Transport limitations in polyolefin cracking at the single catalyst particle level
Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important precursors of various platform chemicals, such as aromatics. Cracking catalysts, commonly used in the modern refinery and petrochemical industry, are...
Gespeichert in:
| Veröffentlicht in: | Chemical science (Cambridge) Jg. 14; H. 37; S. 168 - 18 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cambridge
Royal Society of Chemistry
27.09.2023
The Royal Society of Chemistry |
| Schlagworte: | |
| ISSN: | 2041-6520, 2041-6539 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important precursors of various platform chemicals, such as aromatics. Cracking catalysts, commonly used in the modern refinery and petrochemical industry, are tailored to process gaseous or liquid feedstock. Polyolefins, however, are very large macromolecules that form highly viscous melts at the temperatures required to break their backbone C-C bonds. Therefore, mass transport is expected to limit the performance of traditional cracking catalysts when applied to the conversion of polymers. In this work, we study these effects during the cracking of polypropylene (PP) over catalysts utilized in the fluid catalytic cracking (FCC) process. Thermogravimetric experiments using PP of varying molecular weight (
M
w
) and catalysts of varying accessibility showed that low
M
w
model polymers can be cracked below 275 °C, while PP of higher
M
w
required a 150 °C higher temperature. We propose that this difference is linked to different degrees of mass transport limitations and investigated this at length scales ranging from milli- to nanometers, utilizing
in situ
optical microscopy and electron microscopy to inspect cut open catalyst-polymer composites. We identified the main cause of transport limitations as the significantly higher melt viscosity of high
M
w
polymers, which prohibits efficient catalyst-polymer contact. Additionally, the high
M
w
polymer does not enter the inner pore system of the catalyst particles, severely limiting utilization of the active sites located there. Our results demonstrate that utilizing low
M
w
polymers can lead to a significant overestimation of catalyst activity, and suggest that polyolefins might need to undergo a viscosity reducing pre-treatment in order to be cracked efficiently.
Catalytic cracking could enable low temperature conversion of hard-to recycle polyolefin plastics. However, traditional cracking catalysts suffer from macro and microscopic mass transport limitations, which call for plastic pre-treatment. |
|---|---|
| AbstractList | Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important precursors of various platform chemicals, such as aromatics. Cracking catalysts, commonly used in the modern refinery and petrochemical industry, are tailored to process gaseous or liquid feedstock. Polyolefins, however, are very large macromolecules that form highly viscous melts at the temperatures required to break their backbone C-C bonds. Therefore, mass transport is expected to limit the performance of traditional cracking catalysts when applied to the conversion of polymers. In this work, we study these effects during the cracking of polypropylene (PP) over catalysts utilized in the fluid catalytic cracking (FCC) process. Thermogravimetric experiments using PP of varying molecular weight (Mw) and catalysts of varying accessibility showed that low Mw model polymers can be cracked below 275 °C, while PP of higher Mw required a 150 °C higher temperature. We propose that this difference is linked to different degrees of mass transport limitations and investigated this at length scales ranging from milli- to nanometers, utilizing in situ optical microscopy and electron microscopy to inspect cut open catalyst-polymer composites. We identified the main cause of transport limitations as the significantly higher melt viscosity of high Mw polymers, which prohibits efficient catalyst-polymer contact. Additionally, the high Mw polymer does not enter the inner pore system of the catalyst particles, severely limiting utilization of the active sites located there. Our results demonstrate that utilizing low Mw polymers can lead to a significant overestimation of catalyst activity, and suggest that polyolefins might need to undergo a viscosity reducing pre-treatment in order to be cracked efficiently.Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important precursors of various platform chemicals, such as aromatics. Cracking catalysts, commonly used in the modern refinery and petrochemical industry, are tailored to process gaseous or liquid feedstock. Polyolefins, however, are very large macromolecules that form highly viscous melts at the temperatures required to break their backbone C-C bonds. Therefore, mass transport is expected to limit the performance of traditional cracking catalysts when applied to the conversion of polymers. In this work, we study these effects during the cracking of polypropylene (PP) over catalysts utilized in the fluid catalytic cracking (FCC) process. Thermogravimetric experiments using PP of varying molecular weight (Mw) and catalysts of varying accessibility showed that low Mw model polymers can be cracked below 275 °C, while PP of higher Mw required a 150 °C higher temperature. We propose that this difference is linked to different degrees of mass transport limitations and investigated this at length scales ranging from milli- to nanometers, utilizing in situ optical microscopy and electron microscopy to inspect cut open catalyst-polymer composites. We identified the main cause of transport limitations as the significantly higher melt viscosity of high Mw polymers, which prohibits efficient catalyst-polymer contact. Additionally, the high Mw polymer does not enter the inner pore system of the catalyst particles, severely limiting utilization of the active sites located there. Our results demonstrate that utilizing low Mw polymers can lead to a significant overestimation of catalyst activity, and suggest that polyolefins might need to undergo a viscosity reducing pre-treatment in order to be cracked efficiently. Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important precursors of various platform chemicals, such as aromatics. Cracking catalysts, commonly used in the modern refinery and petrochemical industry, are tailored to process gaseous or liquid feedstock. Polyolefins, however, are very large macromolecules that form highly viscous melts at the temperatures required to break their backbone C-C bonds. Therefore, mass transport is expected to limit the performance of traditional cracking catalysts when applied to the conversion of polymers. In this work, we study these effects during the cracking of polypropylene (PP) over catalysts utilized in the fluid catalytic cracking (FCC) process. Thermogravimetric experiments using PP of varying molecular weight ( M w ) and catalysts of varying accessibility showed that low M w model polymers can be cracked below 275 °C, while PP of higher M w required a 150 °C higher temperature. We propose that this difference is linked to different degrees of mass transport limitations and investigated this at length scales ranging from milli- to nanometers, utilizing in situ optical microscopy and electron microscopy to inspect cut open catalyst-polymer composites. We identified the main cause of transport limitations as the significantly higher melt viscosity of high M w polymers, which prohibits efficient catalyst-polymer contact. Additionally, the high M w polymer does not enter the inner pore system of the catalyst particles, severely limiting utilization of the active sites located there. Our results demonstrate that utilizing low M w polymers can lead to a significant overestimation of catalyst activity, and suggest that polyolefins might need to undergo a viscosity reducing pre-treatment in order to be cracked efficiently. Catalytic cracking could enable low temperature conversion of hard-to recycle polyolefin plastics. However, traditional cracking catalysts suffer from macro and microscopic mass transport limitations, which call for plastic pre-treatment. Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important precursors of various platform chemicals, such as aromatics. Cracking catalysts, commonly used in the modern refinery and petrochemical industry, are tailored to process gaseous or liquid feedstock. Polyolefins, however, are very large macromolecules that form highly viscous melts at the temperatures required to break their backbone C–C bonds. Therefore, mass transport is expected to limit the performance of traditional cracking catalysts when applied to the conversion of polymers. In this work, we study these effects during the cracking of polypropylene (PP) over catalysts utilized in the fluid catalytic cracking (FCC) process. Thermogravimetric experiments using PP of varying molecular weight (Mw) and catalysts of varying accessibility showed that low Mw model polymers can be cracked below 275 °C, while PP of higher Mw required a 150 °C higher temperature. We propose that this difference is linked to different degrees of mass transport limitations and investigated this at length scales ranging from milli- to nanometers, utilizing in situ optical microscopy and electron microscopy to inspect cut open catalyst–polymer composites. We identified the main cause of transport limitations as the significantly higher melt viscosity of high Mw polymers, which prohibits efficient catalyst–polymer contact. Additionally, the high Mw polymer does not enter the inner pore system of the catalyst particles, severely limiting utilization of the active sites located there. Our results demonstrate that utilizing low Mw polymers can lead to a significant overestimation of catalyst activity, and suggest that polyolefins might need to undergo a viscosity reducing pre-treatment in order to be cracked efficiently. Catalytic cracking could enable low temperature conversion of hard-to recycle polyolefin plastics. However, traditional cracking catalysts suffer from macro and microscopic mass transport limitations, which call for plastic pre-treatment. Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important precursors of various platform chemicals, such as aromatics. Cracking catalysts, commonly used in the modern refinery and petrochemical industry, are tailored to process gaseous or liquid feedstock. Polyolefins, however, are very large macromolecules that form highly viscous melts at the temperatures required to break their backbone C–C bonds. Therefore, mass transport is expected to limit the performance of traditional cracking catalysts when applied to the conversion of polymers. In this work, we study these effects during the cracking of polypropylene (PP) over catalysts utilized in the fluid catalytic cracking (FCC) process. Thermogravimetric experiments using PP of varying molecular weight ( M w ) and catalysts of varying accessibility showed that low M w model polymers can be cracked below 275 °C, while PP of higher M w required a 150 °C higher temperature. We propose that this difference is linked to different degrees of mass transport limitations and investigated this at length scales ranging from milli- to nanometers, utilizing in situ optical microscopy and electron microscopy to inspect cut open catalyst–polymer composites. We identified the main cause of transport limitations as the significantly higher melt viscosity of high M w polymers, which prohibits efficient catalyst–polymer contact. Additionally, the high M w polymer does not enter the inner pore system of the catalyst particles, severely limiting utilization of the active sites located there. Our results demonstrate that utilizing low M w polymers can lead to a significant overestimation of catalyst activity, and suggest that polyolefins might need to undergo a viscosity reducing pre-treatment in order to be cracked efficiently. Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important precursors of various platform chemicals, such as aromatics. Cracking catalysts, commonly used in the modern refinery and petrochemical industry, are tailored to process gaseous or liquid feedstock. Polyolefins, however, are very large macromolecules that form highly viscous melts at the temperatures required to break their backbone C–C bonds. Therefore, mass transport is expected to limit the performance of traditional cracking catalysts when applied to the conversion of polymers. In this work, we study these effects during the cracking of polypropylene (PP) over catalysts utilized in the fluid catalytic cracking (FCC) process. Thermogravimetric experiments using PP of varying molecular weight (Mw) and catalysts of varying accessibility showed that low Mw model polymers can be cracked below 275 °C, while PP of higher Mw required a 150 °C higher temperature. We propose that this difference is linked to different degrees of mass transport limitations and investigated this at length scales ranging from milli- to nanometers, utilizing in situ optical microscopy and electron microscopy to inspect cut open catalyst–polymer composites. We identified the main cause of transport limitations as the significantly higher melt viscosity of high Mw polymers, which prohibits efficient catalyst–polymer contact. Additionally, the high Mw polymer does not enter the inner pore system of the catalyst particles, severely limiting utilization of the active sites located there. Our results demonstrate that utilizing low Mw polymers can lead to a significant overestimation of catalyst activity, and suggest that polyolefins might need to undergo a viscosity reducing pre-treatment in order to be cracked efficiently. |
| Author | Werny, Maximilian J Meirer, Florian Vogt, Eelco T. C Weckhuysen, Bert M Vollmer, Ina Rejman, Sebastian |
| AuthorAffiliation | Department of Chemistry Inorganic Chemistry and Catalysis Institute for Sustainable and Circular Chemistry Debye Institute for Nanomaterial Science Utrecht University |
| AuthorAffiliation_xml | – sequence: 0 name: Inorganic Chemistry and Catalysis – sequence: 0 name: Department of Chemistry – sequence: 0 name: Utrecht University – sequence: 0 name: Institute for Sustainable and Circular Chemistry – sequence: 0 name: Debye Institute for Nanomaterial Science |
| Author_xml | – sequence: 1 givenname: Sebastian surname: Rejman fullname: Rejman, Sebastian – sequence: 2 givenname: Ina surname: Vollmer fullname: Vollmer, Ina – sequence: 3 givenname: Maximilian J surname: Werny fullname: Werny, Maximilian J – sequence: 4 givenname: Eelco T. C surname: Vogt fullname: Vogt, Eelco T. C – sequence: 5 givenname: Florian surname: Meirer fullname: Meirer, Florian – sequence: 6 givenname: Bert M surname: Weckhuysen fullname: Weckhuysen, Bert M |
| BookMark | eNptkc1rGzEQxUVxoUnqS--FhV5KwKl25N21TsU4XwVDIEnPYqydTZTI0laSDf7vq8SuQ0100UP6zdOM3jEbOO-IsS8lPyu5kD9aETUXABI_sCPg43JUV0IO9hr4JzaM8YnnJURZQXPEbu8Dutj7kAprliZhMt7Fwrii93bjLXVZ6oD62biHAlORHqmIWVsqNCa0m5iKHkMyOp9YWpP9zD52aCMNd_sJ-315cT-7Hs1vrn7NpvORHvM6jcYVVMShmgipAVBL3sGimyw0lh1HFEityG3KBZIsgUBy3bbVWCI2jYRaixP2c-vbrxZLajW5FNCqPpglho3yaNT_N848qge_ViWvQMoassP3nUPwf1YUk1qaqMladORXUcGk4VLyGsqMfjtAn_wquDxfpmoJjYBKZIpvKR18jIE6pXdfmhswNr-sXpJS5-Ju9prUNJecHpT8G-Bd-OsWDlHvubfYxV_JGaD3 |
| CitedBy_id | crossref_primary_10_1016_j_mcat_2024_114755 crossref_primary_10_1038_s41467_025_57158_1 crossref_primary_10_1038_s44286_024_00108_3 crossref_primary_10_1039_D5SC90175H crossref_primary_10_1002_ange_202306033 crossref_primary_10_1016_j_biombioe_2025_107892 crossref_primary_10_1002_anie_202306033 crossref_primary_10_1038_s41467_025_63116_8 crossref_primary_10_1021_jacs_4c18001 crossref_primary_10_1063_5_0223598 crossref_primary_10_1039_D4RA02809K crossref_primary_10_1016_j_checat_2025_101459 crossref_primary_10_1002_anie_202409288 crossref_primary_10_1002_ange_202405252 crossref_primary_10_1002_ange_202409288 crossref_primary_10_1007_s10965_024_04095_0 crossref_primary_10_1002_anie_202405252 crossref_primary_10_1002_cssc_202401141 crossref_primary_10_1002_nadc_20244142791 crossref_primary_10_1016_j_apcata_2025_120574 crossref_primary_10_1039_D3CY01473H crossref_primary_10_1039_D4SC01754D crossref_primary_10_1021_acscentsci_4c02039 |
| Cites_doi | 10.1016/j.cej.2023.143251 10.1002/marc.202000415 10.1016/0021-9517(91)90208-L 10.1016/S0010-2180(96)00190-3 10.1016/j.apcatb.2023.122986 10.1016/S0165-2370(00)00162-5 10.1021/jacs.7b07139 10.1103/PhysRev.17.273 10.1139/v72-005 10.1038/s41929-023-00985-6 10.1038/s41929-020-00519-4 10.1016/j.wasman.2011.10.009 10.1016/j.wasman.2017.07.044 10.1016/S0079-6700(01)00011-9 10.1002/cssc.202101999 10.1016/S0165-2370(98)00103-X 10.1016/S0167-2991(01)80264-0 10.1016/j.jaap.2008.10.015 10.1016/j.conbuildmat.2012.05.035 10.1016/j.chempr.2020.12.006 10.1016/S0378-3820(97)86800-2 10.1016/j.cep.2004.02.016 10.1002/adfm.200800871 10.1103/PhysRevLett.103.174501 10.1039/C5CS00376H 10.1038/ncomms12634 10.1021/jacsau.1c00324 10.1016/S0165-2370(03)00036-6 10.1021/jacs.2c11407 10.1016/0141-3910(96)00080-8 10.1021/ie990512q 10.1122/1.3523626 10.1007/978-3-662-52856-3 10.1002/anie.201915651 10.1016/j.jaap.2004.11.037 10.1002/chem.201905867 10.1002/pol.1969.150070704 10.1016/j.wasman.2015.05.034 10.1016/j.jaap.2004.11.026 10.6028/jres.070A.043 10.1016/j.cej.2021.129412 10.1021/ie990513i 10.1016/j.tca.2008.01.015 10.1021/ma049642n 10.1007/s11242-018-1133-z 10.1016/j.apcata.2018.11.020 10.1063/1.479354 10.1002/anie.202104110 10.1002/pol.1967.110050404 10.1002/0470021543 10.1016/j.colsurfa.2015.09.055 10.1021/acscatal.6b00302 10.1016/j.cej.2022.135843 10.1080/00107517908210929 10.1126/sciadv.1700782 10.1039/D0MH01286F 10.1039/D1RE00431J 10.1002/(SICI)1097-4628(19980110)67:2<341::AID-APP15>3.0.CO;2-0 |
| ContentType | Journal Article |
| Copyright | Copyright Royal Society of Chemistry 2023 This journal is © The Royal Society of Chemistry. This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry |
| Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 – notice: This journal is © The Royal Society of Chemistry. – notice: This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry |
| DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
| DOI | 10.1039/d3sc03229a |
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2041-6539 |
| EndPage | 18 |
| ExternalDocumentID | PMC10529962 10_1039_D3SC03229A d3sc03229a |
| GrantInformation_xml | – fundername: ; grantid: MCEC Gravitation program & ARC CBBC program |
| GroupedDBID | -JG 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAXHV ABEMK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ AAYXX ABIQK AFPKN AGMRB CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
| ID | FETCH-LOGICAL-c406t-4525e025839c22ac90f2bf8bca1f0aa3aed30339bae912e290cdd549aa77926c3 |
| IEDL.DBID | RRC |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001061470000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-6520 |
| IngestDate | Tue Nov 04 02:06:32 EST 2025 Sun Nov 09 14:34:28 EST 2025 Sun Sep 07 03:46:23 EDT 2025 Tue Nov 18 21:12:08 EST 2025 Sat Nov 29 02:48:02 EST 2025 Tue Dec 17 20:58:29 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 37 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-4525e025839c22ac90f2bf8bca1f0aa3aed30339bae912e290cdd549aa77926c3 |
| Notes | optical microscopy. Additional data and experimental details. See DOI Electronic supplementary information (ESI) available: Videos of https://doi.org/10.1039/d3sc03229a in situ ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4556-4283 0000-0001-7976-6372 0000-0001-5245-1426 0000-0001-9917-1499 0000-0001-5581-5790 0000-0002-5714-3446 |
| OpenAccessLink | http://dx.doi.org/10.1039/d3sc03229a |
| PQID | 2869273253 |
| PQPubID | 2047492 |
| PageCount | 13 |
| ParticipantIDs | rsc_primary_d3sc03229a pubmedcentral_primary_oai_pubmedcentral_nih_gov_10529962 crossref_primary_10_1039_D3SC03229A crossref_citationtrail_10_1039_D3SC03229A proquest_journals_2869273253 proquest_miscellaneous_2870990621 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-27 |
| PublicationDateYYYYMMDD | 2023-09-27 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | Chemical science (Cambridge) |
| PublicationYear | 2023 |
| Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
| References | Marcilla (D3SC03229A/cit19/1) 2003; 68–69 Elliott (D3SC03229A/cit64/1) 1972; 50 Lin (D3SC03229A/cit44/1) 2008; 470 Chen (D3SC03229A/cit21/1) 2022; 7 Tennakoon (D3SC03229A/cit32/1) 2020; 3 Jaydev (D3SC03229A/cit7/1) 2021; 14 Socci (D3SC03229A/cit50/1) 2019; 570 Gruener (D3SC03229A/cit59/1) 2009; 103 Vollmer (D3SC03229A/cit1/1) 2020; 59 Aguado (D3SC03229A/cit31/1) 2005; 44 Flynn (D3SC03229A/cit43/1) 1966; 70A Gruener (D3SC03229A/cit34/1) 2019; 126 Al-Jabri (D3SC03229A/cit29/1) 2013; 39 Klein (D3SC03229A/cit58/1) 1979; 20 Manos (D3SC03229A/cit16/1) 2000; 39 Mertinkat (D3SC03229A/cit23/1) 1999; 49 Gahleitner (D3SC03229A/cit30/1) 2001; 26 Werny (D3SC03229A/cit55/1) 2022; 14 Negelein (D3SC03229A/cit17/1) 1998; 67 Wielers (D3SC03229A/cit51/1) 1991; 127 Jerdy (D3SC03229A/cit61/1) 2023; 337 Lee (D3SC03229A/cit22/1) 2022; 131 Schyns (D3SC03229A/cit2/1) 2021; 42 Vollmer (D3SC03229A/cit14/1) 2021; 60 Liu (D3SC03229A/cit15/1) 1996; 49 Behr (D3SC03229A/cit33/1) 2016 Wrasman (D3SC03229A/cit20/1) 2023; 6 Fredrickson (D3SC03229A/cit52/1) 1996; 1 Marcilla (D3SC03229A/cit46/1) 2001; 58–59 Serrano (D3SC03229A/cit47/1) 2005; 74 Zhao (D3SC03229A/cit13/1) 1996; 53 Velthoen (D3SC03229A/cit28/1) 2020; 26 Gruener (D3SC03229A/cit35/1) 2016; 496 Tsuchiya (D3SC03229A/cit12/1) 1969; 7 Donaj (D3SC03229A/cit24/1) 2012; 32 Serrano (D3SC03229A/cit18/1) 2005; 74 Hendriks (D3SC03229A/cit41/1) 2017; 139 Ge (D3SC03229A/cit38/1) 2023; 466 Scheirs (D3SC03229A/cit45/1) 2006 Washburn (D3SC03229A/cit56/1) 1921; 17 Vogt (D3SC03229A/cit27/1) 2015; 44 Elordi (D3SC03229A/cit25/1) 2009; 85 Kosloski-Oh (D3SC03229A/cit9/1) 2021; 8 Vogt (D3SC03229A/cit26/1) 2001; 137 von Meerwall (D3SC03229A/cit63/1) 1999; 111 Arisawa (D3SC03229A/cit11/1) 1997; 109 Geyer (D3SC03229A/cit4/1) 2017; 3 Doufas (D3SC03229A/cit62/1) 2011; 55 Artetxe (D3SC03229A/cit10/1) 2015; 45 Zimmermann (D3SC03229A/cit65/1) 2009 Dimitrov (D3SC03229A/cit37/1) 2007; 99 O'Connor (D3SC03229A/cit53/1) 2001 Manos (D3SC03229A/cit49/1) 2000; 39 Yao (D3SC03229A/cit36/1) 2018; 39 Mendelson (D3SC03229A/cit57/1) 1967; 5 Werny (D3SC03229A/cit54/1) 2021; 1 Li (D3SC03229A/cit6/1) 2023; 145 De Winter (D3SC03229A/cit40/1) 2016; 6 Zhou (D3SC03229A/cit5/1) 2021; 418 Ye (D3SC03229A/cit60/1) 2005; 38 Pérez-Ramírez (D3SC03229A/cit48/1) 2009; 19 Liu (D3SC03229A/cit39/1) 2016; 7 Ragaert (D3SC03229A/cit3/1) 2017; 69 Qie (D3SC03229A/cit42/1) 2022; 440 Martín (D3SC03229A/cit8/1) 2021; 7 |
| References_xml | – issn: 2016 publication-title: Einführung in die Technische Chemie doi: Behr Agar Jörissen Vorholt – issn: 2001 end-page: p 299-310 publication-title: Fluid Catalytic Cracking V doi: O'Connor Imhof Yanik – issn: 2009 publication-title: Ullmann's Encyclopedia of Industrial Chemistry doi: Zimmermann Walzl – issn: 1996 issue: vol. 1 publication-title: The theory of polymer dynamics doi: Fredrickson – issn: 2006 publication-title: Feedstock Recycling and Pyrolysis of Waste Plastics: Converting Waste Plastics into Diesel and Other Fuels doi: Scheirs Kaminsky – volume: 466 start-page: 143251 year: 2023 ident: D3SC03229A/cit38/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.143251 – volume: 42 start-page: 2000415 year: 2021 ident: D3SC03229A/cit2/1 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.202000415 – volume: 131 start-page: 1 issue: 13 year: 2022 ident: D3SC03229A/cit22/1 publication-title: Nat. Commun. – volume: 99 start-page: 1 year: 2007 ident: D3SC03229A/cit37/1 publication-title: Phys. Rev. Lett. – volume: 127 start-page: 51 year: 1991 ident: D3SC03229A/cit51/1 publication-title: J. Catal. doi: 10.1016/0021-9517(91)90208-L – volume: 109 start-page: 415 year: 1997 ident: D3SC03229A/cit11/1 publication-title: Combust. Flame doi: 10.1016/S0010-2180(96)00190-3 – volume: 337 start-page: 122986 year: 2023 ident: D3SC03229A/cit61/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2023.122986 – volume: 58–59 start-page: 117 year: 2001 ident: D3SC03229A/cit46/1 publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/S0165-2370(00)00162-5 – volume: 139 start-page: 13632 year: 2017 ident: D3SC03229A/cit41/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07139 – volume: 17 start-page: 273 year: 1921 ident: D3SC03229A/cit56/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.17.273 – volume: 50 start-page: 31 year: 1972 ident: D3SC03229A/cit64/1 publication-title: Can. J. Chem. doi: 10.1139/v72-005 – volume: 6 start-page: 563 year: 2023 ident: D3SC03229A/cit20/1 publication-title: Nat. Catal. doi: 10.1038/s41929-023-00985-6 – volume: 3 start-page: 893 year: 2020 ident: D3SC03229A/cit32/1 publication-title: Nat. Catal. doi: 10.1038/s41929-020-00519-4 – volume: 32 start-page: 840 year: 2012 ident: D3SC03229A/cit24/1 publication-title: Waste Manag. doi: 10.1016/j.wasman.2011.10.009 – volume: 69 start-page: 24 year: 2017 ident: D3SC03229A/cit3/1 publication-title: Waste Manag. doi: 10.1016/j.wasman.2017.07.044 – volume: 26 start-page: 895 year: 2001 ident: D3SC03229A/cit30/1 publication-title: Prog. Polym. Sci. doi: 10.1016/S0079-6700(01)00011-9 – volume: 14 start-page: 5179 year: 2021 ident: D3SC03229A/cit7/1 publication-title: ChemSusChem doi: 10.1002/cssc.202101999 – volume: 49 start-page: 87 year: 1999 ident: D3SC03229A/cit23/1 publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/S0165-2370(98)00103-X – volume: 137 start-page: 1003 year: 2001 ident: D3SC03229A/cit26/1 publication-title: Stud. Surf. Sci. Catal. doi: 10.1016/S0167-2991(01)80264-0 – volume: 85 start-page: 345 year: 2009 ident: D3SC03229A/cit25/1 publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2008.10.015 – volume: 39 start-page: 77 year: 2013 ident: D3SC03229A/cit29/1 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.05.035 – volume: 7 start-page: 1 year: 2021 ident: D3SC03229A/cit8/1 publication-title: Chem doi: 10.1016/j.chempr.2020.12.006 – volume: 49 start-page: 1 year: 1996 ident: D3SC03229A/cit15/1 publication-title: Fuel Process. Technol. doi: 10.1016/S0378-3820(97)86800-2 – volume: 44 start-page: 231 year: 2005 ident: D3SC03229A/cit31/1 publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2004.02.016 – volume: 19 start-page: 164 year: 2009 ident: D3SC03229A/cit48/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200800871 – volume: 103 start-page: 23 year: 2009 ident: D3SC03229A/cit59/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.174501 – volume: 44 start-page: 7342 year: 2015 ident: D3SC03229A/cit27/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00376H – volume: 7 start-page: 12634 year: 2016 ident: D3SC03229A/cit39/1 publication-title: Nat. Commun. doi: 10.1038/ncomms12634 – volume: 1 start-page: 1996 year: 2021 ident: D3SC03229A/cit54/1 publication-title: JACS Au doi: 10.1021/jacsau.1c00324 – volume: 68–69 start-page: 467 year: 2003 ident: D3SC03229A/cit19/1 publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/S0165-2370(03)00036-6 – volume: 145 start-page: 1847 issue: 3 year: 2023 ident: D3SC03229A/cit6/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c11407 – volume: 53 start-page: 129 year: 1996 ident: D3SC03229A/cit13/1 publication-title: Polym. Degrad. Stab. doi: 10.1016/0141-3910(96)00080-8 – volume: 39 start-page: 1198 year: 2000 ident: D3SC03229A/cit49/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie990512q – volume: 55 start-page: 95 year: 2011 ident: D3SC03229A/cit62/1 publication-title: J. Rheol. doi: 10.1122/1.3523626 – volume-title: Einführung in die Technische Chemie year: 2016 ident: D3SC03229A/cit33/1 doi: 10.1007/978-3-662-52856-3 – volume: 59 start-page: 15402 year: 2020 ident: D3SC03229A/cit1/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201915651 – volume: 74 start-page: 353 year: 2005 ident: D3SC03229A/cit18/1 publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2004.11.037 – volume: 26 start-page: 11995 year: 2020 ident: D3SC03229A/cit28/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.201905867 – volume: 7 start-page: 1599 year: 1969 ident: D3SC03229A/cit12/1 publication-title: J. Polym. Sci. doi: 10.1002/pol.1969.150070704 – volume: 45 start-page: 126 year: 2015 ident: D3SC03229A/cit10/1 publication-title: Waste Manag. doi: 10.1016/j.wasman.2015.05.034 – volume: 74 start-page: 370 year: 2005 ident: D3SC03229A/cit47/1 publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2004.11.026 – volume: 70A start-page: 487 year: 1966 ident: D3SC03229A/cit43/1 publication-title: J. Res. Natl. Inst. Stand. Technol. doi: 10.6028/jres.070A.043 – volume-title: Ullmann's Encyclopedia of Industrial Chemistry year: 2009 ident: D3SC03229A/cit65/1 – volume: 418 start-page: 129412 year: 2021 ident: D3SC03229A/cit5/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129412 – volume: 39 start-page: 1203 year: 2000 ident: D3SC03229A/cit16/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie990513i – volume: 470 start-page: 52 year: 2008 ident: D3SC03229A/cit44/1 publication-title: Thermochim. Acta doi: 10.1016/j.tca.2008.01.015 – volume: 38 start-page: 3442 year: 2005 ident: D3SC03229A/cit60/1 publication-title: Macromolecules doi: 10.1021/ma049642n – volume: 126 start-page: 599 year: 2019 ident: D3SC03229A/cit34/1 publication-title: Transp. Porous Media doi: 10.1007/s11242-018-1133-z – volume: 39 start-page: 1 year: 2018 ident: D3SC03229A/cit36/1 publication-title: Macromol. Rapid Commun. – start-page: 299 volume-title: Fluid Catalytic Cracking V year: 2001 ident: D3SC03229A/cit53/1 – volume: 570 start-page: 218 year: 2019 ident: D3SC03229A/cit50/1 publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2018.11.020 – volume: 1 volume-title: The theory of polymer dynamics year: 1996 ident: D3SC03229A/cit52/1 – volume: 111 start-page: 750 year: 1999 ident: D3SC03229A/cit63/1 publication-title: J. Chem. Phys. doi: 10.1063/1.479354 – volume: 60 start-page: 16101 year: 2021 ident: D3SC03229A/cit14/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202104110 – volume: 5 start-page: 295 year: 1967 ident: D3SC03229A/cit57/1 publication-title: J. Polym. Sci., Part B: Polym. Lett. doi: 10.1002/pol.1967.110050404 – volume-title: Feedstock Recycling and Pyrolysis of Waste Plastics: Converting Waste Plastics into Diesel and Other Fuels year: 2006 ident: D3SC03229A/cit45/1 doi: 10.1002/0470021543 – volume: 496 start-page: 13 year: 2016 ident: D3SC03229A/cit35/1 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2015.09.055 – volume: 14 start-page: e2022000 year: 2022 ident: D3SC03229A/cit55/1 publication-title: ChemCatChem – volume: 6 start-page: 3158 year: 2016 ident: D3SC03229A/cit40/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b00302 – volume: 440 start-page: 135843 year: 2022 ident: D3SC03229A/cit42/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135843 – volume: 20 start-page: 611 year: 1979 ident: D3SC03229A/cit58/1 publication-title: Contemp. Phys. doi: 10.1080/00107517908210929 – volume: 3 start-page: e1700782 year: 2017 ident: D3SC03229A/cit4/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1700782 – volume: 8 start-page: 1084 year: 2021 ident: D3SC03229A/cit9/1 publication-title: Mater. Horiz. doi: 10.1039/D0MH01286F – volume: 7 start-page: 844 year: 2022 ident: D3SC03229A/cit21/1 publication-title: React. Chem. Eng. doi: 10.1039/D1RE00431J – volume: 67 start-page: 341 year: 1998 ident: D3SC03229A/cit17/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/(SICI)1097-4628(19980110)67:2<341::AID-APP15>3.0.CO;2-0 |
| SSID | ssj0000331527 |
| Score | 2.5394237 |
| Snippet | Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important... |
| SourceID | pubmedcentral proquest crossref rsc |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 168 |
| SubjectTerms | Addition polymerization Catalysts Catalytic converters Catalytic cracking Chemistry Contact melting Covalent bonds Fluid catalytic cracking Macromolecules Mass transport Microscopy Naphtha Optical microscopy Polymer matrix composites Polymers Polyolefins Refineries Viscosity |
| Title | Transport limitations in polyolefin cracking at the single catalyst particle level |
| URI | https://www.proquest.com/docview/2869273253 https://www.proquest.com/docview/2870990621 https://pubmed.ncbi.nlm.nih.gov/PMC10529962 |
| Volume | 14 |
| WOSCitedRecordID | wos001061470000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAUL databaseName: Royal Society of Chemistry (SIKT) customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: RRC dateStart: 20100101 isFulltext: true titleUrlDefault: https://pubs.rsc.org/ providerName: Royal Society of Chemistry |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sEfTiuxgfZcVePAST3SabPZaqeBARH9Bb2Gw3WAhpSaPgv3d2m0QiFrwFdpYkMxPmm_k2MwCDVGruC00xLVGGZuTSjRIWuEmQhCJBB_CVbZn_wB8fo8lEPG3AYA2Dz8T1lC2Vh24nLArCrNuk5M_jppDiMVaNZqXe0HfDgHp1G9LW7nbg-UGTv89Cdop69IcNMXe7_3u4PdipICQZrWy-Dxs6P4CtcT257RCem47lJDP_L62KcmSWk8U8-5pnOsVLVUhlyuRElgRBIDE1g0wTW875WpZkUfkUycyxoiN4u7t9Hd-71ewEV2GILl1DV2rEM4h_FKVSCS-lSRolSvqpJyWTeorBi4lEauFTTYWnplPMFaXkXNBQsR5083muj4Ewqvkw9QMlTTpFw0SiFEsDRH4palw6cFUrNlbVO5n5FllsCW4m4hv2MrZaGjlw2cguVu00_pQ6q-0TV5_UMqZRKBBr0YA5cNEso2YNwyFzPf8wMtwQfSH1HYhadm3uZtppt1fy2bttq-0b0lOE1IEeukCz4cfEJ-sWTmHbTKE3x0goP4NuWXzoc9hUn-VsWfShwydR3yb7feu635QH5-Y |
| linkProvider | Royal Society of Chemistry |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transport+limitations+in+polyolefin+cracking+at+the+single+catalyst+particle+level&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Rejman%2C+Sebastian&rft.au=Vollmer%2C+Ina&rft.au=Werny%2C+Maximilian+J.&rft.au=Vogt%2C+Eelco+T.+C.&rft.date=2023-09-27&rft.pub=The+Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=14&rft.issue=37&rft.spage=10068&rft.epage=10080&rft_id=info:doi/10.1039%2Fd3sc03229a&rft.externalDocID=PMC10529962 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |