces a matroid--a combinatorial structure that generalizes the concept of linear independence in vector spaces. The clustering result is given by the graph topology that maximizes the objective function under the matroid constraint. By exploiting the submodular and monotonic properties of the objective function, we develop an efficient greedy algorithm. Furthermore, we prove an approximation bound of (1/2) for the optimality of the greedy solution. We validate the proposed algorithm on various benchmarks and show its competitive performances with respect to popular clustering algorithms. We further apply it for the task of superpixel segmentation. Experiments on the Berkeley segmentation data set reveal its superior performances over the state-of-the-art superpixel segmentation algorithms in all the standard evaluation metrics.We propose a new objective function for clustering. This objective function consists of two components: the entropy rate of a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the balancing function encourages clusters with similar sizes and penalizes larger clusters that aggressively group samples. We present a novel graph construction for the graph associated with the data and show that this construction induces a matroid--a combinatorial structure that generalizes the concept of linear independence in vector spaces. The clustering result is given by the graph topology that maximizes the objective function under the matroid constraint. By exploiting the submodular and monotonic properties of the objective function, we develop an efficient greedy algorithm. Furthermore, we prove an approximation bound of (1/2) for the optimality of the greedy solution. We validate the proposed algorithm on various benchmarks and show its competitive performances with respect to popular clustering algorithms. We further apply it for the task of superpixel segmentation. Experiments on the Berkeley segmentation data set reveal its superior performances over the state-of-the-art superpixel segmentation algorithms in all the standard evaluation metrics. We propose a new objective function for clustering. This objective function consists of two components: the entropy rate of a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the balancing function encourages clusters with similar sizes and penalizes larger clusters that aggressively group samples. We present a novel graph construction for the graph associated with the data and show that this construction induces a matroid--a combinatorial structure that generalizes the concept of linear independence in vector spaces. The clustering result is given by the graph topology that maximizes the objective function under the matroid constraint. By exploiting the submodular and monotonic properties of the objective function, we develop an efficient greedy algorithm. Furthermore, we prove an approximation bound of 1/2 for the optimality of the greedy solution. We validate the proposed algorithm on various benchmarks and show its competitive performances with respect to popular clustering algorithms. We further apply it for the task of superpixel segmentation. Experiments on the Berkeley segmentation data set reveal its superior performances over the state-of-the-art superpixel segmentation algorithms in all the standard evaluation metrics. We propose a new objective function for clustering. This objective function consists of two components: the entropy rate of a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the balancing function encourages clusters with similar sizes and penalizes larger clusters that aggressively group samples. We present a novel graph construction for the graph associated with the data and show that this construction induces a matroid--a combinatorial structure that generalizes the concept of linear independence in vector spaces. The clustering result is given by the graph topology that maximizes the objective function under the matroid constraint. By exploiting the submodular and monotonic properties of the objective function, we develop an efficient greedy algorithm. Furthermore, we prove an approximation bound of $({1\over 2})$ for the optimality of the greedy solution. We validate the proposed algorithm on various benchmarks and show its competitive performances with respect to popular clustering algorithms. We further apply it for the task of superpixel segmentation. Experiments on the Berkeley segmentation data set reveal its superior performances over the state-of-the-art superpixel segmentation algorithms in all the standard evaluation metrics. |
| Author | Ramalingam, Srikumar Ming-Yu Liu Tuzel, Oncel Chellappa, Rama |
| Author_xml | – sequence: 1 surname: Ming-Yu Liu fullname: Ming-Yu Liu email: mliu@merl.com organization: Mitsubishi Electr. Res. Labs. (MERL), Mitsubishi Electr. Corp., Cambridge, MA, USA – sequence: 2 givenname: Oncel surname: Tuzel fullname: Tuzel, Oncel email: oncel@merl.com organization: Mitsubishi Electr. Res. Labs. (MERL), Mitsubishi Electr. Corp., Cambridge, MA, USA – sequence: 3 givenname: Srikumar surname: Ramalingam fullname: Ramalingam, Srikumar email: ramalingam@merl.com organization: Mitsubishi Electr. Res. Labs. (MERL), Mitsubishi Electr. Corp., Cambridge, MA, USA – sequence: 4 givenname: Rama surname: Chellappa fullname: Chellappa, Rama email: rama@umiacs.umd.edu organization: Univ. of Maryland, College Park, MD, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28402842$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24231869$$D View this record in MEDLINE/PubMed |
| BookMark | eNqN0VFrFDEQAOAgFXutvvoiSEAEX_bMZJPsxrfjaLXQomh9XuZyWcmxl5xJVjx_vVnvWqEg-BAShm8mycwZOfHBW0KeA5sDMP329tPi5mrOGdRzYM0jMuOgWKW55idkxkDxqm15e0rOUtowBkKy-gk55YLX0Co9I_7C5xh2--ozZkuXw5iyjc5_e3d3pguPwz65RH84pDf4023drwIo0i_jahvW44CRXo7eZBf8FNtYk2kOdNKltlvTZfApR3Q-PyWPexySfXbcz8nXy4vb5Yfq-uP7q-XiujKCqVxJKVdKmEYC9LwHWxvD-vI_yVnLpEHBrZWybbgqfg3tqkeutRU1R2aRmfqcvDnU3cXwfbQpd1uXjB0G9DaMqQPRSCk0gPgPKjVI3XBd6KsHdBPGWPozKVVeoHg9qZdHVfpj190uui3GfXfX9AJeHwEmg0Mf0RuX_rpWsLJ4cfODMzGkFG1_T4B10_S7P9PvpumXUFMSxIME4zJOc5m6P_w77cUhzVlr7-9QkmvWNPVvOAC5qw |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0155371 crossref_primary_10_1109_TIM_2021_3116289 crossref_primary_10_1016_j_infrared_2016_12_021 crossref_primary_10_1007_s11760_024_03192_3 crossref_primary_10_1016_j_procir_2017_04_034 crossref_primary_10_1109_TSP_2020_3046972 crossref_primary_10_1109_TGRS_2015_2451002 crossref_primary_10_1109_TGRS_2020_3042274 crossref_primary_10_1109_ACCESS_2021_3099631 crossref_primary_10_1007_s10586_018_1767_1 crossref_primary_10_1109_JSTARS_2021_3111740 crossref_primary_10_1109_TGRS_2023_3242990 crossref_primary_10_12677_CSA_2017_710112 crossref_primary_10_1049_ell2_13293 crossref_primary_10_1016_j_jvcir_2015_10_012 crossref_primary_10_1109_LGRS_2020_2988124 crossref_primary_10_1109_TIM_2016_2566442 crossref_primary_10_1109_TIP_2020_3009830 crossref_primary_10_3390_rs9020139 crossref_primary_10_1109_JSTARS_2015_2394803 crossref_primary_10_1109_JSTARS_2021_3104153 crossref_primary_10_1109_TGRS_2019_2933588 crossref_primary_10_1109_TPAMI_2016_2636827 crossref_primary_10_1109_ACCESS_2021_3074405 crossref_primary_10_1109_JSTARS_2016_2609404 crossref_primary_10_1109_JSTARS_2018_2872969 crossref_primary_10_3168_jds_2015_10773 crossref_primary_10_3390_molecules24152824 crossref_primary_10_1049_el_2016_0020 crossref_primary_10_1145_3330138 crossref_primary_10_1016_j_ins_2024_121544 crossref_primary_10_1016_j_neucom_2017_11_035 crossref_primary_10_1016_j_neucom_2015_07_034 crossref_primary_10_1016_j_patrec_2019_02_025 crossref_primary_10_1080_01431161_2024_2394234 crossref_primary_10_1186_s13638_019_1567_1 crossref_primary_10_1080_01431161_2021_1939907 crossref_primary_10_1007_s10878_023_01026_5 crossref_primary_10_1109_TNNLS_2018_2885591 crossref_primary_10_1049_el_2014_3379 crossref_primary_10_1109_TNNLS_2023_3262952 crossref_primary_10_3390_rs14081814 crossref_primary_10_1007_s11263_015_0842_9 crossref_primary_10_1016_j_aei_2020_101205 crossref_primary_10_1109_ACCESS_2020_3042614 crossref_primary_10_1109_TGRS_2021_3133878 crossref_primary_10_1109_ACCESS_2019_2910735 crossref_primary_10_3390_bdcc3020031 crossref_primary_10_1007_s12200_015_0482_2 crossref_primary_10_3390_rs14091971 crossref_primary_10_1109_TITS_2018_2868955 crossref_primary_10_12677_JISP_2016_51003 crossref_primary_10_1080_07038992_2017_1393329 crossref_primary_10_1109_TMM_2020_3009502 crossref_primary_10_1016_j_neucom_2015_05_102 crossref_primary_10_1109_TGRS_2019_2961141 crossref_primary_10_3390_s22218502 crossref_primary_10_1109_TGRS_2022_3214523 crossref_primary_10_1109_TIM_2020_3038557 crossref_primary_10_1080_19392699_2022_2074409 crossref_primary_10_1007_s11042_018_6354_1 crossref_primary_10_1109_JSTARS_2018_2866901 crossref_primary_10_1109_TIM_2022_3176286 crossref_primary_10_1109_LGRS_2018_2866816 crossref_primary_10_1007_s40305_024_00544_1 crossref_primary_10_1080_2150704X_2021_1976868 crossref_primary_10_1109_LGRS_2021_3083416 crossref_primary_10_3390_s24051652 crossref_primary_10_1016_j_jvcir_2016_03_026 crossref_primary_10_1109_TITS_2016_2565698 crossref_primary_10_1109_TNNLS_2019_2939157 |
| Cites_doi | 10.1109/TNN.2009.2036998 10.1126/science.1136800 10.1109/TNN.2005.845141 10.1137/1.9781611973068.102 10.1007/s11263-008-0202-0 10.1007/3-540-45294-X_3 10.1109/ICCV.2001.937655 10.1109/34.1000236 10.1109/TPAMI.2007.41 10.1109/CVPR.2011.5995589 10.1023/B:VISI.0000022288.19776.77 10.1007/978-3-642-68874-4_10 10.1109/CVPR.2008.4587691 10.1023/A:1011139631724 10.1145/1557019.1557118 10.1109/CVPR.2008.4587471 10.1109/T-C.1971.223083 10.1109/34.244673 10.1109/TPAMI.2009.96 10.1109/CVPR.2011.5995323 10.1109/TPAMI.2006.233 10.1023/B:MACH.0000033116.57574.95 10.1016/j.patcog.2007.05.018 10.1145/1281192.1281239 10.1002/0471200611 10.1109/ICCV.2003.1238308 10.1109/TPAMI.2004.60 10.1145/331499.331504 10.1109/CVPR.2008.4587401 10.1007/978-3-642-15555-0_16 10.1109/CVPR.2011.5995581 10.1109/34.87344 10.1109/34.868688 10.1109/ICCV.2007.4408985 10.1007/978-3-642-15567-3_8 10.1109/34.969114 10.1007/BF01588971 10.1103/PhysRev.106.620 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2014 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2014 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 7U5 F28 FR3 |
| DOI | 10.1109/TPAMI.2013.107 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Solid State and Superconductivity Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Solid State and Superconductivity Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Mathematics Applied Sciences |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 112 |
| ExternalDocumentID | 3143251051 24231869 28402842 10_1109_TPAMI_2013_107 6529077 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION AAYOK IQODW RIG NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 7U5 F28 FR3 |
| ID | FETCH-LOGICAL-c406t-555b64c7511f2f1e3cc0f107520805ca42ee558726c40d18bfa299e432a0ea0c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 86 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327965100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sun Nov 09 13:00:39 EST 2025 Sat Sep 27 22:57:32 EDT 2025 Sun Nov 30 04:15:44 EST 2025 Mon Jul 21 05:41:38 EDT 2025 Wed Apr 02 07:21:51 EDT 2025 Sat Nov 29 05:15:55 EST 2025 Tue Nov 18 22:30:52 EST 2025 Wed Aug 27 02:47:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Cluster analysis Data analysis Graph construction Combinatorial problem Random walk Matroid Group size Cluster Entropy Graph theory Topology Clustering Random graph superpixel segmentation Submodular function Image segmentation Vector space Greedy algorithm discrete optimization Discrete programming Metric Objective function Linear space Information theory |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-555b64c7511f2f1e3cc0f107520805ca42ee558726c40d18bfa299e432a0ea0c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PMID | 24231869 |
| PQID | 1462996239 |
| PQPubID | 85458 |
| PageCount | 14 |
| ParticipantIDs | pascalfrancis_primary_28402842 proquest_miscellaneous_1475549114 crossref_primary_10_1109_TPAMI_2013_107 crossref_citationtrail_10_1109_TPAMI_2013_107 proquest_miscellaneous_1459159729 ieee_primary_6529077 proquest_journals_1462996239 pubmed_primary_24231869 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-Jan. 2014-1-00 2014 2014-Jan 20140101 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – month: 01 year: 2014 text: 2014-Jan. |
| PublicationDecade | 2010 |
| PublicationPlace | Los Alamitos, CA |
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2014 |
| Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 ref14 moore (ref39) 2010 ref53 ref52 ref11 ref54 ref10 nowozin (ref27) 2012 ref17 ref16 ref18 yen (ref24) 2005 ng (ref19) 2001 ref50 narasimhan (ref28) 2006 ref48 zemel (ref46) 2004 ref42 jeannin (ref49) 1999 ref41 ref44 ref43 nagano (ref29) 2010 oxley (ref45) 1992 ref8 meilä (ref22) 2001 ref9 ref4 ref6 ref40 ref35 ref34 ref37 ref36 frey (ref51) 2007; 315 ref31 ref30 ref33 ref32 ref2 ref1 ref38 banerjee (ref26) 2005; 6 guestrin (ref3) 2008; 9 berkhin (ref12) 2002 fisher (ref47) 1978; 8 mori (ref7) 2004 ref23 ref25 ref20 ref21 lin (ref5) 2011; 2 |
| References_xml | – ident: ref52 doi: 10.1109/TNN.2009.2036998 – start-page: 225 year: 2004 ident: ref46 article-title: Proximity Graphs for Clustering and Manifold Learning publication-title: Proc Advances in Neural Information Processing Systems Foundation – year: 1992 ident: ref45 publication-title: Matroid Theory – start-page: 979 year: 2006 ident: ref28 article-title: Q-Clustering publication-title: Proc Advances in Neural Information Processing Systems Foundation – volume: 315 start-page: 972 year: 2007 ident: ref51 article-title: Clustering by Passing Messages between Data Points publication-title: Science doi: 10.1126/science.1136800 – ident: ref13 doi: 10.1109/TNN.2005.845141 – ident: ref21 doi: 10.1137/1.9781611973068.102 – ident: ref8 doi: 10.1007/s11263-008-0202-0 – year: 2001 ident: ref22 article-title: A Random Walks View of Spectral Segmentation publication-title: Proc IEEE Int Conf Artif Intell Statist – ident: ref23 doi: 10.1007/3-540-45294-X_3 – ident: ref53 doi: 10.1109/ICCV.2001.937655 – ident: ref33 doi: 10.1109/34.1000236 – ident: ref50 doi: 10.1109/TPAMI.2007.41 – volume: 2 start-page: 170 year: 2011 ident: ref5 article-title: Word Alignment via Submodular Maximization over Matroids publication-title: Proc 49th Ann Meeting Assoc Computational Linguistics Human Language Technologies-Short Papers – ident: ref30 doi: 10.1109/CVPR.2011.5995589 – ident: ref32 doi: 10.1023/B:VISI.0000022288.19776.77 – start-page: 205 year: 2012 ident: ref27 article-title: Information Theoretic Clustering Using Minimum Spanning Trees publication-title: Proc Symp German Assoc Pattern Recognition – year: 2010 ident: ref39 article-title: 'Lattice Cut'-Constructing Superpixels Using Layer Constraints publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition – ident: ref2 doi: 10.1007/978-3-642-68874-4_10 – ident: ref40 doi: 10.1109/CVPR.2008.4587691 – ident: ref48 doi: 10.1023/A:1011139631724 – ident: ref20 doi: 10.1145/1557019.1557118 – ident: ref38 doi: 10.1109/CVPR.2008.4587471 – ident: ref15 doi: 10.1109/T-C.1971.223083 – ident: ref16 doi: 10.1109/34.244673 – ident: ref35 doi: 10.1109/TPAMI.2009.96 – volume: 6 start-page: 1705 year: 2005 ident: ref26 article-title: Clustering with Bregman Divergences publication-title: J Machine Learning Research – year: 1999 ident: ref49 article-title: Description of Core Experiments for MPEG-7 Motion/Shape – year: 2004 ident: ref7 article-title: Recovering Human Body Configurations: Combining Segmentation and Recognition publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition – ident: ref42 doi: 10.1109/CVPR.2011.5995323 – ident: ref25 doi: 10.1109/TPAMI.2006.233 – ident: ref18 doi: 10.1023/B:MACH.0000033116.57574.95 – ident: ref14 doi: 10.1016/j.patcog.2007.05.018 – volume: 8 start-page: 73 year: 1978 ident: ref47 article-title: An Analysis of the Approximations for Maximizing Submodular Set Functions-ii publication-title: Math Programming – ident: ref4 doi: 10.1145/1281192.1281239 – start-page: 849 year: 2001 ident: ref19 article-title: On Spectral Clustering: Analysis and an Algorithm publication-title: Proc Advances in Neural Information Processing Systems Foundation – ident: ref43 doi: 10.1002/0471200611 – year: 2010 ident: ref29 article-title: Minimum Average Cost Clustering publication-title: Proc Advances in Neural Information Processing Systems Foundation – ident: ref6 doi: 10.1109/ICCV.2003.1238308 – ident: ref31 doi: 10.1109/TPAMI.2004.60 – ident: ref11 doi: 10.1145/331499.331504 – ident: ref10 doi: 10.1109/CVPR.2008.4587401 – ident: ref36 doi: 10.1007/978-3-642-15555-0_16 – ident: ref41 doi: 10.1109/CVPR.2011.5995581 – year: 2002 ident: ref12 article-title: Survey of Clustering Data Mining Techniques – ident: ref34 doi: 10.1109/34.87344 – ident: ref17 doi: 10.1109/34.868688 – ident: ref9 doi: 10.1109/ICCV.2007.4408985 – ident: ref54 doi: 10.1007/978-3-642-15567-3_8 – year: 2005 ident: ref24 article-title: Clustering Using a Random-Walk Based Distance Measure publication-title: Proc European Symp Artificial Neural Networks – volume: 9 start-page: 235 year: 2008 ident: ref3 article-title: Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies publication-title: J Machine Learning Research – ident: ref37 doi: 10.1109/34.969114 – ident: ref44 doi: 10.1007/BF01588971 – ident: ref1 doi: 10.1103/PhysRev.106.620 |
| SSID | ssj0014503 |
| Score | 2.4488542 |
| Snippet | We propose a new objective function for clustering. This objective function consists of two components: the entropy rate of a random walk on a graph and a... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 99 |
| SubjectTerms | Algorithm design and analysis Algorithms Applied sciences Artificial intelligence Clustering Clustering algorithms Combinatorics Combinatorics. Ordered structures Computer science; control theory; systems Data processing. List processing. Character string processing discrete optimization Entropy Exact sciences and technology Graph theory Heuristic Image segmentation Information retrieval. Graph information theory Linear programming Mathematics Memory organisation. Data processing Pattern recognition. Digital image processing. Computational geometry Sciences and techniques of general use Software submodular function superpixel segmentation Theoretical computing Topology Uncertainty |
| Title | Entropy-Rate Clustering: Cluster Analysis via Maximizing a Submodular Function Subject to a Matroid Constraint |
| URI | https://ieeexplore.ieee.org/document/6529077 https://www.ncbi.nlm.nih.gov/pubmed/24231869 https://www.proquest.com/docview/1462996239 https://www.proquest.com/docview/1459159729 https://www.proquest.com/docview/1475549114 |
| Volume | 36 |
| WOSCitedRecordID | wos000327965100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSx0xEB5UfGgfatVetrWHFIS-NHUvyWa3byIeFFSkaDlvS042gQXdFc8eqf76zmQvrVALvoVkWJKdzM43yex8ALtpNBfGhIYblcRcuDLl2dzNealcJJzNSucv2n-eqLOzbDbLz1fg6_gvjLXWJ5_Zb9T0d_llY5Z0VLaXyhhjObUKq0qp7l-t8cZASM-CjAgGLRzDiL5AYxTmexfn-6fHlMWVYKxKrHuEIYiK6ZEv8uQqlBqpF_h2XEdr8TTu9P5nuvG8mb-GVz3OZPvdxtiEFVtvwcbA4cB6k96Cl38VJNyG-pAS12_u-Q-EoOzgakllFHDk-9BmQxETdldpdqp_VdfVAwowzfATdN2UlNXKpugsSeHUR-c8rG0YSeOzq5IRR6hnpmjfwOX08OLgiPeMDNyg42-5lHKeCqMQpbnYRTZBNTt8pzJG4CmNFrG1UmYqTlG-jFDrGt2dFUmsQ6tDk7yFtbqp7XtgCJelDrWNROREKLROZFhag9GltBIxRwB80E1h-nLlNLerwoctYV54tRakVuxSAXwZ5W-6Qh1PSm6TgkapXjcBTB6pfhxHB44gTMQB7Ax7oegNfUGRE64QMWQewOdxGE2U7l10bZslycgcUSOGMf-TUQjs0PPgwt91--zPBPrt-uHfE_8IL3BpojsX2oG19nZpP8G6uWurxe0EbWWWTbyt_AYT0w9C |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFdQHq60faWtdQfDFtclmN7n4VkqPFu-OIqf0LextdiHQJqWXK-pf35nNhy1Ywbdldwi7mZ3Mb3Yn8wP4kEQLaUxouEljwaUrEj5auAUvUhdJZ0eF8xftPybpbDY6O8tO1-DT8C-MtdYnn9nP1PR3-UVtVnRUtp8ogbFc-gAeKilF1P6tNdwZSOV5kBHDoI1jINGVaIzCbH9-ejA9oTyuGKNV4t0jFEFkTHe8kadXoeRIvcT341pii_uRp_dA443_m_tzeNYhTXbQbo0XsGarTdjoWRxYZ9Sb8PRWScItqI4odf3yF_-GIJQdnq-okAKOfOnbrC9jwq5Lzab6Z3lR_kYBphl-hC7qgvJa2RjdJamc-uikhzU1I2l8dlkwYgn13BTNS_g-PpofHvOOk4EbdP0NV0otEmlSxGlOuMjGqGiH71QJhJ7KaCmsVWqUigTliwj1rtHhWRkLHVodmvgVrFd1Zd8AQ8CsdKhtJCMnQ6l1rMLCGowvlVWIOgLgvW5y0xUsp7md5z5wCbPcqzUntWJXGsDHQf6yLdVxr-QWKWiQ6nQTwN4d1Q_j6MIRhkkRwG6_F_LO1JcUO-EKEUVmAbwfhtFI6eZFV7ZekYzKEDdiIPMvmRShHfoeXPjrdp_9mUC3Xbf_PvF38Ph4Pp3kk5PZ1x14gsuU7SnRLqw3Vyv7Fh6Z66ZcXu15i7kB6SERoQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy-Rate+Clustering%3A+Cluster+Analysis+via+Maximizing+a+Submodular+Function+Subject+to+a+Matroid+Constraint&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=LIU%2C+Ming-Yu&rft.au=TUZEL%2C+Oncel&rft.au=RAMALINGAM%2C+Srikumar&rft.au=CHELLAPPA%2C+Rama&rft.date=2014&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=36&rft.issue=1&rft.spage=99&rft.epage=112&rft_id=info:doi/10.1109%2FTPAMI.2013.107&rft.externalDBID=n%2Fa&rft.externalDocID=28402842 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |