Self-Attention (SA)-ConvLSTM Encoder–Decoder Structure-Based Video Prediction for Dynamic Motion Estimation

Video prediction, which is the task of predicting future video frames based on past observations, remains a challenging problem because of the complexity and high dimensionality of spatiotemporal dynamics. To address the problems associated with spatiotemporal prediction, which is an important decis...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 14; číslo 23; s. 11315
Hlavní autori: Kim, Jeongdae, Choo, Hyunseung, Jeong, Jongpil
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.12.2024
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Video prediction, which is the task of predicting future video frames based on past observations, remains a challenging problem because of the complexity and high dimensionality of spatiotemporal dynamics. To address the problems associated with spatiotemporal prediction, which is an important decision-making tool in various fields, several deep learning models have been proposed. Convolutional long short-term memory (ConvLSTM) can capture space and time simultaneously and has shown excellent performance in various applications, such as image and video prediction, object detection, and semantic segmentation. However, ConvLSTM has limitations in capturing long-term temporal dependencies. To solve this problem, this study proposes an encoder–decoder structure using self-attention ConvLSTM (SA-ConvLSTM), which retains the advantages of ConvLSTM and effectively captures the long-range dependencies through the self-attention mechanism. The effectiveness of the encoder–decoder structure using SA-ConvLSTM was validated through experiments on the MovingMNIST, KTH dataset.
AbstractList Video prediction, which is the task of predicting future video frames based on past observations, remains a challenging problem because of the complexity and high dimensionality of spatiotemporal dynamics. To address the problems associated with spatiotemporal prediction, which is an important decision-making tool in various fields, several deep learning models have been proposed. Convolutional long short-term memory (ConvLSTM) can capture space and time simultaneously and has shown excellent performance in various applications, such as image and video prediction, object detection, and semantic segmentation. However, ConvLSTM has limitations in capturing long-term temporal dependencies. To solve this problem, this study proposes an encoder–decoder structure using self-attention ConvLSTM (SA-ConvLSTM), which retains the advantages of ConvLSTM and effectively captures the long-range dependencies through the self-attention mechanism. The effectiveness of the encoder–decoder structure using SA-ConvLSTM was validated through experiments on the MovingMNIST, KTH dataset.
Audience Academic
Author Choo, Hyunseung
Jeong, Jongpil
Kim, Jeongdae
Author_xml – sequence: 1
  givenname: Jeongdae
  orcidid: 0009-0006-1178-7752
  surname: Kim
  fullname: Kim, Jeongdae
– sequence: 2
  givenname: Hyunseung
  orcidid: 0000-0002-6485-3155
  surname: Choo
  fullname: Choo, Hyunseung
– sequence: 3
  givenname: Jongpil
  orcidid: 0000-0002-4061-9532
  surname: Jeong
  fullname: Jeong, Jongpil
BookMark eNptUV1rFDEUDdKCtfbNHzDgi4JT8zX5eFy3qxa2tLDV15BJ7pQsu8mayRb65n_wH_pLTGdFijT3IYfDuede7nmFjmKKgNAbgs8Z0_ij3e0Ip4wQRroX6IRiKVrGiTx6gl-is3Fc4_o0YYrgE7RdwWZoZ6VALCHF5t1q9r6dp3i_XN1eNYvokof8--evC5hQsyp578o-Q_vJjuCb78FDam4y-OAmgyHl5uIh2m1wzVWaqMVYwtY-wtfoeLCbEc7-_qfo2-fF7fxru7z-cjmfLVvHsSgt90IoEE5aZTVgZjtKuaWuH3Dfa0KlUNTLHixQJxXriJQ9F1I40imJiWSn6PLg65Ndm12u4_ODSTaYiUj5zthcgtuAcYRSpQeiNXiuqLCcU0-E6jnFrJe8er09eO1y-rGHsZh12udY1zeMcKZZp4WoqvOD6s5W0xCHVLJ1tTzUS9SkhlD5mSJacUE7XRs-HBpcTuOYYfi3JsHmMVDzNNAqp__JXSjTTeucsHm-6Q_EEqO6
CitedBy_id crossref_primary_10_4018_JOEUC_383053
crossref_primary_10_3390_app15126742
Cites_doi 10.1016/j.asoc.2023.110253
10.3390/en14196161
10.1109/MTITS.2019.8883353
10.1016/j.apr.2022.101543
10.1016/j.uclim.2021.101055
10.23919/ACC55779.2023.10155930
10.1109/TPAMI.2016.2599174
10.1007/s10845-023-02318-7
10.1109/ITSC.2018.8570003
10.3390/e25020247
10.1109/ICCV51070.2023.00875
10.1007/978-3-319-68560-1_13
10.1109/TGRS.2022.3198222
10.1109/ACCESS.2023.3309601
10.1109/MDM61037.2024.00025
10.1049/itr2.12238
10.2166/wst.2022.425
10.1109/CVPR46437.2021.01518
10.1016/j.jclepro.2020.125341
10.1109/TPAMI.2015.2430335
10.1109/IROS47612.2022.9981769
10.1109/CVPR52688.2022.00317
10.1109/TITS.2020.3006227
10.3390/rs15184486
10.1109/CAC.2018.8623233
10.1109/TIP.2023.3334954
10.1155/2021/9627776
10.1109/TITS.2023.3269794
10.1016/j.inffus.2022.11.019
10.1109/TIP.2003.819861
10.1007/s00382-023-06905-5
10.1007/978-981-19-1610-6_17
10.3390/su14127371
10.1016/j.ecoinf.2023.102067
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app142311315
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_c12289f199ed4826a442d168b4203b74
A819846259
10_3390_app142311315
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c406t-4d668e6c7a8a9e03a5224a2cbf0bb9127682d7beae2c7835177b4676c15870173
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001376277100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Mon Nov 10 04:27:25 EST 2025
Mon Jun 30 13:35:31 EDT 2025
Tue Nov 04 18:27:09 EST 2025
Sat Nov 29 07:09:01 EST 2025
Tue Nov 18 22:35:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-4d668e6c7a8a9e03a5224a2cbf0bb9127682d7beae2c7835177b4676c15870173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6485-3155
0000-0002-4061-9532
0009-0006-1178-7752
OpenAccessLink https://doaj.org/article/c12289f199ed4826a442d168b4203b74
PQID 3143935966
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_c12289f199ed4826a442d168b4203b74
proquest_journals_3143935966
gale_infotracacademiconefile_A819846259
crossref_primary_10_3390_app142311315
crossref_citationtrail_10_3390_app142311315
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_36
ref_35
ref_34
Chen (ref_9) 2022; 16
ref_11
Manna (ref_13) 2023; 139
ref_33
ref_10
Zhang (ref_29) 2021; 2021
Zhao (ref_14) 2022; 87
Xue (ref_16) 2024; 62
ref_17
ref_39
Abirami (ref_31) 2021; 283
ref_37
Zou (ref_30) 2021; 2021
Koppula (ref_32) 2016; 38
Gokul (ref_26) 2023; 76
Khan (ref_18) 2023; 11
Li (ref_8) 2021; 70
He (ref_21) 2020; 22
Liu (ref_27) 2022; 41
Ma (ref_15) 2022; 60
Donahue (ref_38) 2017; 39
ref_25
Hu (ref_28) 2022; 13
ref_23
ref_20
ref_41
Schuldt (ref_12) 2004; 3
ref_40
ref_1
ref_3
ref_2
Wang (ref_42) 2004; 13
Zheng (ref_22) 2023; 92
Wang (ref_24) 2023; 33
Chen (ref_19) 2023; 24
ref_5
ref_4
ref_7
ref_6
References_xml – volume: 139
  start-page: 110253
  year: 2023
  ident: ref_13
  article-title: Precipitation prediction by integrating rough set on fuzzy approximation space with deep learning techniques
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110253
– volume: 70
  start-page: 3518811
  year: 2021
  ident: ref_8
  article-title: Self-Attention ConvLSTM and Its Application in RUL Prediction of Rolling Bearings
  publication-title: IEEE Trans. Instrum. Meas.
– ident: ref_5
– ident: ref_39
  doi: 10.3390/en14196161
– ident: ref_17
  doi: 10.1109/MTITS.2019.8883353
– volume: 13
  start-page: 101543
  year: 2022
  ident: ref_28
  article-title: Air quality prediction using spatio-temporal deep learning
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2022.101543
– volume: 41
  start-page: 101055
  year: 2022
  ident: ref_27
  article-title: Spatio-temporal prediction and factor identification of urban air quality using support vector machine
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2021.101055
– ident: ref_11
– ident: ref_36
  doi: 10.23919/ACC55779.2023.10155930
– volume: 39
  start-page: 677
  year: 2017
  ident: ref_38
  article-title: Long-Term Recurrent Convolutional Networks for Visual Recognition and Description
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2599174
– ident: ref_6
  doi: 10.1007/s10845-023-02318-7
– ident: ref_40
– ident: ref_35
  doi: 10.1109/ITSC.2018.8570003
– ident: ref_25
  doi: 10.3390/e25020247
– volume: 3
  start-page: 32
  year: 2004
  ident: ref_12
  article-title: Recognizing human actions: A local SVM approach
  publication-title: ICPR
– ident: ref_23
  doi: 10.1109/ICCV51070.2023.00875
– ident: ref_41
  doi: 10.1007/978-3-319-68560-1_13
– ident: ref_1
– volume: 60
  start-page: 4109108
  year: 2022
  ident: ref_15
  article-title: PrecipLSTM: A Meteorological Spatiotemporal LSTM for Precipitation Nowcasting
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3198222
– volume: 11
  start-page: 94371
  year: 2023
  ident: ref_18
  article-title: Short-term traffic prediction using deep learning long short-term memory: Taxonomy, applications, challenges, and future trends
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3309601
– ident: ref_20
  doi: 10.1109/MDM61037.2024.00025
– volume: 16
  start-page: 1623
  year: 2022
  ident: ref_9
  article-title: Modelling multiple quantiles together with the mean based on SA-ConvLSTM for taxi pick-up prediction
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/itr2.12238
– volume: 87
  start-page: 318
  year: 2022
  ident: ref_14
  article-title: Monthly precipitation prediction in Luoyang city based on EEMD-LSTM-ARIMA model
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2022.425
– ident: ref_2
  doi: 10.1109/CVPR46437.2021.01518
– volume: 283
  start-page: 125341
  year: 2021
  ident: ref_31
  article-title: Regional air quality forecasting using spatiotemporal deep learning
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.125341
– volume: 38
  start-page: 14
  year: 2016
  ident: ref_32
  article-title: Anticipating Human Activities Using Object Affordances for Reactive Robotic Response
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2430335
– ident: ref_4
– ident: ref_34
  doi: 10.1109/IROS47612.2022.9981769
– ident: ref_37
  doi: 10.1109/CVPR52688.2022.00317
– volume: 22
  start-page: 7642
  year: 2020
  ident: ref_21
  article-title: STNN: A Spatio-Temporal Neural Network for Traffic Predictions
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3006227
– ident: ref_10
  doi: 10.3390/rs15184486
– ident: ref_33
  doi: 10.1109/CAC.2018.8623233
– volume: 33
  start-page: 1
  year: 2023
  ident: ref_24
  article-title: Dynamic dense graph convolutional network for skeleton-based human motion prediction
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2023.3334954
– volume: 2021
  start-page: 9627776
  year: 2021
  ident: ref_29
  article-title: Air Quality Prediction Model Based on Spatiotemporal Data Analysis and Metalearning
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2021/9627776
– volume: 24
  start-page: 10067
  year: 2023
  ident: ref_19
  article-title: A flow feedback traffic prediction based on visual quantified features
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3269794
– volume: 92
  start-page: 93
  year: 2023
  ident: ref_22
  article-title: Hybrid deep learning models for traffic prediction in large-scale road networks
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.11.019
– volume: 13
  start-page: 600
  year: 2004
  ident: ref_42
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 2021
  start-page: 6630944
  year: 2021
  ident: ref_30
  article-title: Air Quality Prediction Based on a Spatiotemporal Attention Mechanism
  publication-title: Mob. Inf. Syst.
– volume: 62
  start-page: 2603
  year: 2024
  ident: ref_16
  article-title: Remote effects of Tibetan Plateau spring land temperature on global subseasonal to seasonal precipitation prediction and comparison with effects of sea surface temperature: The GEWEX/LS4P Phase I experiment
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-023-06905-5
– ident: ref_3
  doi: 10.1007/978-981-19-1610-6_17
– ident: ref_7
  doi: 10.3390/su14127371
– volume: 76
  start-page: 102067
  year: 2023
  ident: ref_26
  article-title: Spatio-temporal air quality analysis and PM2. 5 prediction over Hyderabad City, India using artificial intelligence techniques
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2023.102067
SSID ssj0000913810
Score 2.3169591
Snippet Video prediction, which is the task of predicting future video frames based on past observations, remains a challenging problem because of the complexity and...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 11315
SubjectTerms Computational linguistics
Datasets
encoder–decoder
Forecasts and trends
Language processing
Natural language interfaces
Neural networks
Performance evaluation
SA-ConvLSTM
self-attention memory module
spatiotemporal
video prediction
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB1BygEOQAuIQEF7ANEKrfCuN2v7hJI2FQcaRaSg3qz9MqpU7OKEnvkP_EN-CTP2JuRSLtxW9spaa2bfvNmPNwCvKqQI2qUV1wZzE8y_FLdIW7nMXG60KoyVtis2kc1m-fl5MY8Lbst4rHKNiR1Q-8bRGvm7FAM73SLV-v3Vd05Vo2h3NZbQuA07pFSmBrAzmc7mnzarLKR6mYukP_GeYn5P-8ICKYQQKVXC3YpFnWT_TcDcRZuTB_87zodwP_JMNu4dYxduhXoP7m2pD-7BbpzXS3YQxacPH8G3Rbis-Hi16o9BsoPF-JAfNfX1x8XZKZvWdAW-_f3z13HoWmzR6c_-aAOfYDz07MuFDw2bt7T_030ASTE77sves9OuZBCbIqz0NyYfw-eT6dnRBx5LMnCHkX_Fldc6D9plJjdFSFKD9E0Z6WyVWFsIicmL9JkNJkhHa0oiyyxCsXZihMAgsvQJDOqmDk-BOS2N9U4nfhRU7itsk_acRQwRblSIIbxdG6d0Ua-cymZclpi3kCnLbVMO4fWm91Wv03FDvwnZedOH1LW7B037tYyTtXRCYh5aiaIIXmH-ZZSSXujcKpmkNlNDeENeUhIG4JCciVcZ8MdITascI81CXoeZ5RD2115SRnBYln9d5Nm_Xz-HuxI5VH96Zh8GaNHwAu6469XFsn0Zff0PNMYHlg
  priority: 102
  providerName: ProQuest
Title Self-Attention (SA)-ConvLSTM Encoder–Decoder Structure-Based Video Prediction for Dynamic Motion Estimation
URI https://www.proquest.com/docview/3143935966
https://doaj.org/article/c12289f199ed4826a442d168b4203b74
Volume 14
WOSCitedRecordID wos001376277100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5V0AM9oPKoupQiH6gKqqyuHa-THHdhEUjsKmJpRU-WX5GQIFvtbjn3P_Qf8ks6tgPKBfXSWxJZkeN5-Jt45huAwxohgrRZTaXG2ATjL0ENwlbKc1toKUptuInNJvLptLi5KatOq6-QE5bogdPCfbWMY0xQs7L0TiAW1kJwx2RhBO9nJo9MoIh6OsFU9MElC9RVKdM9w7g-nAczhA6MZaEDbmcPilT9LznkuMucvYXNFh6SYZrWFrzyzTa86ZAGbsNWa45LctRyRh_vwP3M39V0uFql7EVyNBse05N583A5u56QcRMq1xePv_-c-nhFZpE29tfC0xFuY458v3V-TqpFOLaJL0AsS05Tt3oyiZ1-yBi9QSp03IVvZ-Prk3PadlKgFjfsFRVOysJLm-tCl76faURdQnNr6r4xJeMYc3CXG689t-FXEMtzgx5UWjZAe2Z59g7Wmnnj3wOxkmvjrOy7gReFq_E6UMYZNH1mByXrwZentVW2pRkP3S7uFIYbQRKqK4kefHoe_TPRa7wwbhTE9DwmkGLHB6gqqlUV9S9V6cHnIGQVTBenZHVbgYAfFkiw1BDREcIxDAh7sP-kB6q16aXKEFqGOmYp9_7HbD7ABkeAlFJj9mEN5e4_wmv7sLpdLg5gfTSeVlcHUa3xrrqYVD_-AjzN-fQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFgk4AC0gAgX2QEUrZOFdb9b2AaGkSdWqSRSRUPW27K7XKFJrFycU9cZ_4H_wo_glzPoj5FJuPXCz4pUV289v3uzuvAF4naJEECZIPaEwN8H8i3saZavHQhMpwWOlmS6bTYSjUXR6Go_X4FdTC-O2VTacWBJ1khs3R_4uwMDuqkiF-HDx1XNdo9zqatNCo4LFsb36jinb_P1RD9_vDmMH_en-oVd3FfAMBq-FxxMhIitMqCIVWz9QqEC4YkanvtYxZai_WRJqqywzblqEhqFGNhGGthHbNAzwurdggwc8xO9qo9sfjT8uZ3Wcy2ZE_WqHfRDEvluHpihZKA1c592V2Fe2CLguEJTR7eDB__ZcHsL9WkeTTgX8TViz2RbcW3FX3ILNmrfmZLc21957BOcTe5Z6ncWi2uZJdiedPW8_zy4Hk-mQ9DNX4l_8_vGzZ8sjMin9db8V1utivE_IySyxORkXbn2rvACKftK7ytT5zJBh2RKJ9JE2q4rQx_DpRh7CE1jP8sw-BWIEUzoxwk_alkdJisfOW08jR1LTjmkL3jZgkKb2Y3dtQc4k5mUOOnIVOi3YWY6-qHxIrhnXdbhajnHu4eUPefFF1mQkDWWYZ6c0jm3CMb9UnLOEikhz5gc65C1441ApHcfhXzKqLtXAG3NuYbKDMhJ1K2bOLdhuUClr8pvLv5B89u_Tr-DO4XQ4kIOj0fFzuMtQL1Y7hbZhHd-ufQG3zeViNi9e1t8Zgc83DeE_cVtijw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VFqFyAFpABArsgYpWaFXverO2DwilTSKiNpGlFNSezO56XUVq7eKEot54B96Gx-FJmLWdkEu59cDNsleWf76d-WZ35huANxlSBGn8jEqFsQnGX4JqpK2UByZUUkRKc101mwhGo_DkJIpX4Ne8FsalVc5tYmWo08K4NfI9Hx27qyKVci9r0iLibv_D5VfqOki5ndZ5O40aIof2-juGb9P3gy7-623O-73jg4-06TBADTqyGRWplKGVJlChiqznK2QjQnGjM0_riHHk4jwNtFWWG7dEwoJAo2WRhrUR5yzw8b53YA0pucA5thYPhvHpYoXHKW6GzKuz7X0_8tyeNEP6wpjvuvAu-cGqXcBNTqHydP2H__M3egQPGn5NOvWE2IAVm2_C_SXVxU3YaOzZlOw0otu7j-FibM8z2pnN6vRPsjPu7NKDIr86Gh8PSS93pf_l7x8_u7Y6IuNKd_dbaek-8oCUfJ6ktiBx6fa9qhtgMEC617m6mBgyrFolkR6a07pS9Al8upWP8BRW8yK3z4AYyZVOjfTSthVhmuGx09zTaDuZaUesBe_mwEhMo9Pu2oWcJxivORglyzBqwfZi9GWtT3LDuH2HscUYpypenSjKs6QxUolhHOPvjEWRTQXGnUoInjIZasE9XweiBW8dQhNn-_CRjGpKOPDFnIpY0kF6iXwWI-oWbM0RmjRGcZr8hefzf19-DfcQt8nRYHT4AtY50sg6gWgLVvHn2pdw11zNJtPyVTPlCHy5bQT_Ac2Ta4E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Attention+%28SA%29-ConvLSTM+Encoder%E2%80%93Decoder+Structure-Based+Video+Prediction+for+Dynamic+Motion+Estimation&rft.jtitle=Applied+sciences&rft.au=Jeongdae+Kim&rft.au=Hyunseung+Choo&rft.au=Jongpil+Jeong&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=14&rft.issue=23&rft.spage=11315&rft_id=info:doi/10.3390%2Fapp142311315&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c12289f199ed4826a442d168b4203b74
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon