A Quantum-Behaved Particle Swarm Optimization Algorithm on Riemannian Manifolds
The Riemannian manifold optimization algorithms have been widely used in machine learning, computer vision, data mining, and other technical fields. Most of these algorithms are based on the geodesic or the retracement operator and use the classical methods (i.e., the steepest descent method, the co...
Saved in:
| Published in: | Mathematics (Basel) Vol. 10; no. 22; p. 4168 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.11.2022
|
| Subjects: | |
| ISSN: | 2227-7390, 2227-7390 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The Riemannian manifold optimization algorithms have been widely used in machine learning, computer vision, data mining, and other technical fields. Most of these algorithms are based on the geodesic or the retracement operator and use the classical methods (i.e., the steepest descent method, the conjugate gradient method, the Newton method, etc.) to solve engineering optimization problems. However, they lack the ability to solve non-differentiable mathematical models and ensure global convergence for non-convex manifolds. Considering this issue, this paper proposes a quantum-behaved particle swarm optimization (QPSO) algorithm on Riemannian manifolds named RQPSO. In this algorithm, the quantum-behaved particles are randomly distributed on the manifold surface and iteratively updated during the whole search process. Then, the vector transfer operator is used to translate the guiding vectors, which are not in the same Euclidean space, to the tangent space of the particles. Through the searching of these guiding vectors, we can achieve the retracement and update of points and finally obtain the optimized result. The proposed RQPSO algorithm does not depend on the expression form of a problem and could deal with various engineering technical problems, including both differentiable and non-differentiable ones. To verify the performance of RQPSO experimentally, we compare it with some traditional algorithms on three common matrix manifold optimization problems. The experimental results show that RQPSO has better performance than its competitors in terms of calculation speed and optimization efficiency. |
|---|---|
| AbstractList | The Riemannian manifold optimization algorithms have been widely used in machine learning, computer vision, data mining, and other technical fields. Most of these algorithms are based on the geodesic or the retracement operator and use the classical methods (i.e., the steepest descent method, the conjugate gradient method, the Newton method, etc.) to solve engineering optimization problems. However, they lack the ability to solve non-differentiable mathematical models and ensure global convergence for non-convex manifolds. Considering this issue, this paper proposes a quantum-behaved particle swarm optimization (QPSO) algorithm on Riemannian manifolds named RQPSO. In this algorithm, the quantum-behaved particles are randomly distributed on the manifold surface and iteratively updated during the whole search process. Then, the vector transfer operator is used to translate the guiding vectors, which are not in the same Euclidean space, to the tangent space of the particles. Through the searching of these guiding vectors, we can achieve the retracement and update of points and finally obtain the optimized result. The proposed RQPSO algorithm does not depend on the expression form of a problem and could deal with various engineering technical problems, including both differentiable and non-differentiable ones. To verify the performance of RQPSO experimentally, we compare it with some traditional algorithms on three common matrix manifold optimization problems. The experimental results show that RQPSO has better performance than its competitors in terms of calculation speed and optimization efficiency. |
| Audience | Academic |
| Author | Sun, Jun Halimu, Yeerjiang Zhou, Chao You, Qi |
| Author_xml | – sequence: 1 givenname: Yeerjiang surname: Halimu fullname: Halimu, Yeerjiang – sequence: 2 givenname: Chao surname: Zhou fullname: Zhou, Chao – sequence: 3 givenname: Qi surname: You fullname: You, Qi – sequence: 4 givenname: Jun surname: Sun fullname: Sun, Jun |
| BookMark | eNptUV1vFCEUJaYm1to3f8AkvjoVmDsDPK6N2iY16-czucPHLpsZWBlWo7--tFuTxggPXC7nnHDueU5OYoqOkJeMXnSdom9mLFtGOQc2yCfklHMuWlEfTh7Vz8j5suxoXYp1EtQpWa-azweM5TC3b90WfzrbfMJcgplc8_UX5rlZ70uYwx8sIcVmNW1SDmU7N_XyJbgZYwwYm48Yg0-TXV6Qpx6nxZ0_nGfk-_t33y6v2pv1h-vL1U1rgA6lhZErYwfm-l5ZYCOMSkjXW9Y7jkMnPB-tUXxA8OCEM4op6qGT1EnhLWJ3Rq6PujbhTu9zmDH_1gmDvm-kvNEPNrTyKAaw_SjvLEsuAXo_UvSGjsZaU7VeHbX2Of04uKXoXTrkWL-veZ0aAFWyr6iLI2qDVTREn0pGU7d1czA1Cx9qfyUARA8gaSXwI8HktCzZeW1CuR9jJYZJM6rvgtOPg6uk1_-Q_nr7L_wW2pmbiw |
| CitedBy_id | crossref_primary_10_3390_math12101527 crossref_primary_10_1016_j_inffus_2024_102596 crossref_primary_10_3390_sym15061265 crossref_primary_10_1007_s11071_023_09246_4 crossref_primary_10_3390_math11092217 |
| Cites_doi | 10.1515/9781400830244 10.1109/CVPR.2015.7299083 10.1162/EVCO_a_00049 10.1016/j.asoc.2020.106773 10.1080/00207160601170254 10.1016/j.enconman.2009.07.015 10.1007/978-3-642-15461-4_2 10.1016/j.swevo.2018.08.005 10.1109/TAP.2006.882165 10.1016/j.jmatprotec.2008.03.021 10.1007/BF00934767 10.1109/TEVC.2009.2029567 10.1007/s11071-005-2792-1 10.1007/978-3-319-10762-2_87 10.1137/1038003 10.1109/TGRS.2013.2284280 10.1109/TEVC.2010.2059031 10.1109/TEVC.2004.826069 10.1137/15M1017181 10.1109/TIP.2011.2177845 10.1109/ACCESS.2019.2932412 10.1007/s11263-015-0833-x 10.1016/j.eswa.2009.03.006 10.1109/4235.985692 10.1109/CEC.2016.7744280 10.1109/TPAMI.2005.92 10.1007/978-3-540-71441-5 10.1007/11744047_45 10.1137/140967994 10.1137/130934271 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
| DOI | 10.3390/math10224168 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Physics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_9fa764d5b83849828445fb0afc0bcddc A744754480 10_3390_math10224168 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c406t-4b29cd61e559d41b4b978e5d15e2a637f2bdc926a4f4e7ec9190f4380e87fdaa3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000887393000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-7390 |
| IngestDate | Fri Oct 03 12:50:28 EDT 2025 Fri Jul 25 11:57:50 EDT 2025 Tue Nov 04 18:24:10 EST 2025 Sat Nov 29 07:14:03 EST 2025 Tue Nov 18 22:37:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-4b29cd61e559d41b4b978e5d15e2a637f2bdc926a4f4e7ec9190f4380e87fdaa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/9fa764d5b83849828445fb0afc0bcddc |
| PQID | 2739440985 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9fa764d5b83849828445fb0afc0bcddc proquest_journals_2739440985 gale_infotracacademiconefile_A744754480 crossref_citationtrail_10_3390_math10224168 crossref_primary_10_3390_math10224168 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Clerc (ref_24) 2002; 6 Kressner (ref_3) 2016; 37 Harandi (ref_13) 2015; 114 ref_14 Sun (ref_30) 2009; 50 ref_33 Broomhead (ref_35) 2005; 41 ref_10 ref_32 Boumal (ref_43) 2014; 15 ref_19 ref_18 ref_39 Zhao (ref_17) 2015; 36 Zhang (ref_11) 2014; 52 ref_15 Sarkis (ref_5) 2012; 21 Engelbrecht (ref_45) 2004; 8 Colutto (ref_20) 2010; 14 He (ref_36) 2020; 97 Sun (ref_25) 2007; 84 Vandenberghe (ref_34) 1996; 38 Lee (ref_8) 2005; 27 ref_23 ref_22 Gabay (ref_16) 1982; 37 ref_21 Smith (ref_12) 2014; 158 Omkara (ref_26) 2009; 36 ref_42 Brest (ref_46) 2019; 50 ref_40 ref_1 ref_2 ref_29 ref_27 Liu (ref_7) 2019; 7 Mikki (ref_28) 2006; 54 Rosa (ref_41) 2009; 209 ref_9 Das (ref_44) 2011; 15 Jun (ref_38) 2012; 20 ref_4 Wang (ref_6) 2014; 37 Sun (ref_37) 2004; 1 Boumal (ref_31) 2016; 29 |
| References_xml | – ident: ref_10 doi: 10.1515/9781400830244 – ident: ref_15 doi: 10.1109/CVPR.2015.7299083 – volume: 20 start-page: 349 year: 2012 ident: ref_38 article-title: Quantum-Behaved Particle Swarm Optimization: Analysis of Individual Particle Behavior and Parameter Selection publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00049 – volume: 97 start-page: 106773 year: 2020 ident: ref_36 article-title: An evolutionary approach to black-box optimization on matrix manifolds publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106773 – volume: 84 start-page: 261 year: 2007 ident: ref_25 article-title: Using quantum-behaved particle swarm optimization algorithm to solve non-linear programming problems publication-title: Int. J. Comput. Math. doi: 10.1080/00207160601170254 – volume: 50 start-page: 2967 year: 2009 ident: ref_30 article-title: Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2009.07.015 – ident: ref_32 – ident: ref_19 doi: 10.1007/978-3-642-15461-4_2 – volume: 50 start-page: 100428 year: 2019 ident: ref_46 article-title: A review of the recent use of Differential Evolution for Large-Scale Global Optimization: An analysis of selected algorithms on the CEC 2013 LSGO benchmark suite publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.08.005 – volume: 54 start-page: 2764 year: 2006 ident: ref_28 article-title: Quantum particle swarm optimization for electromagnetics publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2006.882165 – volume: 209 start-page: 1181 year: 2009 ident: ref_41 article-title: Electrodeposition of copper on titanium wires: Taguchi experimental design approach publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2008.03.021 – ident: ref_39 – ident: ref_40 – volume: 37 start-page: 177 year: 1982 ident: ref_16 article-title: Minimizing a differentiable function over a differential manifold publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00934767 – volume: 14 start-page: 227 year: 2010 ident: ref_20 article-title: The CMA-ES on Riemannian Manifolds to Reconstruct Shapes in 3-D Voxel Images publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2029567 – volume: 41 start-page: 47 year: 2005 ident: ref_35 article-title: Dimensionality Reduction Using Secant-Based Projection Methods: The Induced Dynamics in Projected Systems publication-title: Nonlinear Dyn. doi: 10.1007/s11071-005-2792-1 – ident: ref_14 – ident: ref_21 doi: 10.1007/978-3-319-10762-2_87 – ident: ref_42 – ident: ref_1 – ident: ref_18 – ident: ref_23 – volume: 38 start-page: 49 year: 1996 ident: ref_34 article-title: Semidefinite programming publication-title: SIAM Rev. doi: 10.1137/1038003 – volume: 52 start-page: 4729 year: 2014 ident: ref_11 article-title: Hyperspectral image restoration using low-rank matrix recovery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2284280 – volume: 15 start-page: 4 year: 2011 ident: ref_44 article-title: Differential Evolution: A Survey of the State-of-the-Art publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2059031 – volume: 8 start-page: 225 year: 2004 ident: ref_45 article-title: A Cooperative Approach to Particle Swarm Optimization publication-title: Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826069 – ident: ref_4 – volume: 37 start-page: 695 year: 2016 ident: ref_3 article-title: Subspace acceleration for large-scale parameter-dependent Hermitian eigenproblems publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/15M1017181 – volume: 21 start-page: 1729 year: 2012 ident: ref_5 article-title: Camera-pose estimation via projective Newton optimization on the manifold publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2177845 – ident: ref_29 – ident: ref_33 – volume: 7 start-page: 105531 year: 2019 ident: ref_7 article-title: Visualization of the Image Geometric Transformation Group Based on Riemannian Manifold publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2932412 – ident: ref_2 – volume: 158 start-page: 328 year: 2014 ident: ref_12 article-title: Optimization Techniques on Riemannian Manifolds publication-title: Mathematics – volume: 114 start-page: 113 year: 2015 ident: ref_13 article-title: Extrinsic methods for coding and dictionary learning on Grassmann manifolds publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0833-x – volume: 36 start-page: 11312 year: 2009 ident: ref_26 article-title: Quantum behaved particle swarm optimization (QPSO) for multi-objective design optimization of composite structures publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.03.006 – volume: 6 start-page: 58 year: 2002 ident: ref_24 article-title: The particle swarm-explosion, stability and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – ident: ref_22 doi: 10.1109/CEC.2016.7744280 – volume: 27 start-page: 684 year: 2005 ident: ref_8 article-title: Acquiring Linear Subspaces for Face Recognition under Variable Lighting publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.92 – ident: ref_27 doi: 10.1007/978-3-540-71441-5 – ident: ref_9 doi: 10.1007/11744047_45 – volume: 1 start-page: 111 year: 2004 ident: ref_37 article-title: A global search strategy of quantum-behaved particle swarm optimization publication-title: IEEE Conf. Cybern. Intell. Syst. – volume: 36 start-page: 752 year: 2015 ident: ref_17 article-title: A Riemannian Newton Algorithm for Nonlinear Eigenvalue Problems publication-title: Siam J. Matrix Anal. Appl. doi: 10.1137/140967994 – volume: 29 start-page: 2765 year: 2016 ident: ref_31 article-title: The non-convex Burer-Monteiro approach works on smooth semidefinite programs publication-title: Adv. Neural Inf. Process. Syst. – volume: 37 start-page: 488 year: 2014 ident: ref_6 article-title: Orthogonal rank-one matrix pursuit for low rank matrix completion publication-title: SIAM J. Sci. Comput. doi: 10.1137/130934271 – volume: 15 start-page: 1455 year: 2014 ident: ref_43 article-title: Manopt, a matlab toolbox for optimization on manifolds publication-title: J. Mach. Learn. Res. |
| SSID | ssj0000913849 |
| Score | 2.2346191 |
| Snippet | The Riemannian manifold optimization algorithms have been widely used in machine learning, computer vision, data mining, and other technical fields. Most of... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 4168 |
| SubjectTerms | Adaptation Algorithms Approximation Computer vision Conjugate gradient method Data mining Euclidean geometry Euclidean space Lie groups Machine learning Manifolds (Mathematics) Mathematical analysis Mathematical functions Mathematical optimization matrix manifold optimization Methods Newton methods Operators (mathematics) Optimization algorithms Particle swarm optimization Physics Quantum theory quantum-behaved particle swarm optimization retracement operator Riemann manifold Riemannian manifold Search process Semidefinite programming Steepest descent method Swarm intelligence Vectors (mathematics) |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELag5UAPUApVAwX5QMUBWV1vvLF9QgFRcemDFqTeLD_bSMmmzSbl7zPjOGkv5cJxd61d2994Hl7PN4R8VK7ywrqa8dgEJsChZk6FiiWVtEfCdq6XxSbkyYm6vNRnZcOtK8cqVzoxK-ow9bhHfghmVgsIRlTz5eaWYdUo_LtaSmg8JZvIksDz0b2L9R4Lcl4qoZfn3fsQ3R-CF3idSdQ4cqs-sESZsP8xtZxtzdHL_-3lNnlRvEw6XIrFK_Iktjtk63hN0dq9JqdD-nMB07qYsMyRGAM9K2JEL_7Y2YSegjaZlDRNOhxfwXfm1xMKF-cjeE3bgmTRY9uO0nQcujfk99H3X99-sFJdgXkw4nMmXK19GABGjQ6CO-EgoATAeBNrO-jLVLvgdT2wIokoo9fgOiTkp49KpmBtf5dstNM27hEaYgJHQ_a5RwJBZZUMlYzceYh3YuCuRz6vZtr4Qj2OFTDGBkIQxMU8xKVHDtatb5aUG4-0-4qgrdsgUXa-MZ1dmTJhRicrByI0TqEkQHgpRJNcZZOvnA_B98gnhNzgcoYueVuyEmBgSIxlhhIZEWFQVY_sryA3ZZ135h7vt_9-_I48rzFxImcx7pON-WwR35Nn_m4-6mYfstj-BQKz91w priority: 102 providerName: ProQuest |
| Title | A Quantum-Behaved Particle Swarm Optimization Algorithm on Riemannian Manifolds |
| URI | https://www.proquest.com/docview/2739440985 https://doaj.org/article/9fa764d5b83849828445fb0afc0bcddc |
| Volume | 10 |
| WOSCitedRecordID | wos000887393000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: K7- dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELaq0gMcEBQQgRL50IpDZXW9643tY4pSgVDS7QOpnCw_aaRkg_KAG7-dmd1tlEvFhYul3R2tPN_YMx7J8w0hx8plXliXMx7LwAQcqJlTIWNJJe2RsJ3rttmEnEzU3Z2udlp94Z2wlh64Be5MJysHIpROFUpoyA-EKJPLbPKZ8yF49L6Z1DvJVOODNUfx9qZ7AXn9GZz_7hv6NI6sqjsxqKHqf8whN1Hm4gV53h0P6bCd1kuyF-tD8my85VZdvSKXQ3q1ATw2c9aQG8ZAq04NevPbLuf0EtzAvKuvpMPZj8Vyur6fU3i4nsJv6hqWBB3bepoWs7B6Tb5djG4_fWZdWwTmIfqumXC59mEA4JY6CO6Eg0wQkOZlzO2gkCl3wet8YEUSUUavIeYnJJaPSqZgbfGG7NeLOr4lNMQEJwRZcI_Mf8oqGTIZufOQqMTAXY-cPgBlfMcZjq0rZgZyB4TV7MLaIydb6Z8tV8YjcueI-VYGGa6bF2B30wFm_mX3HvmIFjO4D2FK3nblBKAYMlqZoUQqQ1Aq65GjB6OaboOuDCitBeS2qnz3P2bznjzNsS6iKVI8Ivvr5SZ-IAf-13q6WvbJk_PRpLruN2sUxq-S9fGS6Q2Of0bwvfoyrr7_Bdg58F8 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFLZKQYIe2FEDBXyg4oCszuKJ7QNCYalapUkLFKk347WNlExKJqHiT_EbeW8yE3optx44jscaefne5vH7HiGvpE0cNzZjaSg84-BQMyt9wqKMyiFhe6qWxSbEcChPTtTRGvnd5sLgtcpWJ9aK2k8dnpHvgJlVHIIRWbw7_8GwahT-XW1LaCxh0Q-_LiBkq97uf4T93c6y3U_HH_ZYU1WAOTBec8ZtppzvwtgK5XlquYVACgaaFiEz3VzEzHqnsq7hkQcRnAKTGZGXPUgRvTE5fPcGuQktAuWqL9jqTAc5NiVXy_v1ea6SHfA6z2rSthS5XC9ZvrpAwFVmoLZtu_f-t1W5T-42XjTtLWH_gKyF8iHZGKwoaKtH5LBHPy8ANosJqzkgg6dHjZjQrxdmNqGHoC0nTRoq7Y1PYV7zswmFhy8j-ExZguTQgSlHcTr21WPy7Vpm9ISsl9MybBLqQwRHSuSpQ4JEaaTwiQipdRDPBZ_aDnnT7qx2DbU6VvgYawixEAf6Mg46ZHvV-3xJKXJFv_cIklUfJAKvG6azU90smFbRiC73hZWIPAifOS-iTUx0iXXeuw55jRDTqK5gSM40WRcwMST-0j2BjI8wqaRDtlqI6UaPVfovvp7--_VLcnvveHCgD_aH_WfkToZJInXG5hZZn88W4Tm55X7OR9XsRS0ylHy_bjT-Ab4ZVRk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFKFy4I0aKOADFQe0yj68WfuAUKBERCXp8pLKyfjZRko2JZtQ8df4dYz3EXoptx447q5leexvZjxezzcAz5kKNZUqDiKbmoDihjpQzISBY45rT9ge8brYRDaZsONjnm_B7zYXxl-rbG1iZajNQvsz8h66WU4xGGFpzzXXIvKD4euzH4GvIOX_tLblNGqIHNpf5xi-la9GB7jW-3E8fPfl7fugqTAQaHRkq4CqmGvTx3Gm3NBIUYVBFQ46Sm0s-0nmYmU0j_uSOmozqzm6T-c52i3LnJEywX6vwTaKROMObOejcf5tc8LjGTcZ5fVt-yThYQ_3oKcVhVvkmV0v-MGqXMBlTqHydMPb__Mc3YFbzf6aDGqFuAtbtrgHN8cbctryPhwNyMc1Amo9Dyp2SGtI3igQ-Xwul3NyhHZ03iSoksHsBOVanc4JPnyaYjdFgTpFxrKYusXMlA_g65VI9BA6xaKwu0CMdbjFypJIe-pEJllmwsxGSmOkZ02kuvCyXWWhG9J1X_tjJjD48pgQFzHRhf1N67OabOSSdm88YDZtPEV49WKxPBHNhAnuZNanJlXMoxADa0pTp0LpdKi0MboLLzzchDdkOCQtm3wMFMxTgolB5rkgUaiwC3st3ERj4UrxF2uP_v35GdxAEIoPo8nhY9iJffZIlcq5B53Vcm2fwHX9czUtl08b_SHw_arh-Ad5qV-a |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Quantum-Behaved+Particle+Swarm+Optimization+Algorithm+on+Riemannian+Manifolds&rft.jtitle=Mathematics+%28Basel%29&rft.au=Halimu%2C+Yeerjiang&rft.au=Zhou%2C+Chao&rft.au=You%2C+Qi&rft.au=Sun%2C+Jun&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=10&rft.issue=22&rft_id=info:doi/10.3390%2Fmath10224168&rft.externalDocID=A744754480 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |