Deep Learning Network Based on Improved Sparrow Search Algorithm Optimization for Rolling Bearing Fault Diagnosis

In recent years, deep learning has been increasingly used in fault diagnosis of rotating machinery. However, the actual acquisition of rolling bearing fault signals often contains ambient noise, making it difficult to determine the optimal values of the parameters. In this paper, a sparrow search al...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) Vol. 11; no. 22; p. 4634
Main Authors: Ma, Guoyuan, Yue, Xiaofeng, Zhu, Juan, Liu, Zeyuan, Lu, Shibo
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.11.2023
Subjects:
ISSN:2227-7390, 2227-7390
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In recent years, deep learning has been increasingly used in fault diagnosis of rotating machinery. However, the actual acquisition of rolling bearing fault signals often contains ambient noise, making it difficult to determine the optimal values of the parameters. In this paper, a sparrow search algorithm (LSSA) based on backward learning of lens imaging and Gaussian Cauchy variation is proposed. The lens imaging reverse learning strategy enhances the traversal capability of the algorithm and allows for a better balance of algorithm exploration and development. Then, the performance of the proposed LSSA was tested on the benchmark function. Finally, LSSA is used to find the optimal modal component K and the optimal penalty factor α in VMD-GRU, which in turn realizes the fault diagnosis of rolling bearings. The experimental results show that the model can achieve a 96.61% accuracy in rolling bearing fault diagnosis, which proves the effectiveness of the method.
AbstractList In recent years, deep learning has been increasingly used in fault diagnosis of rotating machinery. However, the actual acquisition of rolling bearing fault signals often contains ambient noise, making it difficult to determine the optimal values of the parameters. In this paper, a sparrow search algorithm (LSSA) based on backward learning of lens imaging and Gaussian Cauchy variation is proposed. The lens imaging reverse learning strategy enhances the traversal capability of the algorithm and allows for a better balance of algorithm exploration and development. Then, the performance of the proposed LSSA was tested on the benchmark function. Finally, LSSA is used to find the optimal modal component K and the optimal penalty factor α in VMD-GRU, which in turn realizes the fault diagnosis of rolling bearings. The experimental results show that the model can achieve a 96.61% accuracy in rolling bearing fault diagnosis, which proves the effectiveness of the method.
Audience Academic
Author Yue, Xiaofeng
Liu, Zeyuan
Ma, Guoyuan
Zhu, Juan
Lu, Shibo
Author_xml – sequence: 1
  givenname: Guoyuan
  surname: Ma
  fullname: Ma, Guoyuan
– sequence: 2
  givenname: Xiaofeng
  surname: Yue
  fullname: Yue, Xiaofeng
– sequence: 3
  givenname: Juan
  surname: Zhu
  fullname: Zhu, Juan
– sequence: 4
  givenname: Zeyuan
  surname: Liu
  fullname: Liu, Zeyuan
– sequence: 5
  givenname: Shibo
  surname: Lu
  fullname: Lu, Shibo
BookMark eNptkdtu1DAQhi3USpTSOx7AErds8SlxfLk9wUorKvVwHU2ccdZLEqeOlwqeHm8XoQphX8xo_P2_RzPvyNEYRiTkA2fnUhr2eYC04VwIVUr1hpwIIfRC54ejV_lbcjbPW5aP4bJS5oQ8XSFOdI0QRz929Bum5xC_0wuYsaVhpKthiuFHzu8niDE80_uM2g1d9l2IPm0GejslP_hfkHzGXYj0LvT93usik_t4A7s-0SsP3RhmP78nxw76Gc_-xFPyeHP9cPl1sb79srpcrhdWsTItFBg0rG2ZQ8mlbBCtQiNLXVRMNpoZw63WIJ0xRYO8ESg18qqxzlTGKSZPyerg2wbY1lP0A8SfdQBfvxRC7GqIydse68Zlo1ZpbnSlOIIpeGnAtqWomtIUkL0-HrzyMJ52OKd6G3ZxzO3XojKSK2bKKlPnB6qDbOpHF1IEm2-Lg7d5W87n-lJrJYXkZZEFnw4CG8M8R3R_2-Ss3i-1fr3UjIt_cOvTy9zzP77_v-g3b16nEA
CitedBy_id crossref_primary_10_3390_lubricants12010010
crossref_primary_10_3390_s24123897
crossref_primary_10_1016_j_renene_2025_122427
crossref_primary_10_1016_j_ress_2025_110998
crossref_primary_10_3390_en18092326
crossref_primary_10_1002_rnc_7883
crossref_primary_10_1038_s41598_025_08339_x
crossref_primary_10_1109_ACCESS_2024_3497716
crossref_primary_10_1109_JSEN_2025_3551771
crossref_primary_10_1371_journal_pone_0318203
crossref_primary_10_3390_math12121910
crossref_primary_10_1109_TIM_2025_3542867
Cites_doi 10.1109/ACCESS.2020.3016565
10.3390/app9112356
10.3390/e21030290
10.1109/TSP.2019.2951223
10.1016/j.knosys.2021.106924
10.1016/j.advengsoft.2016.01.008
10.1016/j.advengsoft.2013.12.007
10.1007/s11042-022-13757-4
10.3390/math10111838
10.1109/TSP.2013.2288675
10.3390/s20071946
10.1098/rspa.1998.0193
10.1016/j.ijhydene.2020.12.107
10.1109/4235.771163
10.1016/j.ymssp.2015.04.021
10.3390/app12168187
10.1007/s00521-020-05345-0
10.3390/rs14194960
10.1007/s00521-015-1894-z
10.1108/ECAM-12-2022-1176
10.1016/j.renene.2012.05.018
10.1007/s13042-022-01740-2
10.1155/2021/3946958
10.1007/s12206-022-0101-2
10.3390/buildings12030269
10.1109/ACCESS.2020.2992935
10.3233/JIFS-210374
10.1007/s10586-023-04036-4
10.1016/j.micpro.2021.103872
10.1109/ACCESS.2023.3264636
10.1007/s12555-021-0100-6
10.1007/s11831-022-09804-w
10.1007/s00521-022-07227-z
10.1109/JSEN.2022.3173446
10.1016/j.measurement.2020.108405
10.36001/phme.2016.v3i1.1577
10.1080/21642583.2019.1708830
10.1016/j.isatra.2018.10.008
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math11224634
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_bf7a3d47197841ea95169acd628b695a
A774323165
10_3390_math11224634
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-4a9e90dd0fe3133beec4e93675803b70991c77a3f995be1b2e37e18bcf989f403
IEDL.DBID M7S
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001119688000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Mon Nov 10 04:31:44 EST 2025
Fri Jul 25 11:59:35 EDT 2025
Tue Nov 04 18:32:15 EST 2025
Sat Nov 29 07:15:49 EST 2025
Tue Nov 18 22:18:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-4a9e90dd0fe3133beec4e93675803b70991c77a3f995be1b2e37e18bcf989f403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2893140968?pq-origsite=%requestingapplication%
PQID 2893140968
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_bf7a3d47197841ea95169acd628b695a
proquest_journals_2893140968
gale_infotracacademiconefile_A774323165
crossref_primary_10_3390_math11224634
crossref_citationtrail_10_3390_math11224634
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhu (ref_32) 2021; 46
Zhang (ref_31) 2021; 220
Liu (ref_14) 2016; 27
Chen (ref_5) 2022; 34
Ma (ref_25) 2023; 82
Huang (ref_13) 1998; 454
ref_36
Aftab (ref_20) 2019; 67
An (ref_8) 2022; 22
ref_12
Mirjalili (ref_34) 2014; 69
ref_11
ref_33
Gharehchopogh (ref_30) 2023; 30
Hao (ref_40) 2023; 10
Ouyang (ref_29) 2021; 2021
ref_18
ref_39
ref_16
Xue (ref_24) 2020; 8
Zhao (ref_41) 2020; 8
Tan (ref_23) 2022; 20
Miao (ref_21) 2019; 84
Yao (ref_37) 1999; 3
Smith (ref_38) 2015; 64
Tang (ref_26) 2023; 14
Dragomiretskiy (ref_19) 2013; 62
Yu (ref_2) 2022; 36
ref_22
Yue (ref_27) 2021; 41
Yu (ref_4) 2021; 33
ref_42
Hashmi (ref_7) 2022; 34
Wang (ref_10) 2023; 11
Mirjalili (ref_35) 2016; 95
Huo (ref_3) 2020; 8
Zhong (ref_9) 2023; 44
Liu (ref_15) 2012; 48
Cheng (ref_17) 2021; 168
ref_28
Li (ref_1) 2021; 82
ref_6
References_xml – volume: 8
  start-page: 151788
  year: 2020
  ident: ref_41
  article-title: A path planning method based on multi-objective cauchy mutation cat swarm optimization algorithm for navigation system of intelligent patrol car
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3016565
– ident: ref_11
  doi: 10.3390/app9112356
– ident: ref_12
  doi: 10.3390/e21030290
– volume: 44
  start-page: 1
  year: 2023
  ident: ref_9
  article-title: Bi-LSTM fault diagnosis method for rolling bearings based on segmented interception AR spectrum analysis and information fusion
  publication-title: J. Intell. Fuzzy Syst.
– volume: 67
  start-page: 6039
  year: 2019
  ident: ref_20
  article-title: Multivariate variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2951223
– volume: 220
  start-page: 106924
  year: 2021
  ident: ref_31
  article-title: A stochastic configuration network based on chaotic sparrow search algorithm
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.106924
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_35
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_34
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 82
  start-page: 14403
  year: 2023
  ident: ref_25
  article-title: Application of an improved sparrow search algorithm in BP network classification of strip steel surface defect images
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-13757-4
– ident: ref_6
  doi: 10.3390/math10111838
– volume: 62
  start-page: 531
  year: 2013
  ident: ref_19
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– ident: ref_22
  doi: 10.3390/s20071946
– volume: 454
  start-page: 903
  year: 1998
  ident: ref_13
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 46
  start-page: 9541
  year: 2021
  ident: ref_32
  article-title: Optimal parameter identification of PEMFC stacks using adaptive sparrow search algorithm
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.12.107
– volume: 3
  start-page: 82
  year: 1999
  ident: ref_37
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771163
– volume: 64
  start-page: 100
  year: 2015
  ident: ref_38
  article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.04.021
– ident: ref_16
  doi: 10.3390/app12168187
– volume: 33
  start-page: 5393
  year: 2021
  ident: ref_4
  article-title: Multi-label fault diagnosis of rolling bearing based on meta-learning
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05345-0
– ident: ref_18
  doi: 10.3390/rs14194960
– volume: 27
  start-page: 761
  year: 2016
  ident: ref_14
  article-title: A novel integral extension LMD method based on integral local waveform matching
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1894-z
– ident: ref_42
  doi: 10.1108/ECAM-12-2022-1176
– volume: 48
  start-page: 411
  year: 2012
  ident: ref_15
  article-title: A new wind turbine fault diagnosis method based on the local mean decomposition
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.05.018
– volume: 14
  start-page: 1967
  year: 2023
  ident: ref_26
  article-title: Software defect prediction ensemble learning algorithm based on adaptive variable sparrow search algorithm
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-022-01740-2
– volume: 2021
  start-page: 3946958
  year: 2021
  ident: ref_29
  article-title: A learning sparrow search algorithm
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/3946958
– volume: 36
  start-page: 517
  year: 2022
  ident: ref_2
  article-title: Classification of rotary machine fault considering signal differences
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-022-0101-2
– ident: ref_28
  doi: 10.3390/buildings12030269
– volume: 8
  start-page: 87529
  year: 2020
  ident: ref_3
  article-title: Adaptive multiscale weighted permutation entropy for rolling bearing fault diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992935
– volume: 41
  start-page: 1509
  year: 2021
  ident: ref_27
  article-title: Research on image classification method of strip steel surface defects based on improved Bat algorithm optimized BP neural network
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-210374
– ident: ref_33
– ident: ref_36
  doi: 10.1007/s10586-023-04036-4
– volume: 34
  start-page: 1768
  year: 2022
  ident: ref_7
  article-title: GP-ELM-RNN: Garson-pruned extreme learning machine based replicator neural network for anomaly detection
  publication-title: J. King Saud-Univ. Comput. Inf. Sci.
– volume: 82
  start-page: 103872
  year: 2021
  ident: ref_1
  article-title: Derivative and enhanced discrete analytic wavelet algorithm for rolling bearing fault diagnosis
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2021.103872
– volume: 11
  start-page: 38875
  year: 2023
  ident: ref_10
  article-title: Fault diagnosis method for imbalanced data of rotating machinery based on time domain signal prediction and SC-ResNeSt
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3264636
– volume: 20
  start-page: 1305
  year: 2022
  ident: ref_23
  article-title: Rolling bearing incipient fault detection via optimized VMD using mode mutual information
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-021-0100-6
– volume: 30
  start-page: 427
  year: 2023
  ident: ref_30
  article-title: Advances in sparrow search algorithm: A comprehensive survey
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-022-09804-w
– volume: 34
  start-page: 16515
  year: 2022
  ident: ref_5
  article-title: CS-RNN: Efficient training of recurrent neural networks with continuous skips
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07227-z
– volume: 22
  start-page: 12044
  year: 2022
  ident: ref_8
  article-title: Rolling bearing fault diagnosis method base on periodic sparse attention and LSTM
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3173446
– volume: 168
  start-page: 108405
  year: 2021
  ident: ref_17
  article-title: An EEMD-SVD-LWT algorithm for denoising a lidar signal
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108405
– ident: ref_39
  doi: 10.36001/phme.2016.v3i1.1577
– volume: 10
  start-page: 655
  year: 2023
  ident: ref_40
  article-title: Salp swarm algorithm with iterative mapping and local escaping for multi-level threshold image segmentation: A skin cancer dermoscopic case study
  publication-title: J. Comput. Des. Eng.
– volume: 8
  start-page: 22
  year: 2020
  ident: ref_24
  article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 84
  start-page: 82
  year: 2019
  ident: ref_21
  article-title: Identification of mechanical compound-fault based on the improved parameter-adaptive variational mode decomposition
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.10.008
SSID ssj0000913849
Score 2.3232598
Snippet In recent years, deep learning has been increasingly used in fault diagnosis of rotating machinery. However, the actual acquisition of rolling bearing fault...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4634
SubjectTerms Accuracy
Algorithms
Bearings
Deep learning
fault detection
Fault diagnosis
Food
Lagrange multiplier
Lenses
Methods
Neural networks
Roller bearings
Rotating machinery
Search algorithms
Signal processing
sparrow search algorithm
Spectrum analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBaKYIfuMHTrhqUv6LBih8KoHdmWeUzaBrssK9AV6E2QZCkNkFcTp7-_pKUG6aHYZScbBmHIJCV-tKiPjP0QstCFcXWS1rlM8qxnErDO0x58ZYj_SlvdNpuQo1H18AC3O62-qCYs0AMHxV0aL7XA92RAO2ROA23saFuXPXwXFC00SiXsJFPtGgyZqHIIle4C8_pLxH-PGW0jlSJ_E4Naqv73FuQ2ygwP2KcID3k_DOsz23PzL-zj7y236vqQPV07t-SRF3XMR6GOmw8wHNV8MefhNwHe3y1bgkUeKop5fzperCbN44z_wWViFs9fcgStPDJz8wFK0nWoN9OGX4cqvMn6K7sf3vy9-pXExgmJxfjcJLkGB2ldp94JzEGNczZ3ICg3SIWRCAozK1GtHgDtlJmeE9JllbEeKvB5Kr6xznwxd98Z9yYTDpMaWRWIPXD2GkRw4AGRoNemLLvs4lWVykZWcWpuMVWYXZDi1a7iu-x8K70MbBrvyA3IKlsZ4sBuH6BnqOgZ6l-e0WU_yaaKZioOyep44AA_jDivVB-Rr0B4WxZddvJqdhWn8FphJiqIDaysjv7HaI7ZPnWqD8cYT1inWW3cKftgn5vJenXWeu8Ln7j0NA
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Learning Network Based on Improved Sparrow Search Algorithm Optimization for Rolling Bearing Fault Diagnosis
URI https://www.proquest.com/docview/2893140968
https://doaj.org/article/bf7a3d47197841ea95169acd628b695a
Volume 11
WOSCitedRecordID wos001119688000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-CjQMc-J4ojMoHEAcULamTOD6hlrUCoZWKgTROlu3Y3aSu7ZqMI3877zlugcO4cEmixFIcvZfn3_vw7wG84qLQhXF1kta5SPJsYBJpnaccfGWI_0pbHZpNiOm0OjuTsxhwa2JZ5dYmBkNdryzFyI_QMeBEzlRW79ZXCXWNouxqbKFxG_aJJSELpXunuxgLcV5Wuezq3Tl690eIAs8zSiaVPP9rJQqE_TeZ5bDWTB787ywfwv2IMtmwU4tHcMstH8O9kx1Fa_MEro6dW7NIrzpn064cnI1wVavZasm6aANen64DTyPrCpPZcDHHF7bnl-wzWpvLuI2TIfZlkeCbjXAknSf6etGy466Y76J5Ct8m46_vPySx_0JicZlvk1xLJ9O6Tr3j6Moa52zuJCcXI-VGILbMrBCaeylR3JkZOC5cVhnrZSV9nvID2Fuulu4ZMG8y7tA3ElWBEAaNgEEgKL1EQOm1KcsevN3KQtlITk49MhYKnRSSnPpTcj14vRu97kg5bhg3IrHuxhCVdrix2sxV_DOV8fgJqKiZpBSs05Iyh9rW5QCVVRa6B29IKRT98Dglq-O-Bfwwos5SQwTQHFFyWfTgcKsUKlqCRv3WiOf_fvwC7lIr-26f4yHstZtr9xLu2B_tRbPpw_5oPJ196YeYAR4_iaQflJ2OP8f4fPbxZPb9F4f5CNg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQ98I26UMAHKg4oahIncXxAaJdl1WrbBYki9WZsx9lW2u5uNymIP8VvZCZOFjiUWw-cEiVWlEnGM2884zcAr7hIdWpcEYRFIoIkik0grSspB58b4r_SVjfNJsRkkp-cyE8b8LPbC0NllZ1NbAx1sbC0Rr6HgQEncqYsf7e8CKhrFGVXuxYaXi3G7sd3DNmqtwdD_L-7cTz6cPx-P2i7CgQWnVcdJFo6GRZFWDqOAZpxziZOcgLOITcCEVNkhdC8lBKFiEzsuHBRbmwpc1kmIcfn3oCbCc8FzauxCNZrOsSxmSfS19dzLsM9RJ2nESWvMp785fmaBgFXuYHGt43u_W9f5T7cbVE063u1fwAbbv4Qto7WFLTVI7gYOrdkLX3slE18uTsboNcu2GLO_GoKnn9eNjyUzBdes_5sigLWp-fsI1rT83abKkNsz1oCczbAkXQc6ctZzYa-WPGsegxfrkXmJ7A5X8zdNrDSRNxh7CfyFCEaGjmDQFeWEgFzqU2W9eBN9--VbcnXqQfITGEQRpqi_tSUHuyuRy896cgV4wakRusxRBXeXFispqq1PMqUKAJOxEhSitlpSZlRbYssxskoU92D16SEigwavpLV7b4MFIyowVQfAwSOUUCW9mCnU0LVWrpK_dbAp_--_RJu7x8fHarDg8n4GdyJESz6PZ07sFmvLt1zuGW_1WfV6kUzqRh8vW59_QX6CF85
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VFCE48I0IFPCBigNaZXe9Xz4glBAiotIQCZDKydheO62UJml2C-Kv8euY2XUCHMqtB06JEivKJM8zbzzjNwDPeZ6qVNsyCMskD5Io1oEw1lENvtCkf6WMaoZN5JNJcXQkpjvwc3MXhtoqNz6xcdTl0tAZeQ8TA07iTFnRc74tYjocvV6dBTRBiiqtm3EaLUQO7I_vmL5Vr8ZD_K_343j09tObd4GfMBAYDGR1kChhRViWobMckzVtrUms4ESiQ65zZE-RyXPFnRBoUKRjy3MbFdo4UQiXhBw_9wrsIiVP4g7sTseH0y_bEx5S3CwS0Xbbcy7CHnLQ44hKWRlP_oqDzbiAi4JCE-lGt_7n3-g23PT8mvXbDXEHduziLtw43IrTVvfgbGjtinlh2RmbtI3wbIDxvGTLBWvPWfD5x1WjUMnalmzWn8_QwPr4lH1AP3vqL7AyZP3MS5uzAa6kx5E6n9ds2LYxnlT34fOl2PwAOovlwj4E5nTELWaFeZEieUP3p5ECCyeQSjuls6wLLzc4kMbLstN0kLnE9IxQI_9ETRf2t6tXrRzJBesGBKntGhIRb15YrmfS-ySpHZqAWzQSVHy2SlDNVJkyi3GbilR14QUBUpKrw69klL-xgYaRaJjsY-rAMT_I0i7sbQApvQ-s5G80Pvr328_gGsJUvh9PDh7D9RhZZHvZcw869frcPoGr5lt9Uq2f-h3G4OtlA_YXFkhpug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Network+Based+on+Improved+Sparrow+Search+Algorithm+Optimization+for+Rolling+Bearing+Fault+Diagnosis&rft.jtitle=Mathematics+%28Basel%29&rft.au=Ma%2C+Guoyuan&rft.au=Yue%2C+Xiaofeng&rft.au=Zhu%2C+Juan&rft.au=Liu%2C+Zeyuan&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=22&rft.spage=4634&rft_id=info:doi/10.3390%2Fmath11224634&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon