Self-Attention (SA)-ConvLSTM Encoder–Decoder Structure-Based Video Prediction for Dynamic Motion Estimation
Video prediction, which is the task of predicting future video frames based on past observations, remains a challenging problem because of the complexity and high dimensionality of spatiotemporal dynamics. To address the problems associated with spatiotemporal prediction, which is an important decis...
Uložené v:
| Vydané v: | Applied sciences Ročník 14; číslo 23; s. 11315 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.12.2024
|
| Predmet: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Video prediction, which is the task of predicting future video frames based on past observations, remains a challenging problem because of the complexity and high dimensionality of spatiotemporal dynamics. To address the problems associated with spatiotemporal prediction, which is an important decision-making tool in various fields, several deep learning models have been proposed. Convolutional long short-term memory (ConvLSTM) can capture space and time simultaneously and has shown excellent performance in various applications, such as image and video prediction, object detection, and semantic segmentation. However, ConvLSTM has limitations in capturing long-term temporal dependencies. To solve this problem, this study proposes an encoder–decoder structure using self-attention ConvLSTM (SA-ConvLSTM), which retains the advantages of ConvLSTM and effectively captures the long-range dependencies through the self-attention mechanism. The effectiveness of the encoder–decoder structure using SA-ConvLSTM was validated through experiments on the MovingMNIST, KTH dataset. |
|---|---|
| AbstractList | Video prediction, which is the task of predicting future video frames based on past observations, remains a challenging problem because of the complexity and high dimensionality of spatiotemporal dynamics. To address the problems associated with spatiotemporal prediction, which is an important decision-making tool in various fields, several deep learning models have been proposed. Convolutional long short-term memory (ConvLSTM) can capture space and time simultaneously and has shown excellent performance in various applications, such as image and video prediction, object detection, and semantic segmentation. However, ConvLSTM has limitations in capturing long-term temporal dependencies. To solve this problem, this study proposes an encoder–decoder structure using self-attention ConvLSTM (SA-ConvLSTM), which retains the advantages of ConvLSTM and effectively captures the long-range dependencies through the self-attention mechanism. The effectiveness of the encoder–decoder structure using SA-ConvLSTM was validated through experiments on the MovingMNIST, KTH dataset. |
| Audience | Academic |
| Author | Choo, Hyunseung Jeong, Jongpil Kim, Jeongdae |
| Author_xml | – sequence: 1 givenname: Jeongdae orcidid: 0009-0006-1178-7752 surname: Kim fullname: Kim, Jeongdae – sequence: 2 givenname: Hyunseung orcidid: 0000-0002-6485-3155 surname: Choo fullname: Choo, Hyunseung – sequence: 3 givenname: Jongpil orcidid: 0000-0002-4061-9532 surname: Jeong fullname: Jeong, Jongpil |
| BookMark | eNptUV1rFDEUDdKCtfbNHzDgi4JT8zX5eFy3qxa2tLDV15BJ7pQsu8mayRb65n_wH_pLTGdFijT3IYfDuede7nmFjmKKgNAbgs8Z0_ij3e0Ip4wQRroX6IRiKVrGiTx6gl-is3Fc4_o0YYrgE7RdwWZoZ6VALCHF5t1q9r6dp3i_XN1eNYvokof8--evC5hQsyp578o-Q_vJjuCb78FDam4y-OAmgyHl5uIh2m1wzVWaqMVYwtY-wtfoeLCbEc7-_qfo2-fF7fxru7z-cjmfLVvHsSgt90IoEE5aZTVgZjtKuaWuH3Dfa0KlUNTLHixQJxXriJQ9F1I40imJiWSn6PLg65Ndm12u4_ODSTaYiUj5zthcgtuAcYRSpQeiNXiuqLCcU0-E6jnFrJe8er09eO1y-rGHsZh12udY1zeMcKZZp4WoqvOD6s5W0xCHVLJ1tTzUS9SkhlD5mSJacUE7XRs-HBpcTuOYYfi3JsHmMVDzNNAqp__JXSjTTeucsHm-6Q_EEqO6 |
| CitedBy_id | crossref_primary_10_4018_JOEUC_383053 crossref_primary_10_3390_app15126742 |
| Cites_doi | 10.1016/j.asoc.2023.110253 10.3390/en14196161 10.1109/MTITS.2019.8883353 10.1016/j.apr.2022.101543 10.1016/j.uclim.2021.101055 10.23919/ACC55779.2023.10155930 10.1109/TPAMI.2016.2599174 10.1007/s10845-023-02318-7 10.1109/ITSC.2018.8570003 10.3390/e25020247 10.1109/ICCV51070.2023.00875 10.1007/978-3-319-68560-1_13 10.1109/TGRS.2022.3198222 10.1109/ACCESS.2023.3309601 10.1109/MDM61037.2024.00025 10.1049/itr2.12238 10.2166/wst.2022.425 10.1109/CVPR46437.2021.01518 10.1016/j.jclepro.2020.125341 10.1109/TPAMI.2015.2430335 10.1109/IROS47612.2022.9981769 10.1109/CVPR52688.2022.00317 10.1109/TITS.2020.3006227 10.3390/rs15184486 10.1109/CAC.2018.8623233 10.1109/TIP.2023.3334954 10.1155/2021/9627776 10.1109/TITS.2023.3269794 10.1016/j.inffus.2022.11.019 10.1109/TIP.2003.819861 10.1007/s00382-023-06905-5 10.1007/978-981-19-1610-6_17 10.3390/su14127371 10.1016/j.ecoinf.2023.102067 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app142311315 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_c12289f199ed4826a442d168b4203b74 A819846259 10_3390_app142311315 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c406t-4d668e6c7a8a9e03a5224a2cbf0bb9127682d7beae2c7835177b4676c15870173 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001376277100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Mon Nov 10 04:27:25 EST 2025 Mon Jun 30 13:35:31 EDT 2025 Tue Nov 04 18:27:09 EST 2025 Sat Nov 29 07:09:01 EST 2025 Tue Nov 18 22:35:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-4d668e6c7a8a9e03a5224a2cbf0bb9127682d7beae2c7835177b4676c15870173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6485-3155 0000-0002-4061-9532 0009-0006-1178-7752 |
| OpenAccessLink | https://doaj.org/article/c12289f199ed4826a442d168b4203b74 |
| PQID | 3143935966 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c12289f199ed4826a442d168b4203b74 proquest_journals_3143935966 gale_infotracacademiconefile_A819846259 crossref_primary_10_3390_app142311315 crossref_citationtrail_10_3390_app142311315 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_36 ref_35 ref_34 Chen (ref_9) 2022; 16 ref_11 Manna (ref_13) 2023; 139 ref_33 ref_10 Zhang (ref_29) 2021; 2021 Zhao (ref_14) 2022; 87 Xue (ref_16) 2024; 62 ref_17 ref_39 Abirami (ref_31) 2021; 283 ref_37 Zou (ref_30) 2021; 2021 Koppula (ref_32) 2016; 38 Gokul (ref_26) 2023; 76 Khan (ref_18) 2023; 11 Li (ref_8) 2021; 70 He (ref_21) 2020; 22 Liu (ref_27) 2022; 41 Ma (ref_15) 2022; 60 Donahue (ref_38) 2017; 39 ref_25 Hu (ref_28) 2022; 13 ref_23 ref_20 ref_41 Schuldt (ref_12) 2004; 3 ref_40 ref_1 ref_3 ref_2 Wang (ref_42) 2004; 13 Zheng (ref_22) 2023; 92 Wang (ref_24) 2023; 33 Chen (ref_19) 2023; 24 ref_5 ref_4 ref_7 ref_6 |
| References_xml | – volume: 139 start-page: 110253 year: 2023 ident: ref_13 article-title: Precipitation prediction by integrating rough set on fuzzy approximation space with deep learning techniques publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110253 – volume: 70 start-page: 3518811 year: 2021 ident: ref_8 article-title: Self-Attention ConvLSTM and Its Application in RUL Prediction of Rolling Bearings publication-title: IEEE Trans. Instrum. Meas. – ident: ref_5 – ident: ref_39 doi: 10.3390/en14196161 – ident: ref_17 doi: 10.1109/MTITS.2019.8883353 – volume: 13 start-page: 101543 year: 2022 ident: ref_28 article-title: Air quality prediction using spatio-temporal deep learning publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2022.101543 – volume: 41 start-page: 101055 year: 2022 ident: ref_27 article-title: Spatio-temporal prediction and factor identification of urban air quality using support vector machine publication-title: Urban Clim. doi: 10.1016/j.uclim.2021.101055 – ident: ref_11 – ident: ref_36 doi: 10.23919/ACC55779.2023.10155930 – volume: 39 start-page: 677 year: 2017 ident: ref_38 article-title: Long-Term Recurrent Convolutional Networks for Visual Recognition and Description publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2599174 – ident: ref_6 doi: 10.1007/s10845-023-02318-7 – ident: ref_40 – ident: ref_35 doi: 10.1109/ITSC.2018.8570003 – ident: ref_25 doi: 10.3390/e25020247 – volume: 3 start-page: 32 year: 2004 ident: ref_12 article-title: Recognizing human actions: A local SVM approach publication-title: ICPR – ident: ref_23 doi: 10.1109/ICCV51070.2023.00875 – ident: ref_41 doi: 10.1007/978-3-319-68560-1_13 – ident: ref_1 – volume: 60 start-page: 4109108 year: 2022 ident: ref_15 article-title: PrecipLSTM: A Meteorological Spatiotemporal LSTM for Precipitation Nowcasting publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3198222 – volume: 11 start-page: 94371 year: 2023 ident: ref_18 article-title: Short-term traffic prediction using deep learning long short-term memory: Taxonomy, applications, challenges, and future trends publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3309601 – ident: ref_20 doi: 10.1109/MDM61037.2024.00025 – volume: 16 start-page: 1623 year: 2022 ident: ref_9 article-title: Modelling multiple quantiles together with the mean based on SA-ConvLSTM for taxi pick-up prediction publication-title: IET Intell. Transp. Syst. doi: 10.1049/itr2.12238 – volume: 87 start-page: 318 year: 2022 ident: ref_14 article-title: Monthly precipitation prediction in Luoyang city based on EEMD-LSTM-ARIMA model publication-title: Water Sci. Technol. doi: 10.2166/wst.2022.425 – ident: ref_2 doi: 10.1109/CVPR46437.2021.01518 – volume: 283 start-page: 125341 year: 2021 ident: ref_31 article-title: Regional air quality forecasting using spatiotemporal deep learning publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.125341 – volume: 38 start-page: 14 year: 2016 ident: ref_32 article-title: Anticipating Human Activities Using Object Affordances for Reactive Robotic Response publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2430335 – ident: ref_4 – ident: ref_34 doi: 10.1109/IROS47612.2022.9981769 – ident: ref_37 doi: 10.1109/CVPR52688.2022.00317 – volume: 22 start-page: 7642 year: 2020 ident: ref_21 article-title: STNN: A Spatio-Temporal Neural Network for Traffic Predictions publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3006227 – ident: ref_10 doi: 10.3390/rs15184486 – ident: ref_33 doi: 10.1109/CAC.2018.8623233 – volume: 33 start-page: 1 year: 2023 ident: ref_24 article-title: Dynamic dense graph convolutional network for skeleton-based human motion prediction publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2023.3334954 – volume: 2021 start-page: 9627776 year: 2021 ident: ref_29 article-title: Air Quality Prediction Model Based on Spatiotemporal Data Analysis and Metalearning publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2021/9627776 – volume: 24 start-page: 10067 year: 2023 ident: ref_19 article-title: A flow feedback traffic prediction based on visual quantified features publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2023.3269794 – volume: 92 start-page: 93 year: 2023 ident: ref_22 article-title: Hybrid deep learning models for traffic prediction in large-scale road networks publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.11.019 – volume: 13 start-page: 600 year: 2004 ident: ref_42 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 2021 start-page: 6630944 year: 2021 ident: ref_30 article-title: Air Quality Prediction Based on a Spatiotemporal Attention Mechanism publication-title: Mob. Inf. Syst. – volume: 62 start-page: 2603 year: 2024 ident: ref_16 article-title: Remote effects of Tibetan Plateau spring land temperature on global subseasonal to seasonal precipitation prediction and comparison with effects of sea surface temperature: The GEWEX/LS4P Phase I experiment publication-title: Clim. Dyn. doi: 10.1007/s00382-023-06905-5 – ident: ref_3 doi: 10.1007/978-981-19-1610-6_17 – ident: ref_7 doi: 10.3390/su14127371 – volume: 76 start-page: 102067 year: 2023 ident: ref_26 article-title: Spatio-temporal air quality analysis and PM2. 5 prediction over Hyderabad City, India using artificial intelligence techniques publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2023.102067 |
| SSID | ssj0000913810 |
| Score | 2.3169591 |
| Snippet | Video prediction, which is the task of predicting future video frames based on past observations, remains a challenging problem because of the complexity and... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 11315 |
| SubjectTerms | Computational linguistics Datasets encoder–decoder Forecasts and trends Language processing Natural language interfaces Neural networks Performance evaluation SA-ConvLSTM self-attention memory module spatiotemporal video prediction |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB1BygEOQAuIQEF7ANEKrfCuN2v7hJI2FQcaRaSg3qz9MqpU7OKEnvkP_EN-CTP2JuRSLtxW9spaa2bfvNmPNwCvKqQI2qUV1wZzE8y_FLdIW7nMXG60KoyVtis2kc1m-fl5MY8Lbst4rHKNiR1Q-8bRGvm7FAM73SLV-v3Vd05Vo2h3NZbQuA07pFSmBrAzmc7mnzarLKR6mYukP_GeYn5P-8ICKYQQKVXC3YpFnWT_TcDcRZuTB_87zodwP_JMNu4dYxduhXoP7m2pD-7BbpzXS3YQxacPH8G3Rbis-Hi16o9BsoPF-JAfNfX1x8XZKZvWdAW-_f3z13HoWmzR6c_-aAOfYDz07MuFDw2bt7T_030ASTE77sves9OuZBCbIqz0NyYfw-eT6dnRBx5LMnCHkX_Fldc6D9plJjdFSFKD9E0Z6WyVWFsIicmL9JkNJkhHa0oiyyxCsXZihMAgsvQJDOqmDk-BOS2N9U4nfhRU7itsk_acRQwRblSIIbxdG6d0Ua-cymZclpi3kCnLbVMO4fWm91Wv03FDvwnZedOH1LW7B037tYyTtXRCYh5aiaIIXmH-ZZSSXujcKpmkNlNDeENeUhIG4JCciVcZ8MdITascI81CXoeZ5RD2115SRnBYln9d5Nm_Xz-HuxI5VH96Zh8GaNHwAu6469XFsn0Zff0PNMYHlg priority: 102 providerName: ProQuest |
| Title | Self-Attention (SA)-ConvLSTM Encoder–Decoder Structure-Based Video Prediction for Dynamic Motion Estimation |
| URI | https://www.proquest.com/docview/3143935966 https://doaj.org/article/c12289f199ed4826a442d168b4203b74 |
| Volume | 14 |
| WOSCitedRecordID | wos001376277100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5V0AM9oPKoupQiH6gKqqyuHa-THHdhEUjsKmJpRU-WX5GQIFvtbjn3P_Qf8ks6tgPKBfXSWxJZkeN5-Jt45huAwxohgrRZTaXG2ATjL0ENwlbKc1toKUptuInNJvLptLi5KatOq6-QE5bogdPCfbWMY0xQs7L0TiAW1kJwx2RhBO9nJo9MoIh6OsFU9MElC9RVKdM9w7g-nAczhA6MZaEDbmcPilT9LznkuMucvYXNFh6SYZrWFrzyzTa86ZAGbsNWa45LctRyRh_vwP3M39V0uFql7EVyNBse05N583A5u56QcRMq1xePv_-c-nhFZpE29tfC0xFuY458v3V-TqpFOLaJL0AsS05Tt3oyiZ1-yBi9QSp03IVvZ-Prk3PadlKgFjfsFRVOysJLm-tCl76faURdQnNr6r4xJeMYc3CXG689t-FXEMtzgx5UWjZAe2Z59g7Wmnnj3wOxkmvjrOy7gReFq_E6UMYZNH1mByXrwZentVW2pRkP3S7uFIYbQRKqK4kefHoe_TPRa7wwbhTE9DwmkGLHB6gqqlUV9S9V6cHnIGQVTBenZHVbgYAfFkiw1BDREcIxDAh7sP-kB6q16aXKEFqGOmYp9_7HbD7ABkeAlFJj9mEN5e4_wmv7sLpdLg5gfTSeVlcHUa3xrrqYVD_-AjzN-fQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFgk4AC0gAgX2QEUrZOFdb9b2AaGkSdWqSRSRUPW27K7XKFJrFycU9cZ_4H_wo_glzPoj5FJuPXCz4pUV289v3uzuvAF4naJEECZIPaEwN8H8i3saZavHQhMpwWOlmS6bTYSjUXR6Go_X4FdTC-O2VTacWBJ1khs3R_4uwMDuqkiF-HDx1XNdo9zqatNCo4LFsb36jinb_P1RD9_vDmMH_en-oVd3FfAMBq-FxxMhIitMqCIVWz9QqEC4YkanvtYxZai_WRJqqywzblqEhqFGNhGGthHbNAzwurdggwc8xO9qo9sfjT8uZ3Wcy2ZE_WqHfRDEvluHpihZKA1c592V2Fe2CLguEJTR7eDB__ZcHsL9WkeTTgX8TViz2RbcW3FX3ILNmrfmZLc21957BOcTe5Z6ncWi2uZJdiedPW8_zy4Hk-mQ9DNX4l_8_vGzZ8sjMin9db8V1utivE_IySyxORkXbn2rvACKftK7ytT5zJBh2RKJ9JE2q4rQx_DpRh7CE1jP8sw-BWIEUzoxwk_alkdJisfOW08jR1LTjmkL3jZgkKb2Y3dtQc4k5mUOOnIVOi3YWY6-qHxIrhnXdbhajnHu4eUPefFF1mQkDWWYZ6c0jm3CMb9UnLOEikhz5gc65C1441ApHcfhXzKqLtXAG3NuYbKDMhJ1K2bOLdhuUClr8pvLv5B89u_Tr-DO4XQ4kIOj0fFzuMtQL1Y7hbZhHd-ufQG3zeViNi9e1t8Zgc83DeE_cVtijw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VFqFyAFpABArsgYpWaFXverO2DwilTSKiNpGlFNSezO56XUVq7eKEot54B96Gx-FJmLWdkEu59cDNsleWf76d-WZ35huANxlSBGn8jEqFsQnGX4JqpK2UByZUUkRKc101mwhGo_DkJIpX4Ne8FsalVc5tYmWo08K4NfI9Hx27qyKVci9r0iLibv_D5VfqOki5ndZ5O40aIof2-juGb9P3gy7-623O-73jg4-06TBADTqyGRWplKGVJlChiqznK2QjQnGjM0_riHHk4jwNtFWWG7dEwoJAo2WRhrUR5yzw8b53YA0pucA5thYPhvHpYoXHKW6GzKuz7X0_8tyeNEP6wpjvuvAu-cGqXcBNTqHydP2H__M3egQPGn5NOvWE2IAVm2_C_SXVxU3YaOzZlOw0otu7j-FibM8z2pnN6vRPsjPu7NKDIr86Gh8PSS93pf_l7x8_u7Y6IuNKd_dbaek-8oCUfJ6ktiBx6fa9qhtgMEC617m6mBgyrFolkR6a07pS9Al8upWP8BRW8yK3z4AYyZVOjfTSthVhmuGx09zTaDuZaUesBe_mwEhMo9Pu2oWcJxivORglyzBqwfZi9GWtT3LDuH2HscUYpypenSjKs6QxUolhHOPvjEWRTQXGnUoInjIZasE9XweiBW8dQhNn-_CRjGpKOPDFnIpY0kF6iXwWI-oWbM0RmjRGcZr8hefzf19-DfcQt8nRYHT4AtY50sg6gWgLVvHn2pdw11zNJtPyVTPlCHy5bQT_Ac2Ta4E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Attention+%28SA%29-ConvLSTM+Encoder%E2%80%93Decoder+Structure-Based+Video+Prediction+for+Dynamic+Motion+Estimation&rft.jtitle=Applied+sciences&rft.au=Jeongdae+Kim&rft.au=Hyunseung+Choo&rft.au=Jongpil+Jeong&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=14&rft.issue=23&rft.spage=11315&rft_id=info:doi/10.3390%2Fapp142311315&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c12289f199ed4826a442d168b4203b74 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |