The Fuzzy Width Theory in the Finite-Dimensional Space and Sobolev Space

This paper aims to fuzzify the width problem of classical approximation theory. New concepts of fuzzy Kolmogorov n-width and fuzzy linear n-width are introduced on the basis of α-fuzzy distance which is induced by the fuzzy norm. Furthermore, the relationship between the classical widths in linear n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 11; číslo 10; s. 2331
Hlavní autoři: Xu, Yanyan, Sun, Lu, Li, Hao, Chen, Guanggui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.05.2023
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper aims to fuzzify the width problem of classical approximation theory. New concepts of fuzzy Kolmogorov n-width and fuzzy linear n-width are introduced on the basis of α-fuzzy distance which is induced by the fuzzy norm. Furthermore, the relationship between the classical widths in linear normed space and the fuzzy widths in fuzzy linear normed space is discussed. Finally, the exact asymptotic orders of the fuzzy Kolmogorov n-width and fuzzy linear n-width corresponding to a given fuzzy norm in finite-dimensional space and Sobolev space are estimated.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math11102331