Simulation optimization of highway hard shoulder running based on multi-agent deep deterministic policy gradient algorithm
To alleviate traffic congestion and reduce vehicle emissions, the use of hard shoulder running (HSR) has emerged as a sustainable and cost-effective active traffic management technology. However, optimizing the utilization of HSR remains a critical challenge for improving highway traffic congestion....
Uložené v:
| Vydané v: | Alexandria engineering journal Ročník 117; s. 99 - 115 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.04.2025
Elsevier |
| Predmet: | |
| ISSN: | 1110-0168 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | To alleviate traffic congestion and reduce vehicle emissions, the use of hard shoulder running (HSR) has emerged as a sustainable and cost-effective active traffic management technology. However, optimizing the utilization of HSR remains a critical challenge for improving highway traffic congestion. To tackle this issue, the Multi-Agent Deep Deterministic Policy Gradient with spatio-temporal constraints (STC-MADDPG) algorithm based on multi-agent reinforcement learning is proposed in this paper. To verify the effectiveness of the proposed algorithm, the present study utilizes a Simulation of Urban Mobility (SUMO) platform to construct a simulation environment. The optimal HSR strategy is then determined for four different service levels of highways. Additionally, the granularity of control is adjusted by varying the number of agents, allowing for a comprehensive analysis and evaluation of the varying effectiveness of different control levels across different service levels. Through in-depth investigation into the two strategies under the fourth service level, it is discovered that fewer sections each agent controls yields better results when congestion becomes more severe. The experimental results clearly demonstrate the superiority of the optimized strategy for HSR using the STC-MADDPG algorithm, compared to the “no open” strategy. Specifically, the maximum reductions achieved in terms of total vehicle travel time, Time Integrated Time-to-collision, CO emissions, CO2 emissions, and NOx emissions are 37.4 %, 34.1 %, 28.0 %, 17.1 %, and 27.2 % respectively. This comprehensive evaluation of the algorithm's effectiveness covers three key aspects: driving efficiency, driving safety, and environmental protection. The findings conclusively demonstrate the positive impact of the proposed algorithm on all three fronts.
•We propose a spatio-temporal MARL algorithm to optimize HSR strategy.•The method’s effectiveness in efficiency, emissions, and safety across four levels is assessed using the SUMO.•An extended study compares strategies with 4 and 8 agents at service level 4 under severe congestion.•The results of the evaluation confirmed the validity of the proposed methodology through actual case testing. |
|---|---|
| AbstractList | To alleviate traffic congestion and reduce vehicle emissions, the use of hard shoulder running (HSR) has emerged as a sustainable and cost-effective active traffic management technology. However, optimizing the utilization of HSR remains a critical challenge for improving highway traffic congestion. To tackle this issue, the Multi-Agent Deep Deterministic Policy Gradient with spatio-temporal constraints (STC-MADDPG) algorithm based on multi-agent reinforcement learning is proposed in this paper. To verify the effectiveness of the proposed algorithm, the present study utilizes a Simulation of Urban Mobility (SUMO) platform to construct a simulation environment. The optimal HSR strategy is then determined for four different service levels of highways. Additionally, the granularity of control is adjusted by varying the number of agents, allowing for a comprehensive analysis and evaluation of the varying effectiveness of different control levels across different service levels. Through in-depth investigation into the two strategies under the fourth service level, it is discovered that fewer sections each agent controls yields better results when congestion becomes more severe. The experimental results clearly demonstrate the superiority of the optimized strategy for HSR using the STC-MADDPG algorithm, compared to the “no open” strategy. Specifically, the maximum reductions achieved in terms of total vehicle travel time, Time Integrated Time-to-collision, CO emissions, CO2 emissions, and NOx emissions are 37.4 %, 34.1 %, 28.0 %, 17.1 %, and 27.2 % respectively. This comprehensive evaluation of the algorithm's effectiveness covers three key aspects: driving efficiency, driving safety, and environmental protection. The findings conclusively demonstrate the positive impact of the proposed algorithm on all three fronts.
•We propose a spatio-temporal MARL algorithm to optimize HSR strategy.•The method’s effectiveness in efficiency, emissions, and safety across four levels is assessed using the SUMO.•An extended study compares strategies with 4 and 8 agents at service level 4 under severe congestion.•The results of the evaluation confirmed the validity of the proposed methodology through actual case testing. To alleviate traffic congestion and reduce vehicle emissions, the use of hard shoulder running (HSR) has emerged as a sustainable and cost-effective active traffic management technology. However, optimizing the utilization of HSR remains a critical challenge for improving highway traffic congestion. To tackle this issue, the Multi-Agent Deep Deterministic Policy Gradient with spatio-temporal constraints (STC-MADDPG) algorithm based on multi-agent reinforcement learning is proposed in this paper. To verify the effectiveness of the proposed algorithm, the present study utilizes a Simulation of Urban Mobility (SUMO) platform to construct a simulation environment. The optimal HSR strategy is then determined for four different service levels of highways. Additionally, the granularity of control is adjusted by varying the number of agents, allowing for a comprehensive analysis and evaluation of the varying effectiveness of different control levels across different service levels. Through in-depth investigation into the two strategies under the fourth service level, it is discovered that fewer sections each agent controls yields better results when congestion becomes more severe. The experimental results clearly demonstrate the superiority of the optimized strategy for HSR using the STC-MADDPG algorithm, compared to the “no open” strategy. Specifically, the maximum reductions achieved in terms of total vehicle travel time, Time Integrated Time-to-collision, CO emissions, CO2 emissions, and NOx emissions are 37.4 %, 34.1 %, 28.0 %, 17.1 %, and 27.2 % respectively. This comprehensive evaluation of the algorithm's effectiveness covers three key aspects: driving efficiency, driving safety, and environmental protection. The findings conclusively demonstrate the positive impact of the proposed algorithm on all three fronts. |
| Author | Tang, Jinjun Li, Zhitao Hu, Lipeng Zeng, Jie Li, Mingyang Zou, Guoqing |
| Author_xml | – sequence: 1 givenname: Lipeng surname: Hu fullname: Hu, Lipeng organization: Smart Transport Key Laboratory of Hunan Province, School of Traffic and Transportation Engineering, Central South University, Changsha, China – sequence: 2 givenname: Jinjun surname: Tang fullname: Tang, Jinjun email: jinjuntang@csu.edu.cn organization: Smart Transport Key Laboratory of Hunan Province, School of Traffic and Transportation Engineering, Central South University, Changsha, China – sequence: 3 givenname: Guoqing surname: Zou fullname: Zou, Guoqing organization: Hunan Pingyi Expressway Construction Development Company Limited, Yueyang, China – sequence: 4 givenname: Zhitao surname: Li fullname: Li, Zhitao organization: Smart Transport Key Laboratory of Hunan Province, School of Traffic and Transportation Engineering, Central South University, Changsha, China – sequence: 5 givenname: Jie surname: Zeng fullname: Zeng, Jie organization: Smart Transport Key Laboratory of Hunan Province, School of Traffic and Transportation Engineering, Central South University, Changsha, China – sequence: 6 givenname: Mingyang surname: Li fullname: Li, Mingyang organization: Smart Transport Key Laboratory of Hunan Province, School of Traffic and Transportation Engineering, Central South University, Changsha, China |
| BookMark | eNp9kT1u3DAQhVk4QGzHB0jHC0jhjyRKSBUYTmLAgIskNTErDqURJHFBcW2sTx-u12lSmAUHQ8738PDmil2sYUXGPktRSiGbL1MJOJVKqKqUqpRSXLBLmUuRP9uP7GbbJpFPbbqqay7Zyy9aDjMkCisP-0QLvbw1no80jM9w5CNEx7cxHGaHkcfDutI68B1s6HiezHyiAgZcE3eI-3wljAuttCXq-T7M1B_5EMHRaQTmIURK4_KJffAwb3jzVq_Zn-93v29_Fg-PP-5vvz0UfSWaVFRGt9ipbieUU43QqnWqh1o7J1swnd9p3Xa188ob07UaK6gqD0YZj6KWHvU1uz_rugCT3UdaIB5tALKvDyEOFmJ2OqOVWAutTau6uskqGhpZYd35RlVt7VqTtcxZq49h2yJ621N6DSxFoNlKYU9bsJPNW7CnLVipbI4_k_I_8p-T95ivZwZzPE-E0W59zrBHRxH7lP3TO_Rf8CSlOA |
| CitedBy_id | crossref_primary_10_1016_j_asej_2025_103750 |
| Cites_doi | 10.3141/2111-02 10.1007/978-3-030-60990-0_12 10.17226/26394 10.2352/ISSN.2470-1173.2017.19.AVM-023 10.1109/TCYB.2020.2977374 10.1016/j.autcon.2024.105302 10.1016/j.simpat.2017.03.003 10.1109/ICCEAI55464.2022.00029 10.1016/j.simpat.2014.06.005 10.3390/su15043479 10.3141/2279-12 10.1177/0361198119900502 10.1016/j.trc.2010.12.006 10.1038/nature14236 10.1049/iet-its.2016.0345 10.1016/j.aej.2022.02.042 10.1016/j.aej.2022.12.057 10.1109/TITS.2019.2942050 10.3390/app9173614 10.1109/ITSC.2010.5625159 10.3141/2280-02 10.1038/nature14539 10.3390/su13041822 10.3141/2554-13 10.3390/su12156027 10.3141/2278-08 10.1016/j.simpat.2021.102364 10.3390/su151411464 10.1007/s10462-021-09996-w 10.1016/j.aej.2020.11.005 10.2174/1874447800802010007 10.1109/TITS.2023.3285442 10.1061/9780784481530.018 10.1109/TSMCC.2007.913919 10.1177/0361198120949875 10.1177/0361198121997836 10.1109/ITSC45102.2020.9294639 10.3141/2470-13 10.1016/j.trb.2022.05.001 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.aej.2024.12.110 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 115 |
| ExternalDocumentID | oai_doaj_org_article_1e503378295644f3a614e59f62485d87 10_1016_j_aej_2024_12_110 S1110016824017095 |
| GroupedDBID | --K 0R~ 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 O-L O9- OK1 P2P RIG ROL SES SSZ XH2 AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
| ID | FETCH-LOGICAL-c406t-4738e929b02d260328d2ca53dd18a79fb33895df2f77983e4a44fa727fe051fe3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001398208000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1110-0168 |
| IngestDate | Fri Oct 03 12:52:06 EDT 2025 Tue Nov 18 20:51:23 EST 2025 Wed Nov 12 18:32:29 EST 2025 Sat Apr 19 16:02:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | MADDPG SUMO Hard Shoulder Running Spatial-temporal constrains Highway |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-4738e929b02d260328d2ca53dd18a79fb33895df2f77983e4a44fa727fe051fe3 |
| OpenAccessLink | https://doaj.org/article/1e503378295644f3a614e59f62485d87 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1e503378295644f3a614e59f62485d87 crossref_citationtrail_10_1016_j_aej_2024_12_110 crossref_primary_10_1016_j_aej_2024_12_110 elsevier_sciencedirect_doi_10_1016_j_aej_2024_12_110 |
| PublicationCentury | 2000 |
| PublicationDate | April 2025 2025-04-00 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Alexandria engineering journal |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Geistefeldt (bib7) 2024 Ministry of Transport of the People's Republic of China: JTG B01-2003, Technical Standard of Highway Engineering[S]. Lai, Dong, Andriotis, Wang, Lei (bib44) 2024; 160 Lu, Yi, Gu, Rui, Ran (bib16) 2023; 153 Kejriwal, Thomas (bib54) 2021; 112 Li, Ye, Li (bib2) 2017; 11 Li, Chow, Cassel (bib18) 2014; 2470 Ma, Hu, Hale, Bared (bib27) 2016; 2554 Chen, Hajidavalloo, Zhaojian (bib39) 2023; 24 Martinez-Gil, Lozano, Fernández (bib53) 2017; 74 Coffey, Park (bib19) 2018; 2018 Kolat, Kővári, Bécsi (bib42) 2023; 15 B. Lucian, B. Robert, D.S. BartA comprehensive survey of multiagent reinforcement learning, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 38(2); 156-1722008. Wang, Lv, Jiang, Qin, Li (bib56) 2021; 584 S. Coffey, S. Park, Impact of part-time shoulder use on safety through the highway safety manual, International Conference on Transportation and Development 2018: Connected and Autonomous Vehicles and Transportation Safety, 2018, 180-187. Fang, Péter, Tettamanti (bib40) 2023; 15 Aron, Seidowsky, Cohen (bib30) 2013; 28 K. Kušić, I. Dusparic, M. Guériau, M. Gregurić and E. Ivanjko Extended variable speed limit control using multi-agent reinforcement learning, in: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece (2020)1-8. Mnih, Kavukcuoglu, Silver (bib51) 2015; 518 Z. Deng, Z. Luo, N. Hockaday, A. Farid, A. PandeEvaluation of left shoulder as part-time travel lane design alternatives and transportation management center staff training module development, 2023. Yao, Qian, Feng, Zhang, Zhang, Chen, Meng (bib15) 2024 Lowe, Wu, Tamar, Harb, Abbeel, Mordatch (bib62) 2017; 30 Huang, Zhang, Zhang (bib50) 2021; 60 Zhou, Yang, Lee, Zhang (bib36) 2020; 2674 Geistefeldt (bib1) 2021 I. Shariq, F. Sha, Actor-attention-critic for multi-agent reinforcement learning, Proceedings of the 36th International Conference on Machine Learning 97(2019) 2961-2970. Waleczek, Geistefeldt (bib29) 2021; 2675 Nguyen, Nguyen, Nahavandi (bib52) 2018; 50 Gronauer, Diepold (bib60) 2022; 55 Kononov, Hersey, Reeves, Allery (bib26) 2012; 2280 Sallab, Abdou, Perot, Yogamani (bib46) 2017; 29 Zheng, Ran, Qu (bib67) 2020; 21 M. Rohloff, Re-use of herd-shoulders at federal motorways, 2nd International Symposium on Highway Geometric Design, 2000, p. 254-266, Mainz, Germany. B. Sultan, R. Meekums, J. Ogawa, S. Self, P. Unwin, M42 aCtive Traffic Management Pilot -- Initial Results from Hard Shoulder Running Under 60mph Speed Limit. Z. Zhigang, P. Rui, Q. Jiangang, Analysis of traffic characteristics of dynamic open hard shoulder road based on SUMO, 2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI), Shijiazhuang, China, 2022, 100-104. Jenior, P., Bonneson, J.A., Zhao, L., Kittelson, W., Donnell, E.T., & Gayah, V.V. Safety Performance of Part-time Shoulder Use on Freeways, Volume 1: Informational Guide and Safety Evaluation Guidelines, 2021. LeCun, Bengio, Hinton (bib47) 2015; 521 Qian, Zhao, Huang (bib59) 2023; 621 Zhang, Lin, Li (bib58) 2023; 611 Geistefeldt (bib10) 2012; 2278 Zeng, Schrock (bib33) 2012; 2279 Hasan, Abdel-Aty (bib24) 2024; 199 Yang, Wang, Ding, Tan, Ran (bib38) 2021; 13 Li, Lasenby (bib23) 2023; 48 K. Lemke, Hard Shoulder Running as a short-term measure to reduce congestion, 4th International Symposium on Highway Geometric Design, 2010, Valencia, Spain. S. Cohen, M. Aron, R. Seidowsky, Assessment of a dynamic managed lanes operation, 12 th WCTR, 2010, Lisbon. Choi, Tay, Kim, Jeong, Kim, Heo (bib28) 2019; 9 Arora, Kattan (bib22) 2022 Sharma, Faruk, El-Urfali (bib34) 2020; 2674 Metaxatos, Thakuriah (bib3) 2009; 2111 Chasea, Avineri (bib31) 2008; 2 Xiaoming, Dong, Frangopol (bib43) 2023; 29 Drungilas, Kurmis, Senulis, Lukosius, Andziulis, Januteniene, Bogdevicius, Jankunas, Voznak (bib48) 2023; 67 Ying, Chow, Nguyen, Chin (bib45) 2022; 161 Zhang, Yang, Başar (bib61) 2021 Mnih, Kavukcuoglu, Silver (bib65) 2015; 518 Wilson (bib12) 2009; 78 M. Aron, S. Cohen, R. Seidowsky, Two French hard-shoulder running operations: some comments on effectiveness and safety, 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal, 2010, 230-236. Hussein, Naik, Süer (bib37) 2020 Martinez-Gil, Lozano, Fernández (bib55) 2014; 47 Li, Ye, Li (bib35) 2018; 30 Haarnoja, Zhou, Abbeel (bib66) 2018 Geistefeldt (bib17) 2012; 2278 Use of Freeway Shoulders for Travel — Guide for Planning, Evaluating, and Designing Part-time Shoulder Use as A Traffic Management Strategy Mohammed H. Alabdullah, Mohammad A. Abido, Microgrid energy management using deep Q-network reinforcement learning, Alexandria Engineering Journal, 61(11)(202) 9069-9078. 2016. S.G. Farrag, F. Outay, A. Yasar, M.Y. El-Hansali. Evaluating Active Traffic Management (ATM) Strategies under Non-recurring Congestion: Simulation-based with Benefit Cost Analysis Case Study. (2020). Kellermann (bib9) 2000; 41 Yang (10.1016/j.aej.2024.12.110_bib38) 2021; 13 LeCun (10.1016/j.aej.2024.12.110_bib47) 2015; 521 Geistefeldt (10.1016/j.aej.2024.12.110_bib1) 2021 Coffey (10.1016/j.aej.2024.12.110_bib19) 2018; 2018 Qian (10.1016/j.aej.2024.12.110_bib59) 2023; 621 Mnih (10.1016/j.aej.2024.12.110_bib65) 2015; 518 Lu (10.1016/j.aej.2024.12.110_bib16) 2023; 153 Huang (10.1016/j.aej.2024.12.110_bib50) 2021; 60 Haarnoja (10.1016/j.aej.2024.12.110_bib66) 2018 Li (10.1016/j.aej.2024.12.110_bib35) 2018; 30 Fang (10.1016/j.aej.2024.12.110_bib40) 2023; 15 10.1016/j.aej.2024.12.110_bib32 Wilson (10.1016/j.aej.2024.12.110_bib12) 2009; 78 Kolat (10.1016/j.aej.2024.12.110_bib42) 2023; 15 Lai (10.1016/j.aej.2024.12.110_bib44) 2024; 160 Choi (10.1016/j.aej.2024.12.110_bib28) 2019; 9 Lowe (10.1016/j.aej.2024.12.110_bib62) 2017; 30 Chen (10.1016/j.aej.2024.12.110_bib39) 2023; 24 Hussein (10.1016/j.aej.2024.12.110_bib37) 2020 Sallab (10.1016/j.aej.2024.12.110_bib46) 2017; 29 Geistefeldt (10.1016/j.aej.2024.12.110_bib7) 2024 Gronauer (10.1016/j.aej.2024.12.110_bib60) 2022; 55 Waleczek (10.1016/j.aej.2024.12.110_bib29) 2021; 2675 Li (10.1016/j.aej.2024.12.110_bib23) 2023; 48 Metaxatos (10.1016/j.aej.2024.12.110_bib3) 2009; 2111 Geistefeldt (10.1016/j.aej.2024.12.110_bib17) 2012; 2278 10.1016/j.aej.2024.12.110_bib49 Nguyen (10.1016/j.aej.2024.12.110_bib52) 2018; 50 Arora (10.1016/j.aej.2024.12.110_bib22) 2022 Kellermann (10.1016/j.aej.2024.12.110_bib9) 2000; 41 10.1016/j.aej.2024.12.110_bib41 Geistefeldt (10.1016/j.aej.2024.12.110_bib10) 2012; 2278 Li (10.1016/j.aej.2024.12.110_bib18) 2014; 2470 Sharma (10.1016/j.aej.2024.12.110_bib34) 2020; 2674 Zheng (10.1016/j.aej.2024.12.110_bib67) 2020; 21 Wang (10.1016/j.aej.2024.12.110_bib56) 2021; 584 Ma (10.1016/j.aej.2024.12.110_bib27) 2016; 2554 Martinez-Gil (10.1016/j.aej.2024.12.110_bib53) 2017; 74 10.1016/j.aej.2024.12.110_bib8 Zeng (10.1016/j.aej.2024.12.110_bib33) 2012; 2279 10.1016/j.aej.2024.12.110_bib5 10.1016/j.aej.2024.12.110_bib6 Zhang (10.1016/j.aej.2024.12.110_bib58) 2023; 611 Zhang (10.1016/j.aej.2024.12.110_bib61) 2021 10.1016/j.aej.2024.12.110_bib4 Hasan (10.1016/j.aej.2024.12.110_bib24) 2024; 199 10.1016/j.aej.2024.12.110_bib14 Zhou (10.1016/j.aej.2024.12.110_bib36) 2020; 2674 10.1016/j.aej.2024.12.110_bib11 10.1016/j.aej.2024.12.110_bib13 10.1016/j.aej.2024.12.110_bib57 Aron (10.1016/j.aej.2024.12.110_bib30) 2013; 28 Yao (10.1016/j.aej.2024.12.110_bib15) 2024 Chasea (10.1016/j.aej.2024.12.110_bib31) 2008; 2 Ying (10.1016/j.aej.2024.12.110_bib45) 2022; 161 Kejriwal (10.1016/j.aej.2024.12.110_bib54) 2021; 112 Xiaoming (10.1016/j.aej.2024.12.110_bib43) 2023; 29 Drungilas (10.1016/j.aej.2024.12.110_bib48) 2023; 67 Martinez-Gil (10.1016/j.aej.2024.12.110_bib55) 2014; 47 Li (10.1016/j.aej.2024.12.110_bib2) 2017; 11 10.1016/j.aej.2024.12.110_bib25 10.1016/j.aej.2024.12.110_bib21 Mnih (10.1016/j.aej.2024.12.110_bib51) 2015; 518 Kononov (10.1016/j.aej.2024.12.110_bib26) 2012; 2280 10.1016/j.aej.2024.12.110_bib63 10.1016/j.aej.2024.12.110_bib20 10.1016/j.aej.2024.12.110_bib64 |
| References_xml | – volume: 2470 start-page: 122 year: 2014 end-page: 130 ident: bib18 article-title: Optimal control of motorways by ramp metering, variable speed limits, and hard-shoulder running publication-title: Transp. Res. Rec. – volume: 2674 start-page: 282 year: 2020 end-page: 293 ident: bib34 article-title: Operational and safety impact analysis of implementing emergency shoulder use (ESU) for hurricane evacuation publication-title: Transp. Res. Rec. – volume: 15 start-page: 3479 year: 2023 ident: bib42 article-title: Multi-agent reinforcement learning for traffic signal control: a cooperative approach publication-title: Sustainability – volume: 47 start-page: 259 year: 2014 end-page: 275 ident: bib55 article-title: MARL-Ped: a multi-agent reinforcement learning based framework to simulate pedestrian groups publication-title: Simul. Model. Pract. Theory – reference: B. Sultan, R. Meekums, J. Ogawa, S. Self, P. Unwin, M42 aCtive Traffic Management Pilot -- Initial Results from Hard Shoulder Running Under 60mph Speed Limit. – reference: Z. Zhigang, P. Rui, Q. Jiangang, Analysis of traffic characteristics of dynamic open hard shoulder road based on SUMO, 2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI), Shijiazhuang, China, 2022, 100-104. – year: 2024 ident: bib15 article-title: Hidden markov model-based dynamic hard shoulders running strategy in hybrid network environments publication-title: Appl. Sci. – volume: 2279 start-page: 99 year: 2012 end-page: 107 ident: bib33 article-title: Estimation of safety effectiveness of composite shoulders on rural two-lane highways publication-title: Transp. Res. Rec. – volume: 160 year: 2024 ident: bib44 article-title: Synergetic-informed deep reinforcement learning for sustainable management of transportation networks with large action spaces publication-title: Autom. Constr. – start-page: 41 year: 2021 end-page: 44 ident: bib1 article-title: Hard shoulder running publication-title: International Encyclopedia of Transportation – reference: K. Kušić, I. Dusparic, M. Guériau, M. Gregurić and E. Ivanjko Extended variable speed limit control using multi-agent reinforcement learning, in: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece (2020)1-8. – volume: 611 year: 2023 ident: bib58 article-title: Graph attention reinforcement learning with flexible matching policies for multi-depot vehicle routing problems publication-title: Phys. A Stat. Mech. Appl. – volume: 2278 year: 2012 ident: bib10 article-title: Operational experience with temporary hard shoulder running in Germany publication-title: Transp. Res. Rec. – volume: 2278 start-page: 67 year: 2012 end-page: 73 ident: bib17 article-title: Operational experience with temporary hard shoulder running in Germany publication-title: Transp. Res. Rec. – volume: 2675 start-page: 345 year: 2021 end-page: 354 ident: bib29 article-title: Long-Term safety analysis of hard shoulder running on freeways in Germany publication-title: Transp. Res. Rec. – reference: M. Rohloff, Re-use of herd-shoulders at federal motorways, 2nd International Symposium on Highway Geometric Design, 2000, p. 254-266, Mainz, Germany. – volume: 50 start-page: 3826 year: 2018 end-page: 3839 ident: bib52 article-title: Deep reinforcement learning for multi-agent systems: a review of challenges, solutions and applications publication-title: IEEE Trans. Cybern. – year: 2020 ident: bib37 article-title: Development of hybrid hard shoulder running operation system for active traffic management publication-title: Int. Conf. Transp. Dev. – reference: S. Cohen, M. Aron, R. Seidowsky, Assessment of a dynamic managed lanes operation, 12 th WCTR, 2010, Lisbon. – volume: 15 start-page: 11464 year: 2023 ident: bib40 article-title: Variable speed limit control for the motorway–urban merging bottlenecks using multi-agent reinforcement learning publication-title: Sustainability – reference: Jenior, P., Bonneson, J.A., Zhao, L., Kittelson, W., Donnell, E.T., & Gayah, V.V. Safety Performance of Part-time Shoulder Use on Freeways, Volume 1: Informational Guide and Safety Evaluation Guidelines, 2021. – reference: Mohammed H. Alabdullah, Mohammad A. Abido, Microgrid energy management using deep Q-network reinforcement learning, Alexandria Engineering Journal, 61(11)(202) 9069-9078. – year: 2021 ident: bib61 article-title: Multi-agent reinforcement learning: a selective overview of theories and algorithms publication-title: Handbook of Reinforcement Learning and Control. Studies in Systems, Decision and Control – volume: 621 year: 2023 ident: bib59 article-title: Model improvement and scheduling optimization for multi-vehicle charging planning in IoV publication-title: Phys. A Stat. Mech. Appl. – year: 2024 ident: bib7 article-title: Operational reliability of hard shoulder running on freeways publication-title: Transp. Res. Rec.: J. Transp. Res. Board – reference: K. Lemke, Hard Shoulder Running as a short-term measure to reduce congestion, 4th International Symposium on Highway Geometric Design, 2010, Valencia, Spain. – volume: 584 year: 2021 ident: bib56 article-title: A multi-agent based cellular automata model for intersection traffic control simulation publication-title: Phys. A Stat. Mech. Appl. – volume: 112 year: 2021 ident: bib54 article-title: A multi-agent simulator for generating novelty in monopoly publication-title: Simul. Model. Pract. Theory – volume: 60 start-page: 1509 year: 2021 end-page: 1517 ident: bib50 article-title: Energy management of intelligent building based on deep reinforced learning publication-title: Alex. Eng. J. – reference: , 2016. – volume: 29 start-page: 04023063 year: 2023 ident: bib43 article-title: Sustainable life-cycle maintenance policymaking for network-level deteriorating bridges with a convolutional autoencoder–structured reinforcement learning agent publication-title: J. Bridge Eng. – reference: M. Aron, S. Cohen, R. Seidowsky, Two French hard-shoulder running operations: some comments on effectiveness and safety, 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal, 2010, 230-236. – volume: 518 start-page: 529 year: 2015 end-page: 533 ident: bib51 article-title: Human-level control through deep reinforcement learning publication-title: Nature – volume: 78 start-page: 12 year: 2009 end-page: 13 ident: bib12 article-title: Hard shoulder running eases motorway traffic jams publication-title: Highways – reference: Use of Freeway Shoulders for Travel — Guide for Planning, Evaluating, and Designing Part-time Shoulder Use as A Traffic Management Strategy, – volume: 13 start-page: 1822 year: 2021 ident: bib38 article-title: Identify optimal traffic condition and speed limit for hard shoulder running strategy publication-title: Sustainability – volume: 11 start-page: 553 year: 2017 end-page: 560 ident: bib2 article-title: Simulation of hard shoulder running combined with queue warning during traffic accident with CTM model publication-title: IEEE Trans. Intell. Transp. Syst. – reference: S. Coffey, S. Park, Impact of part-time shoulder use on safety through the highway safety manual, International Conference on Transportation and Development 2018: Connected and Autonomous Vehicles and Transportation Safety, 2018, 180-187. – volume: 2280 start-page: 10 year: 2012 end-page: 17 ident: bib26 article-title: Relationship between freeway flow parameters and safety and its implications for hard shoulder running publication-title: Transp. Res. Rec. – start-page: 1861 year: 2018 end-page: 1870 ident: bib66 article-title: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor[C]//International conference on machine learning publication-title: PMLR – year: 2022 ident: bib22 article-title: Operational and safety impacts of integrated variable speed limit with dynamic hard shoulder running publication-title: J. Intell. Transp. Syst. – reference: Z. Deng, Z. Luo, N. Hockaday, A. Farid, A. PandeEvaluation of left shoulder as part-time travel lane design alternatives and transportation management center staff training module development, 2023. – reference: I. Shariq, F. Sha, Actor-attention-critic for multi-agent reinforcement learning, Proceedings of the 36th International Conference on Machine Learning 97(2019) 2961-2970. – reference: Ministry of Transport of the People's Republic of China: JTG B01-2003, Technical Standard of Highway Engineering[S]. – volume: 55 start-page: 895 year: 2022 end-page: 943 ident: bib60 article-title: Multi-agent deep reinforcement learning: a survey publication-title: Artif. Intell. Rev. – volume: 28 start-page: 168 year: 2013 end-page: 180 ident: bib30 article-title: Safety impact of using the hard shoulder during congested traffic. The case of a managed lane operation on a French urban motorway publication-title: Transp. Res C. -Emer. – volume: 161 start-page: 36 year: 2022 end-page: 59 ident: bib45 article-title: Multi-agent deep reinforcement learning for adaptive coordinated metro service operations with flexible train composition publication-title: Transp. Res. Part B: Methodol. – volume: 21 start-page: 4605 year: 2020 end-page: 4614 ident: bib67 article-title: Cooperative lane changing strategies to improve traffic operation and safety nearby freeway off-ramps in a connected and automated vehicles environment publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 29 start-page: 70 year: 2017 end-page: 79 ident: bib46 article-title: Deep reinforcement learning framework for Autonomous Driving publication-title: Electron. Imaging – volume: 67 start-page: 397 year: 2023 end-page: 407 ident: bib48 article-title: Deep reinforcement learning based optimization of automated guided vehicle time and energy consumption in a container terminal publication-title: Alex. Eng. J. – volume: 2111 start-page: 10 year: 2009 end-page: 17 ident: bib3 article-title: Planning for bus-on-shoulders operations in northeastern Illinois: a survey of stakeholders publication-title: Transp. Res. Rec. – volume: 74 start-page: 117 year: 2017 end-page: 133 ident: bib53 article-title: Emergent behaviors and scalability for multi-agent reinforcement learning-based pedestrian models publication-title: Simul. Model. Pract. Theory – volume: 2018 year: 2018 ident: bib19 article-title: Operational evaluation of part-time shoulder use for interstate 476 in the state of Pennsylvania publication-title: Adv. Civ. Eng. – volume: 30 start-page: 30 year: 2017 ident: bib62 article-title: Multi-agent actor-critic for mixed cooperative-competitive environments publication-title: Adv. Neural Inf. Process. Syst. – volume: 24 start-page: 11623 year: 2023 end-page: 11638 ident: bib39 article-title: Deep multi-agent reinforcement learning for highway on-ramp merging in mixed traffic publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 199 year: 2024 ident: bib24 article-title: Short-term safety performance functions by random parameters negative binomial-lindley model for part-time shoulder use publication-title: Accid. Anal. Prev. – volume: 30 start-page: 1036 year: 2018 end-page: 1045 ident: bib35 article-title: Optimal control and simulation of hard shoulder running on highways publication-title: J. Syst. Simul. – reference: B. Lucian, B. Robert, D.S. BartA comprehensive survey of multiagent reinforcement learning, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 38(2); 156-1722008. – volume: 518 start-page: 529 year: 2015 end-page: 533 ident: bib65 article-title: Human-level control through deep reinforcement learning publication-title: Nature – volume: 2674 start-page: 915 year: 2020 end-page: 925 ident: bib36 article-title: Q-learning-based coordinated variable speed limit and hard shoulder running control strategy to reduce travel time at freeway corridor publication-title: Transp. Res. Rec. – volume: 48 year: 2023 ident: bib23 article-title: Mitigating urban motorway congestion and emissions via active traffic management publication-title: Res. Transp. Bus. – reference: S.G. Farrag, F. Outay, A. Yasar, M.Y. El-Hansali. Evaluating Active Traffic Management (ATM) Strategies under Non-recurring Congestion: Simulation-based with Benefit Cost Analysis Case Study. (2020). – volume: 2 start-page: 7 year: 2008 end-page: 18 ident: bib31 article-title: Maximizing motorway capacity through hard shoulder running: UK perspective publication-title: Open Transp. J. – volume: 41 start-page: 10 year: 2000 ident: bib9 article-title: Experience of using the hard shoulder to improve traffic flows publication-title: Traffic Eng. Control – volume: 2554 start-page: 120 year: 2016 end-page: 128 ident: bib27 article-title: Dynamic hard shoulder running for traffic incident management publication-title: Transp. Res. Rec. – volume: 9 start-page: 3614 year: 2019 ident: bib28 article-title: Safety effects of freeway hard shoulder running publication-title: Appl. Sci. – volume: 153 year: 2023 ident: bib16 article-title: TD3LVSL: a lane-level variable speed limit approach based on twin delayed deep deterministic policy gradient in a connected automated vehicle environment publication-title: Transp. Res. Part C Emerg. Technol. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib47 article-title: Deep learning publication-title: Nature – volume: 2111 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.aej.2024.12.110_bib3 article-title: Planning for bus-on-shoulders operations in northeastern Illinois: a survey of stakeholders publication-title: Transp. Res. Rec. doi: 10.3141/2111-02 – volume: 29 start-page: 04023063 issue: 9 year: 2023 ident: 10.1016/j.aej.2024.12.110_bib43 article-title: Sustainable life-cycle maintenance policymaking for network-level deteriorating bridges with a convolutional autoencoder–structured reinforcement learning agent publication-title: J. Bridge Eng. – volume: 199 year: 2024 ident: 10.1016/j.aej.2024.12.110_bib24 article-title: Short-term safety performance functions by random parameters negative binomial-lindley model for part-time shoulder use publication-title: Accid. Anal. Prev. – year: 2021 ident: 10.1016/j.aej.2024.12.110_bib61 article-title: Multi-agent reinforcement learning: a selective overview of theories and algorithms doi: 10.1007/978-3-030-60990-0_12 – ident: 10.1016/j.aej.2024.12.110_bib8 doi: 10.17226/26394 – year: 2020 ident: 10.1016/j.aej.2024.12.110_bib37 article-title: Development of hybrid hard shoulder running operation system for active traffic management publication-title: Int. Conf. Transp. Dev. – volume: 29 start-page: 70 issue: 19 year: 2017 ident: 10.1016/j.aej.2024.12.110_bib46 article-title: Deep reinforcement learning framework for Autonomous Driving publication-title: Electron. Imaging doi: 10.2352/ISSN.2470-1173.2017.19.AVM-023 – volume: 50 start-page: 3826 issue: 9 year: 2018 ident: 10.1016/j.aej.2024.12.110_bib52 article-title: Deep reinforcement learning for multi-agent systems: a review of challenges, solutions and applications publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2977374 – volume: 160 year: 2024 ident: 10.1016/j.aej.2024.12.110_bib44 article-title: Synergetic-informed deep reinforcement learning for sustainable management of transportation networks with large action spaces publication-title: Autom. Constr. doi: 10.1016/j.autcon.2024.105302 – volume: 74 start-page: 117 year: 2017 ident: 10.1016/j.aej.2024.12.110_bib53 article-title: Emergent behaviors and scalability for multi-agent reinforcement learning-based pedestrian models publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2017.03.003 – ident: 10.1016/j.aej.2024.12.110_bib21 doi: 10.1109/ICCEAI55464.2022.00029 – ident: 10.1016/j.aej.2024.12.110_bib6 – volume: 47 start-page: 259 year: 2014 ident: 10.1016/j.aej.2024.12.110_bib55 article-title: MARL-Ped: a multi-agent reinforcement learning based framework to simulate pedestrian groups publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2014.06.005 – volume: 584 year: 2021 ident: 10.1016/j.aej.2024.12.110_bib56 article-title: A multi-agent based cellular automata model for intersection traffic control simulation publication-title: Phys. A Stat. Mech. Appl. – ident: 10.1016/j.aej.2024.12.110_bib64 – volume: 15 start-page: 3479 year: 2023 ident: 10.1016/j.aej.2024.12.110_bib42 article-title: Multi-agent reinforcement learning for traffic signal control: a cooperative approach publication-title: Sustainability doi: 10.3390/su15043479 – ident: 10.1016/j.aej.2024.12.110_bib13 – volume: 30 start-page: 1036 issue: 3 year: 2018 ident: 10.1016/j.aej.2024.12.110_bib35 article-title: Optimal control and simulation of hard shoulder running on highways publication-title: J. Syst. Simul. – volume: 2279 start-page: 99 issue: 1 year: 2012 ident: 10.1016/j.aej.2024.12.110_bib33 article-title: Estimation of safety effectiveness of composite shoulders on rural two-lane highways publication-title: Transp. Res. Rec. doi: 10.3141/2279-12 – volume: 621 year: 2023 ident: 10.1016/j.aej.2024.12.110_bib59 article-title: Model improvement and scheduling optimization for multi-vehicle charging planning in IoV publication-title: Phys. A Stat. Mech. Appl. – volume: 2674 start-page: 282 year: 2020 ident: 10.1016/j.aej.2024.12.110_bib34 article-title: Operational and safety impact analysis of implementing emergency shoulder use (ESU) for hurricane evacuation publication-title: Transp. Res. Rec. doi: 10.1177/0361198119900502 – volume: 28 start-page: 168 year: 2013 ident: 10.1016/j.aej.2024.12.110_bib30 article-title: Safety impact of using the hard shoulder during congested traffic. The case of a managed lane operation on a French urban motorway publication-title: Transp. Res C. -Emer. doi: 10.1016/j.trc.2010.12.006 – volume: 518 start-page: 529 year: 2015 ident: 10.1016/j.aej.2024.12.110_bib65 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 11 start-page: 553 issue: 9 year: 2017 ident: 10.1016/j.aej.2024.12.110_bib2 article-title: Simulation of hard shoulder running combined with queue warning during traffic accident with CTM model publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1049/iet-its.2016.0345 – year: 2024 ident: 10.1016/j.aej.2024.12.110_bib7 article-title: Operational reliability of hard shoulder running on freeways publication-title: Transp. Res. Rec.: J. Transp. Res. Board – start-page: 1861 year: 2018 ident: 10.1016/j.aej.2024.12.110_bib66 article-title: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor[C]//International conference on machine learning publication-title: PMLR – volume: 78 start-page: 12 issue: 1 year: 2009 ident: 10.1016/j.aej.2024.12.110_bib12 article-title: Hard shoulder running eases motorway traffic jams publication-title: Highways – volume: 153 year: 2023 ident: 10.1016/j.aej.2024.12.110_bib16 article-title: TD3LVSL: a lane-level variable speed limit approach based on twin delayed deep deterministic policy gradient in a connected automated vehicle environment publication-title: Transp. Res. Part C Emerg. Technol. – ident: 10.1016/j.aej.2024.12.110_bib49 doi: 10.1016/j.aej.2022.02.042 – ident: 10.1016/j.aej.2024.12.110_bib14 – volume: 67 start-page: 397 year: 2023 ident: 10.1016/j.aej.2024.12.110_bib48 article-title: Deep reinforcement learning based optimization of automated guided vehicle time and energy consumption in a container terminal publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.12.057 – volume: 21 start-page: 4605 issue: 11 year: 2020 ident: 10.1016/j.aej.2024.12.110_bib67 article-title: Cooperative lane changing strategies to improve traffic operation and safety nearby freeway off-ramps in a connected and automated vehicles environment publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2942050 – volume: 9 start-page: 3614 year: 2019 ident: 10.1016/j.aej.2024.12.110_bib28 article-title: Safety effects of freeway hard shoulder running publication-title: Appl. Sci. doi: 10.3390/app9173614 – year: 2022 ident: 10.1016/j.aej.2024.12.110_bib22 article-title: Operational and safety impacts of integrated variable speed limit with dynamic hard shoulder running publication-title: J. Intell. Transp. Syst. – ident: 10.1016/j.aej.2024.12.110_bib25 doi: 10.1109/ITSC.2010.5625159 – volume: 2280 start-page: 10 issue: 1 year: 2012 ident: 10.1016/j.aej.2024.12.110_bib26 article-title: Relationship between freeway flow parameters and safety and its implications for hard shoulder running publication-title: Transp. Res. Rec. doi: 10.3141/2280-02 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.aej.2024.12.110_bib47 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: 10.1016/j.aej.2024.12.110_bib4 – volume: 13 start-page: 1822 year: 2021 ident: 10.1016/j.aej.2024.12.110_bib38 article-title: Identify optimal traffic condition and speed limit for hard shoulder running strategy publication-title: Sustainability doi: 10.3390/su13041822 – volume: 48 year: 2023 ident: 10.1016/j.aej.2024.12.110_bib23 article-title: Mitigating urban motorway congestion and emissions via active traffic management publication-title: Res. Transp. Bus. – volume: 518 start-page: 529 year: 2015 ident: 10.1016/j.aej.2024.12.110_bib51 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 2554 start-page: 120 issue: 1 year: 2016 ident: 10.1016/j.aej.2024.12.110_bib27 article-title: Dynamic hard shoulder running for traffic incident management publication-title: Transp. Res. Rec. doi: 10.3141/2554-13 – ident: 10.1016/j.aej.2024.12.110_bib20 doi: 10.3390/su12156027 – volume: 2278 issue: 1 year: 2012 ident: 10.1016/j.aej.2024.12.110_bib10 article-title: Operational experience with temporary hard shoulder running in Germany publication-title: Transp. Res. Rec. doi: 10.3141/2278-08 – start-page: 41 year: 2021 ident: 10.1016/j.aej.2024.12.110_bib1 article-title: Hard shoulder running – volume: 2018 year: 2018 ident: 10.1016/j.aej.2024.12.110_bib19 article-title: Operational evaluation of part-time shoulder use for interstate 476 in the state of Pennsylvania publication-title: Adv. Civ. Eng. – volume: 112 year: 2021 ident: 10.1016/j.aej.2024.12.110_bib54 article-title: A multi-agent simulator for generating novelty in monopoly publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2021.102364 – volume: 15 start-page: 11464 issue: 14 year: 2023 ident: 10.1016/j.aej.2024.12.110_bib40 article-title: Variable speed limit control for the motorway–urban merging bottlenecks using multi-agent reinforcement learning publication-title: Sustainability doi: 10.3390/su151411464 – volume: 55 start-page: 895 year: 2022 ident: 10.1016/j.aej.2024.12.110_bib60 article-title: Multi-agent deep reinforcement learning: a survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-09996-w – volume: 60 start-page: 1509 issue: 1 year: 2021 ident: 10.1016/j.aej.2024.12.110_bib50 article-title: Energy management of intelligent building based on deep reinforced learning publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.11.005 – year: 2024 ident: 10.1016/j.aej.2024.12.110_bib15 article-title: Hidden markov model-based dynamic hard shoulders running strategy in hybrid network environments publication-title: Appl. Sci. – volume: 2 start-page: 7 issue: 1 year: 2008 ident: 10.1016/j.aej.2024.12.110_bib31 article-title: Maximizing motorway capacity through hard shoulder running: UK perspective publication-title: Open Transp. J. doi: 10.2174/1874447800802010007 – volume: 24 start-page: 11623 issue: 11 year: 2023 ident: 10.1016/j.aej.2024.12.110_bib39 article-title: Deep multi-agent reinforcement learning for highway on-ramp merging in mixed traffic publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2023.3285442 – ident: 10.1016/j.aej.2024.12.110_bib5 doi: 10.1061/9780784481530.018 – volume: 41 start-page: 10 year: 2000 ident: 10.1016/j.aej.2024.12.110_bib9 article-title: Experience of using the hard shoulder to improve traffic flows publication-title: Traffic Eng. Control – ident: 10.1016/j.aej.2024.12.110_bib57 doi: 10.1109/TSMCC.2007.913919 – volume: 2674 start-page: 915 issue: 11 year: 2020 ident: 10.1016/j.aej.2024.12.110_bib36 article-title: Q-learning-based coordinated variable speed limit and hard shoulder running control strategy to reduce travel time at freeway corridor publication-title: Transp. Res. Rec. doi: 10.1177/0361198120949875 – volume: 2675 start-page: 345 issue: 8 year: 2021 ident: 10.1016/j.aej.2024.12.110_bib29 article-title: Long-Term safety analysis of hard shoulder running on freeways in Germany publication-title: Transp. Res. Rec. doi: 10.1177/0361198121997836 – ident: 10.1016/j.aej.2024.12.110_bib32 – ident: 10.1016/j.aej.2024.12.110_bib11 – volume: 2278 start-page: 67 issue: 1 year: 2012 ident: 10.1016/j.aej.2024.12.110_bib17 article-title: Operational experience with temporary hard shoulder running in Germany publication-title: Transp. Res. Rec. doi: 10.3141/2278-08 – ident: 10.1016/j.aej.2024.12.110_bib41 doi: 10.1109/ITSC45102.2020.9294639 – volume: 30 start-page: 30 issue: NIPS 2017 year: 2017 ident: 10.1016/j.aej.2024.12.110_bib62 article-title: Multi-agent actor-critic for mixed cooperative-competitive environments publication-title: Adv. Neural Inf. Process. Syst. – volume: 2470 start-page: 122 issue: 1 year: 2014 ident: 10.1016/j.aej.2024.12.110_bib18 article-title: Optimal control of motorways by ramp metering, variable speed limits, and hard-shoulder running publication-title: Transp. Res. Rec. doi: 10.3141/2470-13 – ident: 10.1016/j.aej.2024.12.110_bib63 – volume: 611 year: 2023 ident: 10.1016/j.aej.2024.12.110_bib58 article-title: Graph attention reinforcement learning with flexible matching policies for multi-depot vehicle routing problems publication-title: Phys. A Stat. Mech. Appl. – volume: 161 start-page: 36 year: 2022 ident: 10.1016/j.aej.2024.12.110_bib45 article-title: Multi-agent deep reinforcement learning for adaptive coordinated metro service operations with flexible train composition publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2022.05.001 |
| SSID | ssj0000579496 |
| Score | 2.355811 |
| Snippet | To alleviate traffic congestion and reduce vehicle emissions, the use of hard shoulder running (HSR) has emerged as a sustainable and cost-effective active... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 99 |
| SubjectTerms | Hard Shoulder Running Highway MADDPG Spatial-temporal constrains SUMO |
| Title | Simulation optimization of highway hard shoulder running based on multi-agent deep deterministic policy gradient algorithm |
| URI | https://dx.doi.org/10.1016/j.aej.2024.12.110 https://doaj.org/article/1e503378295644f3a614e59f62485d87 |
| Volume | 117 |
| WOSCitedRecordID | wos001398208000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1110-0168 databaseCode: DOA dateStart: 20100101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0000579496 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYoAB8SnKlzwwIUUktps4IyAqpgoJkLpFTnxuU7VNlaZI8Os5O0mVBVhYMkROHJ3Punfx3XuE3DCj0lCoyPPxMz2htO-lKS6IBp5lqQw1j40Tm4iGQzkaxS8dqS9bE1bTA9eGuwvAHrRhHEMgL4ThCuMJ9GMTWi4uLV0fOaKeTjJVs3qjnzlxLtzLtvIqlO2RpivuUjDF3JAJ-yswsN2znaDkuPs7sakTbwYHZL8BivS-_sBDsgWLI7LXoQ88Jl-v-bxR36IFbv1501NJC0MdDbH6pLapiq4mVsgaSlqunUIRtbFLUxzp6gk9ZfurqAZY4qUuj3H8zXTpWIPpuHSFYRVVs3FR5tVkfkLeB09vj89eo6XgZRiyK09EXAJCodRnGlMYzqRmmepzrQOpotikmKrGfW2YiaJYchAKja0Q3BjAbWuAn5LtRbGAM0JxiA5sWwk3qRCAIR8xIst4IAKZRQA94rfGTLKGaNzqXcyStqJsmqD9E2v_JGCYg_g9crt5ZFmzbPw2-MGu0GagJch2N9BtksZtkr_cpkdEu75JgzVqDIGvyn-e-_w_5r4gu8yqCLv6n0uyXZVruCI72UeVr8pr58jfo9L1LA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+optimization+of+highway+hard+shoulder+running+based+on+multi-agent+deep+deterministic+policy+gradient+algorithm&rft.jtitle=Alexandria+engineering+journal&rft.au=Hu%2C+Lipeng&rft.au=Tang%2C+Jinjun&rft.au=Zou%2C+Guoqing&rft.au=Li%2C+Zhitao&rft.date=2025-04-01&rft.issn=1110-0168&rft.volume=117&rft.spage=99&rft.epage=115&rft_id=info:doi/10.1016%2Fj.aej.2024.12.110&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aej_2024_12_110 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon |