Entropy-Rate Clustering: Cluster Analysis via Maximizing a Submodular Function Subject to a Matroid Constraint

We propose a new objective function for clustering. This objective function consists of two components: the entropy rate of a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the balancing function encourages clusters with simi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 36; no. 1; pp. 99 - 112
Main Authors: Ming-Yu Liu, Tuzel, Oncel, Ramalingam, Srikumar, Chellappa, Rama
Format: Journal Article
Language:English
Published: Los Alamitos, CA IEEE 01.01.2014
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose a new objective function for clustering. This objective function consists of two components: the entropy rate of a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the balancing function encourages clusters with similar sizes and penalizes larger clusters that aggressively group samples. We present a novel graph construction for the graph associated with the data and show that this construction induces a matroid--a combinatorial structure that generalizes the concept of linear independence in vector spaces. The clustering result is given by the graph topology that maximizes the objective function under the matroid constraint. By exploiting the submodular and monotonic properties of the objective function, we develop an efficient greedy algorithm. Furthermore, we prove an approximation bound of 1/2 for the optimality of the greedy solution. We validate the proposed algorithm on various benchmarks and show its competitive performances with respect to popular clustering algorithms. We further apply it for the task of superpixel segmentation. Experiments on the Berkeley segmentation data set reveal its superior performances over the state-of-the-art superpixel segmentation algorithms in all the standard evaluation metrics.
AbstractList We propose a new objective function for clustering. This objective function consists of two components: the entropy rate of a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the balancing function encourages clusters with similar sizes and penalizes larger clusters that aggressively group samples. We present a novel graph construction for the graph associated with the data and show that this construction induces a matroid--a combinatorial structure that generalizes the concept of linear independence in vector spaces. The clustering result is given by the graph topology that maximizes the objective function under the matroid constraint. By exploiting the submodular and monotonic properties of the objective function, we develop an efficient greedy algorithm. Furthermore, we prove an approximation bound of (1/2) for the optimality of the greedy solution. We validate the proposed algorithm on various benchmarks and show its competitive performances with respect to popular clustering algorithms. We further apply it for the task of superpixel segmentation. Experiments on the Berkeley segmentation data set reveal its superior performances over the state-of-the-art superpixel segmentation algorithms in all the standard evaluation metrics.We propose a new objective function for clustering. This objective function consists of two components: the entropy rate of a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the balancing function encourages clusters with similar sizes and penalizes larger clusters that aggressively group samples. We present a novel graph construction for the graph associated with the data and show that this construction induces a matroid--a combinatorial structure that generalizes the concept of linear independence in vector spaces. The clustering result is given by the graph topology that maximizes the objective function under the matroid constraint. By exploiting the submodular and monotonic properties of the objective function, we develop an efficient greedy algorithm. Furthermore, we prove an approximation bound of (1/2) for the optimality of the greedy solution. We validate the proposed algorithm on various benchmarks and show its competitive performances with respect to popular clustering algorithms. We further apply it for the task of superpixel segmentation. Experiments on the Berkeley segmentation data set reveal its superior performances over the state-of-the-art superpixel segmentation algorithms in all the standard evaluation metrics.
We propose a new objective function for clustering. This objective function consists of two components: the entropy rate of a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the balancing function encourages clusters with similar sizes and penalizes larger clusters that aggressively group samples. We present a novel graph construction for the graph associated with the data and show that this construction induces a matroid--a combinatorial structure that generalizes the concept of linear independence in vector spaces. The clustering result is given by the graph topology that maximizes the objective function under the matroid constraint. By exploiting the submodular and monotonic properties of the objective function, we develop an efficient greedy algorithm. Furthermore, we prove an approximation bound of 1/2 for the optimality of the greedy solution. We validate the proposed algorithm on various benchmarks and show its competitive performances with respect to popular clustering algorithms. We further apply it for the task of superpixel segmentation. Experiments on the Berkeley segmentation data set reveal its superior performances over the state-of-the-art superpixel segmentation algorithms in all the standard evaluation metrics.
We propose a new objective function for clustering. This objective function consists of two components: the entropy rate of a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the balancing function encourages clusters with similar sizes and penalizes larger clusters that aggressively group samples. We present a novel graph construction for the graph associated with the data and show that this construction induces a matroid--a combinatorial structure that generalizes the concept of linear independence in vector spaces. The clustering result is given by the graph topology that maximizes the objective function under the matroid constraint. By exploiting the submodular and monotonic properties of the objective function, we develop an efficient greedy algorithm. Furthermore, we prove an approximation bound of $({1\over 2})$ for the optimality of the greedy solution. We validate the proposed algorithm on various benchmarks and show its competitive performances with respect to popular clustering algorithms. We further apply it for the task of superpixel segmentation. Experiments on the Berkeley segmentation data set reveal its superior performances over the state-of-the-art superpixel segmentation algorithms in all the standard evaluation metrics.
Author Ramalingam, Srikumar
Ming-Yu Liu
Tuzel, Oncel
Chellappa, Rama
Author_xml – sequence: 1
  surname: Ming-Yu Liu
  fullname: Ming-Yu Liu
  email: mliu@merl.com
  organization: Mitsubishi Electr. Res. Labs. (MERL), Mitsubishi Electr. Corp., Cambridge, MA, USA
– sequence: 2
  givenname: Oncel
  surname: Tuzel
  fullname: Tuzel, Oncel
  email: oncel@merl.com
  organization: Mitsubishi Electr. Res. Labs. (MERL), Mitsubishi Electr. Corp., Cambridge, MA, USA
– sequence: 3
  givenname: Srikumar
  surname: Ramalingam
  fullname: Ramalingam, Srikumar
  email: ramalingam@merl.com
  organization: Mitsubishi Electr. Res. Labs. (MERL), Mitsubishi Electr. Corp., Cambridge, MA, USA
– sequence: 4
  givenname: Rama
  surname: Chellappa
  fullname: Chellappa, Rama
  email: rama@umiacs.umd.edu
  organization: Univ. of Maryland, College Park, MD, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28402842$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24231869$$D View this record in MEDLINE/PubMed
BookMark eNqN0VFrFDEQAOAgFXutvvoiSEAEX_bMZJPsxrfjaLXQomh9XuZyWcmxl5xJVjx_vVnvWqEg-BAShm8mycwZOfHBW0KeA5sDMP329tPi5mrOGdRzYM0jMuOgWKW55idkxkDxqm15e0rOUtowBkKy-gk55YLX0Co9I_7C5xh2--ozZkuXw5iyjc5_e3d3pguPwz65RH84pDf4023drwIo0i_jahvW44CRXo7eZBf8FNtYk2kOdNKltlvTZfApR3Q-PyWPexySfXbcz8nXy4vb5Yfq-uP7q-XiujKCqVxJKVdKmEYC9LwHWxvD-vI_yVnLpEHBrZWybbgqfg3tqkeutRU1R2aRmfqcvDnU3cXwfbQpd1uXjB0G9DaMqQPRSCk0gPgPKjVI3XBd6KsHdBPGWPozKVVeoHg9qZdHVfpj190uui3GfXfX9AJeHwEmg0Mf0RuX_rpWsLJ4cfODMzGkFG1_T4B10_S7P9PvpumXUFMSxIME4zJOc5m6P_w77cUhzVlr7-9QkmvWNPVvOAC5qw
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1371_journal_pone_0155371
crossref_primary_10_1109_TIM_2021_3116289
crossref_primary_10_1016_j_infrared_2016_12_021
crossref_primary_10_1007_s11760_024_03192_3
crossref_primary_10_1016_j_procir_2017_04_034
crossref_primary_10_1109_TSP_2020_3046972
crossref_primary_10_1109_TGRS_2015_2451002
crossref_primary_10_1109_TGRS_2020_3042274
crossref_primary_10_1109_ACCESS_2021_3099631
crossref_primary_10_1007_s10586_018_1767_1
crossref_primary_10_1109_JSTARS_2021_3111740
crossref_primary_10_1109_TGRS_2023_3242990
crossref_primary_10_12677_CSA_2017_710112
crossref_primary_10_1049_ell2_13293
crossref_primary_10_1016_j_jvcir_2015_10_012
crossref_primary_10_1109_LGRS_2020_2988124
crossref_primary_10_1109_TIM_2016_2566442
crossref_primary_10_1109_TIP_2020_3009830
crossref_primary_10_3390_rs9020139
crossref_primary_10_1109_JSTARS_2015_2394803
crossref_primary_10_1109_JSTARS_2021_3104153
crossref_primary_10_1109_TGRS_2019_2933588
crossref_primary_10_1109_TPAMI_2016_2636827
crossref_primary_10_1109_ACCESS_2021_3074405
crossref_primary_10_1109_JSTARS_2016_2609404
crossref_primary_10_1109_JSTARS_2018_2872969
crossref_primary_10_3168_jds_2015_10773
crossref_primary_10_3390_molecules24152824
crossref_primary_10_1049_el_2016_0020
crossref_primary_10_1145_3330138
crossref_primary_10_1016_j_ins_2024_121544
crossref_primary_10_1016_j_neucom_2017_11_035
crossref_primary_10_1016_j_neucom_2015_07_034
crossref_primary_10_1016_j_patrec_2019_02_025
crossref_primary_10_1080_01431161_2024_2394234
crossref_primary_10_1186_s13638_019_1567_1
crossref_primary_10_1080_01431161_2021_1939907
crossref_primary_10_1007_s10878_023_01026_5
crossref_primary_10_1109_TNNLS_2018_2885591
crossref_primary_10_1049_el_2014_3379
crossref_primary_10_1109_TNNLS_2023_3262952
crossref_primary_10_3390_rs14081814
crossref_primary_10_1007_s11263_015_0842_9
crossref_primary_10_1016_j_aei_2020_101205
crossref_primary_10_1109_ACCESS_2020_3042614
crossref_primary_10_1109_TGRS_2021_3133878
crossref_primary_10_1109_ACCESS_2019_2910735
crossref_primary_10_3390_bdcc3020031
crossref_primary_10_1007_s12200_015_0482_2
crossref_primary_10_3390_rs14091971
crossref_primary_10_1109_TITS_2018_2868955
crossref_primary_10_12677_JISP_2016_51003
crossref_primary_10_1080_07038992_2017_1393329
crossref_primary_10_1109_TMM_2020_3009502
crossref_primary_10_1016_j_neucom_2015_05_102
crossref_primary_10_1109_TGRS_2019_2961141
crossref_primary_10_3390_s22218502
crossref_primary_10_1109_TGRS_2022_3214523
crossref_primary_10_1109_TIM_2020_3038557
crossref_primary_10_1080_19392699_2022_2074409
crossref_primary_10_1007_s11042_018_6354_1
crossref_primary_10_1109_JSTARS_2018_2866901
crossref_primary_10_1109_TIM_2022_3176286
crossref_primary_10_1109_LGRS_2018_2866816
crossref_primary_10_1007_s40305_024_00544_1
crossref_primary_10_1080_2150704X_2021_1976868
crossref_primary_10_1109_LGRS_2021_3083416
crossref_primary_10_3390_s24051652
crossref_primary_10_1016_j_jvcir_2016_03_026
crossref_primary_10_1109_TITS_2016_2565698
crossref_primary_10_1109_TNNLS_2019_2939157
Cites_doi 10.1109/TNN.2009.2036998
10.1126/science.1136800
10.1109/TNN.2005.845141
10.1137/1.9781611973068.102
10.1007/s11263-008-0202-0
10.1007/3-540-45294-X_3
10.1109/ICCV.2001.937655
10.1109/34.1000236
10.1109/TPAMI.2007.41
10.1109/CVPR.2011.5995589
10.1023/B:VISI.0000022288.19776.77
10.1007/978-3-642-68874-4_10
10.1109/CVPR.2008.4587691
10.1023/A:1011139631724
10.1145/1557019.1557118
10.1109/CVPR.2008.4587471
10.1109/T-C.1971.223083
10.1109/34.244673
10.1109/TPAMI.2009.96
10.1109/CVPR.2011.5995323
10.1109/TPAMI.2006.233
10.1023/B:MACH.0000033116.57574.95
10.1016/j.patcog.2007.05.018
10.1145/1281192.1281239
10.1002/0471200611
10.1109/ICCV.2003.1238308
10.1109/TPAMI.2004.60
10.1145/331499.331504
10.1109/CVPR.2008.4587401
10.1007/978-3-642-15555-0_16
10.1109/CVPR.2011.5995581
10.1109/34.87344
10.1109/34.868688
10.1109/ICCV.2007.4408985
10.1007/978-3-642-15567-3_8
10.1109/34.969114
10.1007/BF01588971
10.1103/PhysRev.106.620
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
7U5
F28
FR3
DOI 10.1109/TPAMI.2013.107
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Solid State and Superconductivity Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE - Academic

PubMed
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Mathematics
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 112
ExternalDocumentID 3143251051
24231869
28402842
10_1109_TPAMI_2013_107
6529077
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
AAYOK
IQODW
RIG
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
7U5
F28
FR3
ID FETCH-LOGICAL-c406t-555b64c7511f2f1e3cc0f107520805ca42ee558726c40d18bfa299e432a0ea0c3
IEDL.DBID RIE
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327965100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Nov 09 13:00:39 EST 2025
Sat Sep 27 22:57:32 EDT 2025
Sun Nov 30 04:15:44 EST 2025
Mon Jul 21 05:41:38 EDT 2025
Wed Apr 02 07:21:51 EDT 2025
Sat Nov 29 05:15:55 EST 2025
Tue Nov 18 22:30:52 EST 2025
Wed Aug 27 02:47:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cluster analysis
Data analysis
Graph construction
Combinatorial problem
Random walk
Matroid
Group size
Cluster
Entropy
Graph theory
Topology
Clustering
Random graph
superpixel segmentation
Submodular function
Image segmentation
Vector space
Greedy algorithm
discrete optimization
Discrete programming
Metric
Objective function
Linear space
Information theory
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-555b64c7511f2f1e3cc0f107520805ca42ee558726c40d18bfa299e432a0ea0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 24231869
PQID 1462996239
PQPubID 85458
PageCount 14
ParticipantIDs pascalfrancis_primary_28402842
proquest_miscellaneous_1475549114
crossref_primary_10_1109_TPAMI_2013_107
crossref_citationtrail_10_1109_TPAMI_2013_107
proquest_miscellaneous_1459159729
ieee_primary_6529077
proquest_journals_1462996239
pubmed_primary_24231869
PublicationCentury 2000
PublicationDate 2014-Jan.
2014-1-00
2014
2014-Jan
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-Jan.
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2014
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
moore (ref39) 2010
ref53
ref52
ref11
ref54
ref10
nowozin (ref27) 2012
ref17
ref16
ref18
yen (ref24) 2005
ng (ref19) 2001
ref50
narasimhan (ref28) 2006
ref48
zemel (ref46) 2004
ref42
jeannin (ref49) 1999
ref41
ref44
ref43
nagano (ref29) 2010
oxley (ref45) 1992
ref8
meilä (ref22) 2001
ref9
ref4
ref6
ref40
ref35
ref34
ref37
ref36
frey (ref51) 2007; 315
ref31
ref30
ref33
ref32
ref2
ref1
ref38
banerjee (ref26) 2005; 6
guestrin (ref3) 2008; 9
berkhin (ref12) 2002
fisher (ref47) 1978; 8
mori (ref7) 2004
ref23
ref25
ref20
ref21
lin (ref5) 2011; 2
References_xml – ident: ref52
  doi: 10.1109/TNN.2009.2036998
– start-page: 225
  year: 2004
  ident: ref46
  article-title: Proximity Graphs for Clustering and Manifold Learning
  publication-title: Proc Advances in Neural Information Processing Systems Foundation
– year: 1992
  ident: ref45
  publication-title: Matroid Theory
– start-page: 979
  year: 2006
  ident: ref28
  article-title: Q-Clustering
  publication-title: Proc Advances in Neural Information Processing Systems Foundation
– volume: 315
  start-page: 972
  year: 2007
  ident: ref51
  article-title: Clustering by Passing Messages between Data Points
  publication-title: Science
  doi: 10.1126/science.1136800
– ident: ref13
  doi: 10.1109/TNN.2005.845141
– ident: ref21
  doi: 10.1137/1.9781611973068.102
– ident: ref8
  doi: 10.1007/s11263-008-0202-0
– year: 2001
  ident: ref22
  article-title: A Random Walks View of Spectral Segmentation
  publication-title: Proc IEEE Int Conf Artif Intell Statist
– ident: ref23
  doi: 10.1007/3-540-45294-X_3
– ident: ref53
  doi: 10.1109/ICCV.2001.937655
– ident: ref33
  doi: 10.1109/34.1000236
– ident: ref50
  doi: 10.1109/TPAMI.2007.41
– volume: 2
  start-page: 170
  year: 2011
  ident: ref5
  article-title: Word Alignment via Submodular Maximization over Matroids
  publication-title: Proc 49th Ann Meeting Assoc Computational Linguistics Human Language Technologies-Short Papers
– ident: ref30
  doi: 10.1109/CVPR.2011.5995589
– ident: ref32
  doi: 10.1023/B:VISI.0000022288.19776.77
– start-page: 205
  year: 2012
  ident: ref27
  article-title: Information Theoretic Clustering Using Minimum Spanning Trees
  publication-title: Proc Symp German Assoc Pattern Recognition
– year: 2010
  ident: ref39
  article-title: 'Lattice Cut'-Constructing Superpixels Using Layer Constraints
  publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition
– ident: ref2
  doi: 10.1007/978-3-642-68874-4_10
– ident: ref40
  doi: 10.1109/CVPR.2008.4587691
– ident: ref48
  doi: 10.1023/A:1011139631724
– ident: ref20
  doi: 10.1145/1557019.1557118
– ident: ref38
  doi: 10.1109/CVPR.2008.4587471
– ident: ref15
  doi: 10.1109/T-C.1971.223083
– ident: ref16
  doi: 10.1109/34.244673
– ident: ref35
  doi: 10.1109/TPAMI.2009.96
– volume: 6
  start-page: 1705
  year: 2005
  ident: ref26
  article-title: Clustering with Bregman Divergences
  publication-title: J Machine Learning Research
– year: 1999
  ident: ref49
  article-title: Description of Core Experiments for MPEG-7 Motion/Shape
– year: 2004
  ident: ref7
  article-title: Recovering Human Body Configurations: Combining Segmentation and Recognition
  publication-title: Proc IEEE Conf Computer Vision and Pattern Recognition
– ident: ref42
  doi: 10.1109/CVPR.2011.5995323
– ident: ref25
  doi: 10.1109/TPAMI.2006.233
– ident: ref18
  doi: 10.1023/B:MACH.0000033116.57574.95
– ident: ref14
  doi: 10.1016/j.patcog.2007.05.018
– volume: 8
  start-page: 73
  year: 1978
  ident: ref47
  article-title: An Analysis of the Approximations for Maximizing Submodular Set Functions-ii
  publication-title: Math Programming
– ident: ref4
  doi: 10.1145/1281192.1281239
– start-page: 849
  year: 2001
  ident: ref19
  article-title: On Spectral Clustering: Analysis and an Algorithm
  publication-title: Proc Advances in Neural Information Processing Systems Foundation
– ident: ref43
  doi: 10.1002/0471200611
– year: 2010
  ident: ref29
  article-title: Minimum Average Cost Clustering
  publication-title: Proc Advances in Neural Information Processing Systems Foundation
– ident: ref6
  doi: 10.1109/ICCV.2003.1238308
– ident: ref31
  doi: 10.1109/TPAMI.2004.60
– ident: ref11
  doi: 10.1145/331499.331504
– ident: ref10
  doi: 10.1109/CVPR.2008.4587401
– ident: ref36
  doi: 10.1007/978-3-642-15555-0_16
– ident: ref41
  doi: 10.1109/CVPR.2011.5995581
– year: 2002
  ident: ref12
  article-title: Survey of Clustering Data Mining Techniques
– ident: ref34
  doi: 10.1109/34.87344
– ident: ref17
  doi: 10.1109/34.868688
– ident: ref9
  doi: 10.1109/ICCV.2007.4408985
– ident: ref54
  doi: 10.1007/978-3-642-15567-3_8
– year: 2005
  ident: ref24
  article-title: Clustering Using a Random-Walk Based Distance Measure
  publication-title: Proc European Symp Artificial Neural Networks
– volume: 9
  start-page: 235
  year: 2008
  ident: ref3
  article-title: Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies
  publication-title: J Machine Learning Research
– ident: ref37
  doi: 10.1109/34.969114
– ident: ref44
  doi: 10.1007/BF01588971
– ident: ref1
  doi: 10.1103/PhysRev.106.620
SSID ssj0014503
Score 2.4488542
Snippet We propose a new objective function for clustering. This objective function consists of two components: the entropy rate of a random walk on a graph and a...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 99
SubjectTerms Algorithm design and analysis
Algorithms
Applied sciences
Artificial intelligence
Clustering
Clustering algorithms
Combinatorics
Combinatorics. Ordered structures
Computer science; control theory; systems
Data processing. List processing. Character string processing
discrete optimization
Entropy
Exact sciences and technology
Graph theory
Heuristic
Image segmentation
Information retrieval. Graph
information theory
Linear programming
Mathematics
Memory organisation. Data processing
Pattern recognition. Digital image processing. Computational geometry
Sciences and techniques of general use
Software
submodular function
superpixel segmentation
Theoretical computing
Topology
Uncertainty
Title Entropy-Rate Clustering: Cluster Analysis via Maximizing a Submodular Function Subject to a Matroid Constraint
URI https://ieeexplore.ieee.org/document/6529077
https://www.ncbi.nlm.nih.gov/pubmed/24231869
https://www.proquest.com/docview/1462996239
https://www.proquest.com/docview/1459159729
https://www.proquest.com/docview/1475549114
Volume 36
WOSCitedRecordID wos000327965100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSx0xEB5UfGgfatVetrWHFIS-NHUvyWa3byIeFFSkaDlvS042gQXdFc8eqf76zmQvrVALvoVkWJKdzM43yex8ALtpNBfGhIYblcRcuDLl2dzNealcJJzNSucv2n-eqLOzbDbLz1fg6_gvjLXWJ5_Zb9T0d_llY5Z0VLaXyhhjObUKq0qp7l-t8cZASM-CjAgGLRzDiL5AYxTmexfn-6fHlMWVYKxKrHuEIYiK6ZEv8uQqlBqpF_h2XEdr8TTu9P5nuvG8mb-GVz3OZPvdxtiEFVtvwcbA4cB6k96Cl38VJNyG-pAS12_u-Q-EoOzgakllFHDk-9BmQxETdldpdqp_VdfVAwowzfATdN2UlNXKpugsSeHUR-c8rG0YSeOzq5IRR6hnpmjfwOX08OLgiPeMDNyg42-5lHKeCqMQpbnYRTZBNTt8pzJG4CmNFrG1UmYqTlG-jFDrGt2dFUmsQ6tDk7yFtbqp7XtgCJelDrWNROREKLROZFhag9GltBIxRwB80E1h-nLlNLerwoctYV54tRakVuxSAXwZ5W-6Qh1PSm6TgkapXjcBTB6pfhxHB44gTMQB7Ax7oegNfUGRE64QMWQewOdxGE2U7l10bZslycgcUSOGMf-TUQjs0PPgwt91--zPBPrt-uHfE_8IL3BpojsX2oG19nZpP8G6uWurxe0EbWWWTbyt_AYT0w9C
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFdQHq60faWtdQfDFtclmN7n4VkqPFu-OIqf0LextdiHQJqWXK-pf35nNhy1Ywbdldwi7mZ3Mb3Yn8wP4kEQLaUxouEljwaUrEj5auAUvUhdJZ0eF8xftPybpbDY6O8tO1-DT8C-MtdYnn9nP1PR3-UVtVnRUtp8ogbFc-gAeKilF1P6tNdwZSOV5kBHDoI1jINGVaIzCbH9-ejA9oTyuGKNV4t0jFEFkTHe8kadXoeRIvcT341pii_uRp_dA443_m_tzeNYhTXbQbo0XsGarTdjoWRxYZ9Sb8PRWScItqI4odf3yF_-GIJQdnq-okAKOfOnbrC9jwq5Lzab6Z3lR_kYBphl-hC7qgvJa2RjdJamc-uikhzU1I2l8dlkwYgn13BTNS_g-PpofHvOOk4EbdP0NV0otEmlSxGlOuMjGqGiH71QJhJ7KaCmsVWqUigTliwj1rtHhWRkLHVodmvgVrFd1Zd8AQ8CsdKhtJCMnQ6l1rMLCGowvlVWIOgLgvW5y0xUsp7md5z5wCbPcqzUntWJXGsDHQf6yLdVxr-QWKWiQ6nQTwN4d1Q_j6MIRhkkRwG6_F_LO1JcUO-EKEUVmAbwfhtFI6eZFV7ZekYzKEDdiIPMvmRShHfoeXPjrdp_9mUC3Xbf_PvF38Ph4Pp3kk5PZ1x14gsuU7SnRLqw3Vyv7Fh6Z66ZcXu15i7kB6SERoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy-Rate+Clustering%3A+Cluster+Analysis+via+Maximizing+a+Submodular+Function+Subject+to+a+Matroid+Constraint&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=LIU%2C+Ming-Yu&rft.au=TUZEL%2C+Oncel&rft.au=RAMALINGAM%2C+Srikumar&rft.au=CHELLAPPA%2C+Rama&rft.date=2014&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=36&rft.issue=1&rft.spage=99&rft.epage=112&rft_id=info:doi/10.1109%2FTPAMI.2013.107&rft.externalDBID=n%2Fa&rft.externalDocID=28402842
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon