The Fuzzy Width Theory in the Finite-Dimensional Space and Sobolev Space
This paper aims to fuzzify the width problem of classical approximation theory. New concepts of fuzzy Kolmogorov n-width and fuzzy linear n-width are introduced on the basis of α-fuzzy distance which is induced by the fuzzy norm. Furthermore, the relationship between the classical widths in linear n...
Uloženo v:
| Vydáno v: | Mathematics (Basel) Ročník 11; číslo 10; s. 2331 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.05.2023
|
| Témata: | |
| ISSN: | 2227-7390, 2227-7390 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper aims to fuzzify the width problem of classical approximation theory. New concepts of fuzzy Kolmogorov n-width and fuzzy linear n-width are introduced on the basis of α-fuzzy distance which is induced by the fuzzy norm. Furthermore, the relationship between the classical widths in linear normed space and the fuzzy widths in fuzzy linear normed space is discussed. Finally, the exact asymptotic orders of the fuzzy Kolmogorov n-width and fuzzy linear n-width corresponding to a given fuzzy norm in finite-dimensional space and Sobolev space are estimated. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2227-7390 2227-7390 |
| DOI: | 10.3390/math11102331 |