Transport limitations in polyolefin cracking at the single catalyst particle level

Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important precursors of various platform chemicals, such as aromatics. Cracking catalysts, commonly used in the modern refinery and petrochemical industry, are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) Jg. 14; H. 37; S. 168 - 18
Hauptverfasser: Rejman, Sebastian, Vollmer, Ina, Werny, Maximilian J, Vogt, Eelco T. C, Meirer, Florian, Weckhuysen, Bert M
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge Royal Society of Chemistry 27.09.2023
The Royal Society of Chemistry
Schlagworte:
ISSN:2041-6520, 2041-6539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important precursors of various platform chemicals, such as aromatics. Cracking catalysts, commonly used in the modern refinery and petrochemical industry, are tailored to process gaseous or liquid feedstock. Polyolefins, however, are very large macromolecules that form highly viscous melts at the temperatures required to break their backbone C-C bonds. Therefore, mass transport is expected to limit the performance of traditional cracking catalysts when applied to the conversion of polymers. In this work, we study these effects during the cracking of polypropylene (PP) over catalysts utilized in the fluid catalytic cracking (FCC) process. Thermogravimetric experiments using PP of varying molecular weight ( M w ) and catalysts of varying accessibility showed that low M w model polymers can be cracked below 275 °C, while PP of higher M w required a 150 °C higher temperature. We propose that this difference is linked to different degrees of mass transport limitations and investigated this at length scales ranging from milli- to nanometers, utilizing in situ optical microscopy and electron microscopy to inspect cut open catalyst-polymer composites. We identified the main cause of transport limitations as the significantly higher melt viscosity of high M w polymers, which prohibits efficient catalyst-polymer contact. Additionally, the high M w polymer does not enter the inner pore system of the catalyst particles, severely limiting utilization of the active sites located there. Our results demonstrate that utilizing low M w polymers can lead to a significant overestimation of catalyst activity, and suggest that polyolefins might need to undergo a viscosity reducing pre-treatment in order to be cracked efficiently. Catalytic cracking could enable low temperature conversion of hard-to recycle polyolefin plastics. However, traditional cracking catalysts suffer from macro and microscopic mass transport limitations, which call for plastic pre-treatment.
AbstractList Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important precursors of various platform chemicals, such as aromatics. Cracking catalysts, commonly used in the modern refinery and petrochemical industry, are tailored to process gaseous or liquid feedstock. Polyolefins, however, are very large macromolecules that form highly viscous melts at the temperatures required to break their backbone C-C bonds. Therefore, mass transport is expected to limit the performance of traditional cracking catalysts when applied to the conversion of polymers. In this work, we study these effects during the cracking of polypropylene (PP) over catalysts utilized in the fluid catalytic cracking (FCC) process. Thermogravimetric experiments using PP of varying molecular weight (Mw) and catalysts of varying accessibility showed that low Mw model polymers can be cracked below 275 °C, while PP of higher Mw required a 150 °C higher temperature. We propose that this difference is linked to different degrees of mass transport limitations and investigated this at length scales ranging from milli- to nanometers, utilizing in situ optical microscopy and electron microscopy to inspect cut open catalyst-polymer composites. We identified the main cause of transport limitations as the significantly higher melt viscosity of high Mw polymers, which prohibits efficient catalyst-polymer contact. Additionally, the high Mw polymer does not enter the inner pore system of the catalyst particles, severely limiting utilization of the active sites located there. Our results demonstrate that utilizing low Mw polymers can lead to a significant overestimation of catalyst activity, and suggest that polyolefins might need to undergo a viscosity reducing pre-treatment in order to be cracked efficiently.Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important precursors of various platform chemicals, such as aromatics. Cracking catalysts, commonly used in the modern refinery and petrochemical industry, are tailored to process gaseous or liquid feedstock. Polyolefins, however, are very large macromolecules that form highly viscous melts at the temperatures required to break their backbone C-C bonds. Therefore, mass transport is expected to limit the performance of traditional cracking catalysts when applied to the conversion of polymers. In this work, we study these effects during the cracking of polypropylene (PP) over catalysts utilized in the fluid catalytic cracking (FCC) process. Thermogravimetric experiments using PP of varying molecular weight (Mw) and catalysts of varying accessibility showed that low Mw model polymers can be cracked below 275 °C, while PP of higher Mw required a 150 °C higher temperature. We propose that this difference is linked to different degrees of mass transport limitations and investigated this at length scales ranging from milli- to nanometers, utilizing in situ optical microscopy and electron microscopy to inspect cut open catalyst-polymer composites. We identified the main cause of transport limitations as the significantly higher melt viscosity of high Mw polymers, which prohibits efficient catalyst-polymer contact. Additionally, the high Mw polymer does not enter the inner pore system of the catalyst particles, severely limiting utilization of the active sites located there. Our results demonstrate that utilizing low Mw polymers can lead to a significant overestimation of catalyst activity, and suggest that polyolefins might need to undergo a viscosity reducing pre-treatment in order to be cracked efficiently.
Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important precursors of various platform chemicals, such as aromatics. Cracking catalysts, commonly used in the modern refinery and petrochemical industry, are tailored to process gaseous or liquid feedstock. Polyolefins, however, are very large macromolecules that form highly viscous melts at the temperatures required to break their backbone C-C bonds. Therefore, mass transport is expected to limit the performance of traditional cracking catalysts when applied to the conversion of polymers. In this work, we study these effects during the cracking of polypropylene (PP) over catalysts utilized in the fluid catalytic cracking (FCC) process. Thermogravimetric experiments using PP of varying molecular weight ( M w ) and catalysts of varying accessibility showed that low M w model polymers can be cracked below 275 °C, while PP of higher M w required a 150 °C higher temperature. We propose that this difference is linked to different degrees of mass transport limitations and investigated this at length scales ranging from milli- to nanometers, utilizing in situ optical microscopy and electron microscopy to inspect cut open catalyst-polymer composites. We identified the main cause of transport limitations as the significantly higher melt viscosity of high M w polymers, which prohibits efficient catalyst-polymer contact. Additionally, the high M w polymer does not enter the inner pore system of the catalyst particles, severely limiting utilization of the active sites located there. Our results demonstrate that utilizing low M w polymers can lead to a significant overestimation of catalyst activity, and suggest that polyolefins might need to undergo a viscosity reducing pre-treatment in order to be cracked efficiently. Catalytic cracking could enable low temperature conversion of hard-to recycle polyolefin plastics. However, traditional cracking catalysts suffer from macro and microscopic mass transport limitations, which call for plastic pre-treatment.
Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important precursors of various platform chemicals, such as aromatics. Cracking catalysts, commonly used in the modern refinery and petrochemical industry, are tailored to process gaseous or liquid feedstock. Polyolefins, however, are very large macromolecules that form highly viscous melts at the temperatures required to break their backbone C–C bonds. Therefore, mass transport is expected to limit the performance of traditional cracking catalysts when applied to the conversion of polymers. In this work, we study these effects during the cracking of polypropylene (PP) over catalysts utilized in the fluid catalytic cracking (FCC) process. Thermogravimetric experiments using PP of varying molecular weight (Mw) and catalysts of varying accessibility showed that low Mw model polymers can be cracked below 275 °C, while PP of higher Mw required a 150 °C higher temperature. We propose that this difference is linked to different degrees of mass transport limitations and investigated this at length scales ranging from milli- to nanometers, utilizing in situ optical microscopy and electron microscopy to inspect cut open catalyst–polymer composites. We identified the main cause of transport limitations as the significantly higher melt viscosity of high Mw polymers, which prohibits efficient catalyst–polymer contact. Additionally, the high Mw polymer does not enter the inner pore system of the catalyst particles, severely limiting utilization of the active sites located there. Our results demonstrate that utilizing low Mw polymers can lead to a significant overestimation of catalyst activity, and suggest that polyolefins might need to undergo a viscosity reducing pre-treatment in order to be cracked efficiently. Catalytic cracking could enable low temperature conversion of hard-to recycle polyolefin plastics. However, traditional cracking catalysts suffer from macro and microscopic mass transport limitations, which call for plastic pre-treatment.
Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important precursors of various platform chemicals, such as aromatics. Cracking catalysts, commonly used in the modern refinery and petrochemical industry, are tailored to process gaseous or liquid feedstock. Polyolefins, however, are very large macromolecules that form highly viscous melts at the temperatures required to break their backbone C–C bonds. Therefore, mass transport is expected to limit the performance of traditional cracking catalysts when applied to the conversion of polymers. In this work, we study these effects during the cracking of polypropylene (PP) over catalysts utilized in the fluid catalytic cracking (FCC) process. Thermogravimetric experiments using PP of varying molecular weight ( M w ) and catalysts of varying accessibility showed that low M w model polymers can be cracked below 275 °C, while PP of higher M w required a 150 °C higher temperature. We propose that this difference is linked to different degrees of mass transport limitations and investigated this at length scales ranging from milli- to nanometers, utilizing in situ optical microscopy and electron microscopy to inspect cut open catalyst–polymer composites. We identified the main cause of transport limitations as the significantly higher melt viscosity of high M w polymers, which prohibits efficient catalyst–polymer contact. Additionally, the high M w polymer does not enter the inner pore system of the catalyst particles, severely limiting utilization of the active sites located there. Our results demonstrate that utilizing low M w polymers can lead to a significant overestimation of catalyst activity, and suggest that polyolefins might need to undergo a viscosity reducing pre-treatment in order to be cracked efficiently.
Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important precursors of various platform chemicals, such as aromatics. Cracking catalysts, commonly used in the modern refinery and petrochemical industry, are tailored to process gaseous or liquid feedstock. Polyolefins, however, are very large macromolecules that form highly viscous melts at the temperatures required to break their backbone C–C bonds. Therefore, mass transport is expected to limit the performance of traditional cracking catalysts when applied to the conversion of polymers. In this work, we study these effects during the cracking of polypropylene (PP) over catalysts utilized in the fluid catalytic cracking (FCC) process. Thermogravimetric experiments using PP of varying molecular weight (Mw) and catalysts of varying accessibility showed that low Mw model polymers can be cracked below 275 °C, while PP of higher Mw required a 150 °C higher temperature. We propose that this difference is linked to different degrees of mass transport limitations and investigated this at length scales ranging from milli- to nanometers, utilizing in situ optical microscopy and electron microscopy to inspect cut open catalyst–polymer composites. We identified the main cause of transport limitations as the significantly higher melt viscosity of high Mw polymers, which prohibits efficient catalyst–polymer contact. Additionally, the high Mw polymer does not enter the inner pore system of the catalyst particles, severely limiting utilization of the active sites located there. Our results demonstrate that utilizing low Mw polymers can lead to a significant overestimation of catalyst activity, and suggest that polyolefins might need to undergo a viscosity reducing pre-treatment in order to be cracked efficiently.
Author Werny, Maximilian J
Meirer, Florian
Vogt, Eelco T. C
Weckhuysen, Bert M
Vollmer, Ina
Rejman, Sebastian
AuthorAffiliation Department of Chemistry
Inorganic Chemistry and Catalysis
Institute for Sustainable and Circular Chemistry
Debye Institute for Nanomaterial Science
Utrecht University
AuthorAffiliation_xml – sequence: 0
  name: Inorganic Chemistry and Catalysis
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: Utrecht University
– sequence: 0
  name: Institute for Sustainable and Circular Chemistry
– sequence: 0
  name: Debye Institute for Nanomaterial Science
Author_xml – sequence: 1
  givenname: Sebastian
  surname: Rejman
  fullname: Rejman, Sebastian
– sequence: 2
  givenname: Ina
  surname: Vollmer
  fullname: Vollmer, Ina
– sequence: 3
  givenname: Maximilian J
  surname: Werny
  fullname: Werny, Maximilian J
– sequence: 4
  givenname: Eelco T. C
  surname: Vogt
  fullname: Vogt, Eelco T. C
– sequence: 5
  givenname: Florian
  surname: Meirer
  fullname: Meirer, Florian
– sequence: 6
  givenname: Bert M
  surname: Weckhuysen
  fullname: Weckhuysen, Bert M
BookMark eNptkc1rGzEQxUVxoUnqS--FhV5KwKl25N21TsU4XwVDIEnPYqydTZTI0laSDf7vq8SuQ0100UP6zdOM3jEbOO-IsS8lPyu5kD9aETUXABI_sCPg43JUV0IO9hr4JzaM8YnnJURZQXPEbu8Dutj7kAprliZhMt7Fwrii93bjLXVZ6oD62biHAlORHqmIWVsqNCa0m5iKHkMyOp9YWpP9zD52aCMNd_sJ-315cT-7Hs1vrn7NpvORHvM6jcYVVMShmgipAVBL3sGimyw0lh1HFEityG3KBZIsgUBy3bbVWCI2jYRaixP2c-vbrxZLajW5FNCqPpglho3yaNT_N848qge_ViWvQMoassP3nUPwf1YUk1qaqMladORXUcGk4VLyGsqMfjtAn_wquDxfpmoJjYBKZIpvKR18jIE6pXdfmhswNr-sXpJS5-Ju9prUNJecHpT8G-Bd-OsWDlHvubfYxV_JGaD3
CitedBy_id crossref_primary_10_1016_j_mcat_2024_114755
crossref_primary_10_1038_s41467_025_57158_1
crossref_primary_10_1038_s44286_024_00108_3
crossref_primary_10_1039_D5SC90175H
crossref_primary_10_1002_ange_202306033
crossref_primary_10_1016_j_biombioe_2025_107892
crossref_primary_10_1002_anie_202306033
crossref_primary_10_1038_s41467_025_63116_8
crossref_primary_10_1021_jacs_4c18001
crossref_primary_10_1063_5_0223598
crossref_primary_10_1039_D4RA02809K
crossref_primary_10_1016_j_checat_2025_101459
crossref_primary_10_1002_anie_202409288
crossref_primary_10_1002_ange_202405252
crossref_primary_10_1002_ange_202409288
crossref_primary_10_1007_s10965_024_04095_0
crossref_primary_10_1002_anie_202405252
crossref_primary_10_1002_cssc_202401141
crossref_primary_10_1002_nadc_20244142791
crossref_primary_10_1016_j_apcata_2025_120574
crossref_primary_10_1039_D3CY01473H
crossref_primary_10_1039_D4SC01754D
crossref_primary_10_1021_acscentsci_4c02039
Cites_doi 10.1016/j.cej.2023.143251
10.1002/marc.202000415
10.1016/0021-9517(91)90208-L
10.1016/S0010-2180(96)00190-3
10.1016/j.apcatb.2023.122986
10.1016/S0165-2370(00)00162-5
10.1021/jacs.7b07139
10.1103/PhysRev.17.273
10.1139/v72-005
10.1038/s41929-023-00985-6
10.1038/s41929-020-00519-4
10.1016/j.wasman.2011.10.009
10.1016/j.wasman.2017.07.044
10.1016/S0079-6700(01)00011-9
10.1002/cssc.202101999
10.1016/S0165-2370(98)00103-X
10.1016/S0167-2991(01)80264-0
10.1016/j.jaap.2008.10.015
10.1016/j.conbuildmat.2012.05.035
10.1016/j.chempr.2020.12.006
10.1016/S0378-3820(97)86800-2
10.1016/j.cep.2004.02.016
10.1002/adfm.200800871
10.1103/PhysRevLett.103.174501
10.1039/C5CS00376H
10.1038/ncomms12634
10.1021/jacsau.1c00324
10.1016/S0165-2370(03)00036-6
10.1021/jacs.2c11407
10.1016/0141-3910(96)00080-8
10.1021/ie990512q
10.1122/1.3523626
10.1007/978-3-662-52856-3
10.1002/anie.201915651
10.1016/j.jaap.2004.11.037
10.1002/chem.201905867
10.1002/pol.1969.150070704
10.1016/j.wasman.2015.05.034
10.1016/j.jaap.2004.11.026
10.6028/jres.070A.043
10.1016/j.cej.2021.129412
10.1021/ie990513i
10.1016/j.tca.2008.01.015
10.1021/ma049642n
10.1007/s11242-018-1133-z
10.1016/j.apcata.2018.11.020
10.1063/1.479354
10.1002/anie.202104110
10.1002/pol.1967.110050404
10.1002/0470021543
10.1016/j.colsurfa.2015.09.055
10.1021/acscatal.6b00302
10.1016/j.cej.2022.135843
10.1080/00107517908210929
10.1126/sciadv.1700782
10.1039/D0MH01286F
10.1039/D1RE00431J
10.1002/(SICI)1097-4628(19980110)67:2<341::AID-APP15>3.0.CO;2-0
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
This journal is © The Royal Society of Chemistry.
This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
– notice: This journal is © The Royal Society of Chemistry.
– notice: This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d3sc03229a
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 18
ExternalDocumentID PMC10529962
10_1039_D3SC03229A
d3sc03229a
GrantInformation_xml – fundername: ;
  grantid: MCEC Gravitation program & ARC CBBC program
GroupedDBID -JG
0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAXHV
ABEMK
ABPDG
ABXOH
ACGFS
ACIWK
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
APEMP
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~N
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
AAYXX
ABIQK
AFPKN
AGMRB
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c406t-4525e025839c22ac90f2bf8bca1f0aa3aed30339bae912e290cdd549aa77926c3
IEDL.DBID RRC
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001061470000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-6520
IngestDate Tue Nov 04 02:06:32 EST 2025
Sun Nov 09 14:34:28 EST 2025
Sun Sep 07 03:46:23 EDT 2025
Tue Nov 18 21:12:08 EST 2025
Sat Nov 29 02:48:02 EST 2025
Tue Dec 17 20:58:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-4525e025839c22ac90f2bf8bca1f0aa3aed30339bae912e290cdd549aa77926c3
Notes optical microscopy. Additional data and experimental details. See DOI
Electronic supplementary information (ESI) available: Videos of
https://doi.org/10.1039/d3sc03229a
in situ
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4556-4283
0000-0001-7976-6372
0000-0001-5245-1426
0000-0001-9917-1499
0000-0001-5581-5790
0000-0002-5714-3446
OpenAccessLink http://dx.doi.org/10.1039/d3sc03229a
PQID 2869273253
PQPubID 2047492
PageCount 13
ParticipantIDs rsc_primary_d3sc03229a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10529962
crossref_primary_10_1039_D3SC03229A
crossref_citationtrail_10_1039_D3SC03229A
proquest_journals_2869273253
proquest_miscellaneous_2870990621
PublicationCentury 2000
PublicationDate 2023-09-27
PublicationDateYYYYMMDD 2023-09-27
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-27
  day: 27
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationYear 2023
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Marcilla (D3SC03229A/cit19/1) 2003; 68–69
Elliott (D3SC03229A/cit64/1) 1972; 50
Lin (D3SC03229A/cit44/1) 2008; 470
Chen (D3SC03229A/cit21/1) 2022; 7
Tennakoon (D3SC03229A/cit32/1) 2020; 3
Jaydev (D3SC03229A/cit7/1) 2021; 14
Socci (D3SC03229A/cit50/1) 2019; 570
Gruener (D3SC03229A/cit59/1) 2009; 103
Vollmer (D3SC03229A/cit1/1) 2020; 59
Aguado (D3SC03229A/cit31/1) 2005; 44
Flynn (D3SC03229A/cit43/1) 1966; 70A
Gruener (D3SC03229A/cit34/1) 2019; 126
Al-Jabri (D3SC03229A/cit29/1) 2013; 39
Klein (D3SC03229A/cit58/1) 1979; 20
Manos (D3SC03229A/cit16/1) 2000; 39
Mertinkat (D3SC03229A/cit23/1) 1999; 49
Gahleitner (D3SC03229A/cit30/1) 2001; 26
Werny (D3SC03229A/cit55/1) 2022; 14
Negelein (D3SC03229A/cit17/1) 1998; 67
Wielers (D3SC03229A/cit51/1) 1991; 127
Jerdy (D3SC03229A/cit61/1) 2023; 337
Lee (D3SC03229A/cit22/1) 2022; 131
Schyns (D3SC03229A/cit2/1) 2021; 42
Vollmer (D3SC03229A/cit14/1) 2021; 60
Liu (D3SC03229A/cit15/1) 1996; 49
Behr (D3SC03229A/cit33/1) 2016
Wrasman (D3SC03229A/cit20/1) 2023; 6
Fredrickson (D3SC03229A/cit52/1) 1996; 1
Marcilla (D3SC03229A/cit46/1) 2001; 58–59
Serrano (D3SC03229A/cit47/1) 2005; 74
Zhao (D3SC03229A/cit13/1) 1996; 53
Velthoen (D3SC03229A/cit28/1) 2020; 26
Gruener (D3SC03229A/cit35/1) 2016; 496
Tsuchiya (D3SC03229A/cit12/1) 1969; 7
Donaj (D3SC03229A/cit24/1) 2012; 32
Serrano (D3SC03229A/cit18/1) 2005; 74
Hendriks (D3SC03229A/cit41/1) 2017; 139
Ge (D3SC03229A/cit38/1) 2023; 466
Scheirs (D3SC03229A/cit45/1) 2006
Washburn (D3SC03229A/cit56/1) 1921; 17
Vogt (D3SC03229A/cit27/1) 2015; 44
Elordi (D3SC03229A/cit25/1) 2009; 85
Kosloski-Oh (D3SC03229A/cit9/1) 2021; 8
Vogt (D3SC03229A/cit26/1) 2001; 137
von Meerwall (D3SC03229A/cit63/1) 1999; 111
Arisawa (D3SC03229A/cit11/1) 1997; 109
Geyer (D3SC03229A/cit4/1) 2017; 3
Doufas (D3SC03229A/cit62/1) 2011; 55
Artetxe (D3SC03229A/cit10/1) 2015; 45
Zimmermann (D3SC03229A/cit65/1) 2009
Dimitrov (D3SC03229A/cit37/1) 2007; 99
O'Connor (D3SC03229A/cit53/1) 2001
Manos (D3SC03229A/cit49/1) 2000; 39
Yao (D3SC03229A/cit36/1) 2018; 39
Mendelson (D3SC03229A/cit57/1) 1967; 5
Werny (D3SC03229A/cit54/1) 2021; 1
Li (D3SC03229A/cit6/1) 2023; 145
De Winter (D3SC03229A/cit40/1) 2016; 6
Zhou (D3SC03229A/cit5/1) 2021; 418
Ye (D3SC03229A/cit60/1) 2005; 38
Pérez-Ramírez (D3SC03229A/cit48/1) 2009; 19
Liu (D3SC03229A/cit39/1) 2016; 7
Ragaert (D3SC03229A/cit3/1) 2017; 69
Qie (D3SC03229A/cit42/1) 2022; 440
Martín (D3SC03229A/cit8/1) 2021; 7
References_xml – issn: 2016
  publication-title: Einführung in die Technische Chemie
  doi: Behr Agar Jörissen Vorholt
– issn: 2001
  end-page: p 299-310
  publication-title: Fluid Catalytic Cracking V
  doi: O'Connor Imhof Yanik
– issn: 2009
  publication-title: Ullmann's Encyclopedia of Industrial Chemistry
  doi: Zimmermann Walzl
– issn: 1996
  issue: vol. 1
  publication-title: The theory of polymer dynamics
  doi: Fredrickson
– issn: 2006
  publication-title: Feedstock Recycling and Pyrolysis of Waste Plastics: Converting Waste Plastics into Diesel and Other Fuels
  doi: Scheirs Kaminsky
– volume: 466
  start-page: 143251
  year: 2023
  ident: D3SC03229A/cit38/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.143251
– volume: 42
  start-page: 2000415
  year: 2021
  ident: D3SC03229A/cit2/1
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.202000415
– volume: 131
  start-page: 1
  issue: 13
  year: 2022
  ident: D3SC03229A/cit22/1
  publication-title: Nat. Commun.
– volume: 99
  start-page: 1
  year: 2007
  ident: D3SC03229A/cit37/1
  publication-title: Phys. Rev. Lett.
– volume: 127
  start-page: 51
  year: 1991
  ident: D3SC03229A/cit51/1
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(91)90208-L
– volume: 109
  start-page: 415
  year: 1997
  ident: D3SC03229A/cit11/1
  publication-title: Combust. Flame
  doi: 10.1016/S0010-2180(96)00190-3
– volume: 337
  start-page: 122986
  year: 2023
  ident: D3SC03229A/cit61/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2023.122986
– volume: 58–59
  start-page: 117
  year: 2001
  ident: D3SC03229A/cit46/1
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/S0165-2370(00)00162-5
– volume: 139
  start-page: 13632
  year: 2017
  ident: D3SC03229A/cit41/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07139
– volume: 17
  start-page: 273
  year: 1921
  ident: D3SC03229A/cit56/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.17.273
– volume: 50
  start-page: 31
  year: 1972
  ident: D3SC03229A/cit64/1
  publication-title: Can. J. Chem.
  doi: 10.1139/v72-005
– volume: 6
  start-page: 563
  year: 2023
  ident: D3SC03229A/cit20/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-023-00985-6
– volume: 3
  start-page: 893
  year: 2020
  ident: D3SC03229A/cit32/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00519-4
– volume: 32
  start-page: 840
  year: 2012
  ident: D3SC03229A/cit24/1
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2011.10.009
– volume: 69
  start-page: 24
  year: 2017
  ident: D3SC03229A/cit3/1
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2017.07.044
– volume: 26
  start-page: 895
  year: 2001
  ident: D3SC03229A/cit30/1
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/S0079-6700(01)00011-9
– volume: 14
  start-page: 5179
  year: 2021
  ident: D3SC03229A/cit7/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202101999
– volume: 49
  start-page: 87
  year: 1999
  ident: D3SC03229A/cit23/1
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/S0165-2370(98)00103-X
– volume: 137
  start-page: 1003
  year: 2001
  ident: D3SC03229A/cit26/1
  publication-title: Stud. Surf. Sci. Catal.
  doi: 10.1016/S0167-2991(01)80264-0
– volume: 85
  start-page: 345
  year: 2009
  ident: D3SC03229A/cit25/1
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2008.10.015
– volume: 39
  start-page: 77
  year: 2013
  ident: D3SC03229A/cit29/1
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.05.035
– volume: 7
  start-page: 1
  year: 2021
  ident: D3SC03229A/cit8/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.12.006
– volume: 49
  start-page: 1
  year: 1996
  ident: D3SC03229A/cit15/1
  publication-title: Fuel Process. Technol.
  doi: 10.1016/S0378-3820(97)86800-2
– volume: 44
  start-page: 231
  year: 2005
  ident: D3SC03229A/cit31/1
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2004.02.016
– volume: 19
  start-page: 164
  year: 2009
  ident: D3SC03229A/cit48/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200800871
– volume: 103
  start-page: 23
  year: 2009
  ident: D3SC03229A/cit59/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.174501
– volume: 44
  start-page: 7342
  year: 2015
  ident: D3SC03229A/cit27/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00376H
– volume: 7
  start-page: 12634
  year: 2016
  ident: D3SC03229A/cit39/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12634
– volume: 1
  start-page: 1996
  year: 2021
  ident: D3SC03229A/cit54/1
  publication-title: JACS Au
  doi: 10.1021/jacsau.1c00324
– volume: 68–69
  start-page: 467
  year: 2003
  ident: D3SC03229A/cit19/1
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/S0165-2370(03)00036-6
– volume: 145
  start-page: 1847
  issue: 3
  year: 2023
  ident: D3SC03229A/cit6/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c11407
– volume: 53
  start-page: 129
  year: 1996
  ident: D3SC03229A/cit13/1
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/0141-3910(96)00080-8
– volume: 39
  start-page: 1198
  year: 2000
  ident: D3SC03229A/cit49/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie990512q
– volume: 55
  start-page: 95
  year: 2011
  ident: D3SC03229A/cit62/1
  publication-title: J. Rheol.
  doi: 10.1122/1.3523626
– volume-title: Einführung in die Technische Chemie
  year: 2016
  ident: D3SC03229A/cit33/1
  doi: 10.1007/978-3-662-52856-3
– volume: 59
  start-page: 15402
  year: 2020
  ident: D3SC03229A/cit1/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201915651
– volume: 74
  start-page: 353
  year: 2005
  ident: D3SC03229A/cit18/1
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2004.11.037
– volume: 26
  start-page: 11995
  year: 2020
  ident: D3SC03229A/cit28/1
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201905867
– volume: 7
  start-page: 1599
  year: 1969
  ident: D3SC03229A/cit12/1
  publication-title: J. Polym. Sci.
  doi: 10.1002/pol.1969.150070704
– volume: 45
  start-page: 126
  year: 2015
  ident: D3SC03229A/cit10/1
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2015.05.034
– volume: 74
  start-page: 370
  year: 2005
  ident: D3SC03229A/cit47/1
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2004.11.026
– volume: 70A
  start-page: 487
  year: 1966
  ident: D3SC03229A/cit43/1
  publication-title: J. Res. Natl. Inst. Stand. Technol.
  doi: 10.6028/jres.070A.043
– volume-title: Ullmann's Encyclopedia of Industrial Chemistry
  year: 2009
  ident: D3SC03229A/cit65/1
– volume: 418
  start-page: 129412
  year: 2021
  ident: D3SC03229A/cit5/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129412
– volume: 39
  start-page: 1203
  year: 2000
  ident: D3SC03229A/cit16/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie990513i
– volume: 470
  start-page: 52
  year: 2008
  ident: D3SC03229A/cit44/1
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2008.01.015
– volume: 38
  start-page: 3442
  year: 2005
  ident: D3SC03229A/cit60/1
  publication-title: Macromolecules
  doi: 10.1021/ma049642n
– volume: 126
  start-page: 599
  year: 2019
  ident: D3SC03229A/cit34/1
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-018-1133-z
– volume: 39
  start-page: 1
  year: 2018
  ident: D3SC03229A/cit36/1
  publication-title: Macromol. Rapid Commun.
– start-page: 299
  volume-title: Fluid Catalytic Cracking V
  year: 2001
  ident: D3SC03229A/cit53/1
– volume: 570
  start-page: 218
  year: 2019
  ident: D3SC03229A/cit50/1
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2018.11.020
– volume: 1
  volume-title: The theory of polymer dynamics
  year: 1996
  ident: D3SC03229A/cit52/1
– volume: 111
  start-page: 750
  year: 1999
  ident: D3SC03229A/cit63/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.479354
– volume: 60
  start-page: 16101
  year: 2021
  ident: D3SC03229A/cit14/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202104110
– volume: 5
  start-page: 295
  year: 1967
  ident: D3SC03229A/cit57/1
  publication-title: J. Polym. Sci., Part B: Polym. Lett.
  doi: 10.1002/pol.1967.110050404
– volume-title: Feedstock Recycling and Pyrolysis of Waste Plastics: Converting Waste Plastics into Diesel and Other Fuels
  year: 2006
  ident: D3SC03229A/cit45/1
  doi: 10.1002/0470021543
– volume: 496
  start-page: 13
  year: 2016
  ident: D3SC03229A/cit35/1
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2015.09.055
– volume: 14
  start-page: e2022000
  year: 2022
  ident: D3SC03229A/cit55/1
  publication-title: ChemCatChem
– volume: 6
  start-page: 3158
  year: 2016
  ident: D3SC03229A/cit40/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00302
– volume: 440
  start-page: 135843
  year: 2022
  ident: D3SC03229A/cit42/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135843
– volume: 20
  start-page: 611
  year: 1979
  ident: D3SC03229A/cit58/1
  publication-title: Contemp. Phys.
  doi: 10.1080/00107517908210929
– volume: 3
  start-page: e1700782
  year: 2017
  ident: D3SC03229A/cit4/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700782
– volume: 8
  start-page: 1084
  year: 2021
  ident: D3SC03229A/cit9/1
  publication-title: Mater. Horiz.
  doi: 10.1039/D0MH01286F
– volume: 7
  start-page: 844
  year: 2022
  ident: D3SC03229A/cit21/1
  publication-title: React. Chem. Eng.
  doi: 10.1039/D1RE00431J
– volume: 67
  start-page: 341
  year: 1998
  ident: D3SC03229A/cit17/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/(SICI)1097-4628(19980110)67:2<341::AID-APP15>3.0.CO;2-0
SSID ssj0000331527
Score 2.5394237
Snippet Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important...
SourceID pubmedcentral
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 168
SubjectTerms Addition polymerization
Catalysts
Catalytic converters
Catalytic cracking
Chemistry
Contact melting
Covalent bonds
Fluid catalytic cracking
Macromolecules
Mass transport
Microscopy
Naphtha
Optical microscopy
Polymer matrix composites
Polymers
Polyolefins
Refineries
Viscosity
Title Transport limitations in polyolefin cracking at the single catalyst particle level
URI https://www.proquest.com/docview/2869273253
https://www.proquest.com/docview/2870990621
https://pubmed.ncbi.nlm.nih.gov/PMC10529962
Volume 14
WOSCitedRecordID wos001061470000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAUL
  databaseName: Royal Society of Chemistry (SIKT)
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: RRC
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://pubs.rsc.org/
  providerName: Royal Society of Chemistry
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sEfTiuxgfZcVePAST3SabPZaqeBARH9Bb2Gw3WAhpSaPgv3d2m0QiFrwFdpYkMxPmm_k2MwCDVGruC00xLVGGZuTSjRIWuEmQhCJBB_CVbZn_wB8fo8lEPG3AYA2Dz8T1lC2Vh24nLArCrNuk5M_jppDiMVaNZqXe0HfDgHp1G9LW7nbg-UGTv89Cdop69IcNMXe7_3u4PdipICQZrWy-Dxs6P4CtcT257RCem47lJDP_L62KcmSWk8U8-5pnOsVLVUhlyuRElgRBIDE1g0wTW875WpZkUfkUycyxoiN4u7t9Hd-71ewEV2GILl1DV2rEM4h_FKVSCS-lSRolSvqpJyWTeorBi4lEauFTTYWnplPMFaXkXNBQsR5083muj4Ewqvkw9QMlTTpFw0SiFEsDRH4palw6cFUrNlbVO5n5FllsCW4m4hv2MrZaGjlw2cguVu00_pQ6q-0TV5_UMqZRKBBr0YA5cNEso2YNwyFzPf8wMtwQfSH1HYhadm3uZtppt1fy2bttq-0b0lOE1IEeukCz4cfEJ-sWTmHbTKE3x0goP4NuWXzoc9hUn-VsWfShwydR3yb7feu635QH5-Y
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transport+limitations+in+polyolefin+cracking+at+the+single+catalyst+particle+level&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Rejman%2C+Sebastian&rft.au=Vollmer%2C+Ina&rft.au=Werny%2C+Maximilian+J.&rft.au=Vogt%2C+Eelco+T.+C.&rft.date=2023-09-27&rft.pub=The+Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=14&rft.issue=37&rft.spage=10068&rft.epage=10080&rft_id=info:doi/10.1039%2Fd3sc03229a&rft.externalDocID=PMC10529962
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon