Smart solutions for dissolved oxygen control in semi-batch fermenters: A machine learning approach

The monitoring and measurement of dissolved oxygen (DO), plays a significant role in industrial effluent, and disposal of effluents has been a serious challenge to researchers. Aeration is the primary step in effluent treatment. The basic method for determining DO is direct measurement. This study h...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Desalination and water treatment Ročník 317; s. 100004
Hlavní autoři: Sumathi, J., Aravind, P., Gandhimathi, G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.01.2024
Elsevier
Témata:
ISSN:1944-3986, 1944-3986
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The monitoring and measurement of dissolved oxygen (DO), plays a significant role in industrial effluent, and disposal of effluents has been a serious challenge to researchers. Aeration is the primary step in effluent treatment. The basic method for determining DO is direct measurement. This study has been carried out in effluent from the paper industry to estimate the performance of dissolved oxygen in a semi-batch lark hygiene fermenter and was oxygenated till saturation at 25 °C under real-time study. This study has been carried out using Multi-Layered Feed Forward Back Propagation Artificial Neural Network (ML-FFBPANN) and the experimental results were optimized with fourteen different machine learning algorithms such as Polak-Ribiere Conjugate Gradient (CGP), Conjugate Gradient with Powell/Beale Restarts (CGB), Bayesian Regularization (BR), Gradient Descent (GD), BFGS Quasi-Newton (BFG), GD with Momentum (GDM), Gaussian Discriminate Analysis(GDA), Fletcher-Powell Conjugate Gradient (CGF), Resilient Backpropagation (RP), Variable Learning Rate Gradient Descent (GDX), One Step Secant (OSS), Regression (R), Levenberg-Marquardt (LM), Scaled Conjugate Gradient(SCG). Parameters Root Mean Squared Error (RMSE) and the correlation coefficient (R-square) were used to evaluate the performance of each model and mathematical modeling for correlation co-efficient of all algorithms are also presented. LM and R are the best algorithms but the ML-FFBPANN-LM algorithm provided the best optimization results of maximum correlation co-efficient. LM algorithm produced a maximum correlation coefficient under training (0.99818), testing (0.99351), valediction (1.0), and an overall correlation coefficient be 0.9568. From the study, it can be concluded that the ML-FFBPANN with LM algorithm can be used in the aeration process in effluent treatment for analysis and prediction of process parameters.
AbstractList The monitoring and measurement of dissolved oxygen (DO), plays a significant role in industrial effluent, and disposal of effluents has been a serious challenge to researchers. Aeration is the primary step in effluent treatment. The basic method for determining DO is direct measurement. This study has been carried out in effluent from the paper industry to estimate the performance of dissolved oxygen in a semi-batch lark hygiene fermenter and was oxygenated till saturation at 25 °C under real-time study. This study has been carried out using Multi-Layered Feed Forward Back Propagation Artificial Neural Network (ML-FFBPANN) and the experimental results were optimized with fourteen different machine learning algorithms such as Polak-Ribiere Conjugate Gradient (CGP), Conjugate Gradient with Powell/Beale Restarts (CGB), Bayesian Regularization (BR), Gradient Descent (GD), BFGS Quasi-Newton (BFG), GD with Momentum (GDM), Gaussian Discriminate Analysis(GDA), Fletcher-Powell Conjugate Gradient (CGF), Resilient Backpropagation (RP), Variable Learning Rate Gradient Descent (GDX), One Step Secant (OSS), Regression (R), Levenberg-Marquardt (LM), Scaled Conjugate Gradient(SCG). Parameters Root Mean Squared Error (RMSE) and the correlation coefficient (R-square) were used to evaluate the performance of each model and mathematical modeling for correlation co-efficient of all algorithms are also presented. LM and R are the best algorithms but the ML-FFBPANN-LM algorithm provided the best optimization results of maximum correlation co-efficient. LM algorithm produced a maximum correlation coefficient under training (0.99818), testing (0.99351), valediction (1.0), and an overall correlation coefficient be 0.9568. From the study, it can be concluded that the ML-FFBPANN with LM algorithm can be used in the aeration process in effluent treatment for analysis and prediction of process parameters.
ArticleNumber 100004
Author Aravind, P.
Sumathi, J.
Gandhimathi, G.
Author_xml – sequence: 1
  givenname: J.
  surname: Sumathi
  fullname: Sumathi, J.
  organization: The Institution of Engineers (India) [IEI], Thanjavur Zone, Tamil Nadu, India
– sequence: 2
  givenname: P.
  surname: Aravind
  fullname: Aravind, P.
  email: venkyaravind@gmail.com
  organization: Department of Electrical and Computer Engineering, Mattu University, Mattu, Ethiopia
– sequence: 3
  givenname: G.
  surname: Gandhimathi
  fullname: Gandhimathi, G.
  organization: Department of Electronics and Communication Engineering, SRM TRP Engineering College, Tiruchirappalli, Tamil Nadu, India
BookMark eNp9kMFuGyEURVGUSEkcf0B2_MA4zMCAJ1lFVttEitRFmzWCxxsbawwWULf5--I6qqouwga44lzxzjU5DzEgIbctW7SslXfbhftZFh3rRL3XJc7IVTsI0fBhKc__OV-Sec7b45NeqF50V8R-25lUaI7Tj-JjyHSMiTqfa3BAR-OvtzUGCjGUFCfqA8248401BTZ0xLTDUDDle_pIdwY2PiCd0KTgw5qa_T7FGt6Qi9FMGefv-4y8fv70ffXUvHz98rx6fGlAMFkawa2F1naOLZejlGLAnjsLyIRliitpe5C9swMzaBgoDsa0A3DVSeSqV4LPyPOp10Wz1fvk62RvOhqv_wQxrXUd1cOEegmq71zX8xFAOCOGAYBzphgbBylq4Yy0py5IMeeE49--lumjc73V1bk-Otcn55VR_zHgizlaLcn46UPy4URi1XPwmHQGjwHQ-YRQ6v_9B_RvYPOegA
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3566266
crossref_primary_10_1016_j_dwt_2024_100472
Cites_doi 10.5897/AJAR11.1645
10.1137/100813026
10.1016/j.ecolmodel.2009.01.004
10.5963/JWRHE0402002
10.1016/j.scitotenv.2018.05.153
10.7763/IJCEE.2014.V6.800
10.1155/2021/6219062
10.1007/s11075-014-9856-6
10.1137/1.9781611973655
10.1016/j.ecolmodel.2009.12.023
10.1007/s00521-003-0378-8
10.1162/neco.1992.4.3.415
10.1016/S0893-6080(05)80056-5
10.1016/S0377-0427(00)00420-9
10.1007/s12205-015-1282-3
10.1007/s00254-007-0705-y
10.11113/mjfas.v0n0.560
10.1016/j.seppur.2016.05.022
10.1109/ACCESS.2020.2992340
10.1016/j.ecoinf.2007.03.007
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.dwt.2024.100004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-3986
ExternalDocumentID oai_doaj_org_article_8c752d253fcc4da499cc330700f9646e
10_1016_j_dwt_2024_100004
S1944398624000043
GroupedDBID .QJ
0R~
4.4
4P2
6I.
AAENE
AAFTH
AALRI
AAXUO
ABFIM
ACGFS
ACIWK
ACPRK
ADCVX
ADVLN
AENEX
AFFVI
AFJKZ
AFRAH
AGMYJ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AVBZW
EBS
EJD
E~A
E~B
FDB
GROUPED_DOAJ
GTTXZ
H13
HF~
HZ~
H~P
J.P
M41
M4Z
P2P
ROL
S-T
S70
SJN
TDBHL
TEI
TFL
TFW
UT5
~S~
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
AQTUD
CITATION
ID FETCH-LOGICAL-c406t-43bbc1b2d088f6649e53dbce04b07376b5c65db90aea0c73caa19c3726e375743
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001347745600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1944-3986
IngestDate Fri Oct 03 12:50:57 EDT 2025
Sat Nov 29 08:16:38 EST 2025
Tue Nov 18 22:34:21 EST 2025
Sat Mar 15 15:43:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Machine learning algorithms
Paper industry effluent
Dissolved oxygen parameter
Semi-batch fermenter
Artificial neural network
Regression analysis
Dissolved oxygen
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-43bbc1b2d088f6649e53dbce04b07376b5c65db90aea0c73caa19c3726e375743
OpenAccessLink https://doaj.org/article/8c752d253fcc4da499cc330700f9646e
ParticipantIDs doaj_primary_oai_doaj_org_article_8c752d253fcc4da499cc330700f9646e
crossref_primary_10_1016_j_dwt_2024_100004
crossref_citationtrail_10_1016_j_dwt_2024_100004
elsevier_sciencedirect_doi_10_1016_j_dwt_2024_100004
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Desalination and water treatment
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Chaipimonplin, Vangpaisal (bib12) 2014; 6
Gharibzadeh, Kalantary, Nasseri, Esrafili, Azari (bib43) 2016; Volume 168
Ahmed (bib9) 2017; 29
Ramli, Jusoh, Rivaie (bib30) 2017; 13
MacKay (bib34) 1992; 4
Chaipimonplin (bib14) 2016; 20
M.S.H. Niroobakhsh S.H. Musavi-Jahromi M. Manshouri S. Sedghi. Predict Water Qual Parameter Jajrood River Basin: Appl multi-Layer perceptron (MLP) perceptron radial basis Funct Netw Artif Neural Netw (ANNs) Afr J Agric Res 7 2012 4131 4139.
Mansoor, Samsuri, Shadizadeh (bib41) 2013; 10
Hydrology and water Management Centre for Upper Northern Region. Upper Northern Region Flood warning Brochures, [online], [Accessed 16 November 2007], Available at
Demuth H., Mark B., Martin H. Neural Network Toolbox™ 6: User Guide. The Mathworks, 2009.
Moller (bib40) 1993; 6
Tan, Lim (bib33) 2019; 495
Azari, Salari, Dehghani, Alimohammadi, Hamid Reza Ghaffari, Sharafi (bib44) 2016; 26
Chaipimonplin T., The Development of Artificial Neural Network Model for Flood forecasting in Upper Ping Catchment; Case study P.67 and P.1 station. Chiang Mai University, 2015 (in Thai).
Lv, Deng, Wan (bib29) 2020; 8
Shi, Kai, Yang, Zhou (bib32) 2022
Chaipimonplin, Vangpaisal (bib13) 2015; 4
K. Karakaya, “ Artificial Intelligence-Based Modeling for prediction of Biogas Production Rate from Full-Scale Anaerobic Sludge Digestion Reactors; Neural Networks and Fuzzy Logic Applications”, M.Sc. Dissertation, Yildiz Technical University, Institute of Science and Technology Istanbul, 2012.
Hager, Zhang (bib21) 2006; 2
C. Florescu and C. Igel, Resilient Backpropagation (RPROP) For Batch Learning In Tensor Flow, Workshop track - ICLR 2018, 1–5.
Rankovic, Radulovi, Ostojic, Comic (bib3) 2010; 221
Chaipimonplin T., The Effective of Different Learning Algorithms of Artificial Neural Network for Flood Forecasting at Upper Ping River, Thailand. In BIT’s 1st Annual International Conference of Emerging Industry, 6–7 November, China, 2013.
A. Beck, Introduction to Nonlinear Optimization Theory, Algorithms, and Applications with MATLAB, Society for Industrial and Applied Mathematics, Washington, 2015.
Dai, Kou (bib37) 2013; 23
Singh, Basant, Malik, Jain (bib8) 2009; 220
Li, Zhao (bib26) 2011; 3
M.H. Beale, M.T. Hagan, and H.B. Demuth, Neural Network ToolboxTM7 User’s Guide, The Math works, inc.2011.
Atia, Fahmy, Ninet, Ahmed, Dorrah (bib42) 2012; 4
O.T. Baki and E. Aras, Estimation of BOD in wastewater treatment plant by using different ANN algorithms, 9(2018). 455–462.
Z. Salleh, G. Alhamzi, I. Masmali, A. Alhawarat, A Modified Liu and Storey Conjugate Gradient Method for Large Scale Unconstrained Optimization Problems, 14(2021), 1–18.
Dennis, Schnabel (bib38) 1983
Li, Hou, Dakui, Xiao, Song, Liu (bib6) 2007; 2
T. Chaipimonplin, The efficiency of Using Different of Learning Algorithms in Artificial Neural Network Model for Flood Forecasting at Upper River Ping Catchment, International Journal of Advanced Computational Engineering and Networking Thailand Volume 5 2017 40 44.
Yilmaz, Arasm, Nacar, Kankal (bib19) 2018; 639
L. Lukšana, E. Spedicato. Variable metric methods for unconstrained optimization and nonlinear least squares, 124(2000), 61–95.
Garg (bib1) 2003
Soupak, Karaer, Gurbuz, Kivrak, Senturk, Yazici (bib7) 2003; 12
Kafaki, Ghanbari (bib36) 2015; 68
.
Kitano, Mikami (bib23) 2022; 31
M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: The RPROP algorithm. Proceedings of IEEE International Conference on Neural Networks San Fransisco U.S.A. 1993; 586–591.
Jang, Sun, Mizutani (bib22) 1997
Elhatip, Komur (bib5) 2008; 53
Belhadj, Aguili (bib24) 2011; 3
Abyaneh (bib4) 2014; 12
Soupak (10.1016/j.dwt.2024.100004_bib7) 2003; 12
Elhatip (10.1016/j.dwt.2024.100004_bib5) 2008; 53
Atia (10.1016/j.dwt.2024.100004_bib42) 2012; 4
Ramli (10.1016/j.dwt.2024.100004_bib30) 2017; 13
10.1016/j.dwt.2024.100004_bib16
Kitano (10.1016/j.dwt.2024.100004_bib23) 2022; 31
Dai (10.1016/j.dwt.2024.100004_bib37) 2013; 23
Azari (10.1016/j.dwt.2024.100004_bib44) 2016; 26
10.1016/j.dwt.2024.100004_bib15
MacKay (10.1016/j.dwt.2024.100004_bib34) 1992; 4
10.1016/j.dwt.2024.100004_bib18
10.1016/j.dwt.2024.100004_bib17
Dennis (10.1016/j.dwt.2024.100004_bib38) 1983
10.1016/j.dwt.2024.100004_bib39
10.1016/j.dwt.2024.100004_bib11
Jang (10.1016/j.dwt.2024.100004_bib22) 1997
10.1016/j.dwt.2024.100004_bib35
10.1016/j.dwt.2024.100004_bib20
Singh (10.1016/j.dwt.2024.100004_bib8) 2009; 220
Belhadj (10.1016/j.dwt.2024.100004_bib24) 2011; 3
Yilmaz (10.1016/j.dwt.2024.100004_bib19) 2018; 639
Li (10.1016/j.dwt.2024.100004_bib6) 2007; 2
Kafaki (10.1016/j.dwt.2024.100004_bib36) 2015; 68
Lv (10.1016/j.dwt.2024.100004_bib29) 2020; 8
Hager (10.1016/j.dwt.2024.100004_bib21) 2006; 2
Garg (10.1016/j.dwt.2024.100004_bib1) 2003
10.1016/j.dwt.2024.100004_bib2
10.1016/j.dwt.2024.100004_bib27
10.1016/j.dwt.2024.100004_bib28
Shi (10.1016/j.dwt.2024.100004_bib32) 2022
Li (10.1016/j.dwt.2024.100004_bib26) 2011; 3
Ahmed (10.1016/j.dwt.2024.100004_bib9) 2017; 29
10.1016/j.dwt.2024.100004_bib25
Moller (10.1016/j.dwt.2024.100004_bib40) 1993; 6
10.1016/j.dwt.2024.100004_bib10
Chaipimonplin (10.1016/j.dwt.2024.100004_bib14) 2016; 20
Mansoor (10.1016/j.dwt.2024.100004_bib41) 2013; 10
10.1016/j.dwt.2024.100004_bib31
Chaipimonplin (10.1016/j.dwt.2024.100004_bib12) 2014; 6
Gharibzadeh (10.1016/j.dwt.2024.100004_bib43) 2016; Volume 168
Rankovic (10.1016/j.dwt.2024.100004_bib3) 2010; 221
Chaipimonplin (10.1016/j.dwt.2024.100004_bib13) 2015; 4
Tan (10.1016/j.dwt.2024.100004_bib33) 2019; 495
Abyaneh (10.1016/j.dwt.2024.100004_bib4) 2014; 12
References_xml – reference: M.S.H. Niroobakhsh S.H. Musavi-Jahromi M. Manshouri S. Sedghi. Predict Water Qual Parameter Jajrood River Basin: Appl multi-Layer perceptron (MLP) perceptron radial basis Funct Netw Artif Neural Netw (ANNs) Afr J Agric Res 7 2012 4131 4139.
– reference: Chaipimonplin T., The Effective of Different Learning Algorithms of Artificial Neural Network for Flood Forecasting at Upper Ping River, Thailand. In BIT’s 1st Annual International Conference of Emerging Industry, 6–7 November, China, 2013.
– volume: 4
  start-page: 131
  year: 2015
  end-page: 137
  ident: bib13
  article-title: The efficiency of input determination techniques in ANN for flood forecasting, Mun Basin, Thailand
  publication-title: J Water Resour Dygraulic Eng
– reference: Demuth H., Mark B., Martin H. Neural Network Toolbox™ 6: User Guide. The Mathworks, 2009.
– reference: M.H. Beale, M.T. Hagan, and H.B. Demuth, Neural Network ToolboxTM7 User’s Guide, The Math works, inc.2011.
– reference: A. Beck, Introduction to Nonlinear Optimization Theory, Algorithms, and Applications with MATLAB, Society for Industrial and Applied Mathematics, Washington, 2015.
– volume: 2
  start-page: 184
  year: 2007
  end-page: 192
  ident: bib6
  article-title: Prediction and elucidation of the population dynamics of Mycrocystis spp. In Lake Dianchi (China) by means of artificial neural networks
  publication-title: Ecol Inf
– volume: 6
  start-page: 90
  year: 2014
  end-page: 94
  ident: bib12
  article-title: Comparison of the efficiency of input determination techniques with LM and BR algorithms in ANN for flood forecasting, Mun Basin, Thailand
  publication-title: Int J Comput Electr Eng
– year: 1997
  ident: bib22
  article-title: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence
– year: 2003
  ident: bib1
  article-title: Environmental Engineering (Vol.II), Sewage Disposal and Air pollution Engineering
– year: 1983
  ident: bib38
  article-title: Numerical Methods for Unconstrained Optimization and Nonlinear Equations
– volume: 221
  start-page: 1239
  year: 2010
  end-page: 1244
  ident: bib3
  article-title: Neural network modeling of dissolved oxygen in the Gruza reservoir, Serbia
  publication-title: Ecol Model
– volume: 220
  start-page: 888
  year: 2009
  end-page: 895
  ident: bib8
  article-title: Artificial neural network modeling of the river water quality – a case study
  publication-title: Ecol Model
– reference: L. Lukšana, E. Spedicato. Variable metric methods for unconstrained optimization and nonlinear least squares, 124(2000), 61–95.
– volume: 4
  start-page: 415
  year: 1992
  end-page: 447
  ident: bib34
  article-title: Bayesian interpolation
  publication-title: Neural Comput
– volume: 68
  start-page: 481
  year: 2015
  end-page: 495
  ident: bib36
  article-title: A hybridization of the Polak-Ribière-Polyak and Fletcher-Reeves conjugate gradient methods
  publication-title: Numer Algorithms
– start-page: 37
  year: 2022
  end-page: 55
  ident: bib32
  article-title: Chapter three - convex optimization
  publication-title: Mob Edge Artif Intell - Oppor Chall
– volume: Volume 168
  start-page: 248
  year: 2016
  end-page: 256
  ident: bib43
  article-title: Reuse of polycyclic aromatic hydrocarbons (PAHs) contaminated soil washing effluent by bioaugmentation/biostimulation process
  publication-title: Sep Purif Technol
– volume: 13
  start-page: 717
  year: 2017
  end-page: 720
  ident: bib30
  article-title: A combination of Broyden-Fletcher-Goldfarb-Shanno (BFGS) and n-th section method for solving small-scale unconstrained optimization
  publication-title: Malays J Fundam Appl Sci
– volume: 53
  start-page: 1157
  year: 2008
  end-page: 1164
  ident: bib5
  article-title: Evaluation of water quality parameters for the Mamasin Dam in Aksaray city in the central Anatolian part of Turkey by means of artificial neural networks
  publication-title: Environ Geol
– reference: C. Florescu and C. Igel, Resilient Backpropagation (RPROP) For Batch Learning In Tensor Flow, Workshop track - ICLR 2018, 1–5.
– reference: Chaipimonplin T., The Development of Artificial Neural Network Model for Flood forecasting in Upper Ping Catchment; Case study P.67 and P.1 station. Chiang Mai University, 2015 (in Thai).
– reference: T. Chaipimonplin, The efficiency of Using Different of Learning Algorithms in Artificial Neural Network Model for Flood Forecasting at Upper River Ping Catchment, International Journal of Advanced Computational Engineering and Networking Thailand Volume 5 2017 40 44.
– volume: 4
  start-page: 517
  year: 2012
  end-page: 523
  ident: bib42
  article-title: Mathematical modeling and neural network control for dissolved oxygen of aquaculture pond aeration system
  publication-title: Online J Electron Electr Eng
– volume: 12
  start-page: 166
  year: 2003
  end-page: 172
  ident: bib7
  article-title: A neural network based approach for calculating dissolved oxygen profiles in reservoirs
  publication-title: Neural Comput Appl
– volume: 6
  start-page: 525
  year: 1993
  end-page: 533
  ident: bib40
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Netw
– volume: 20
  start-page: 478
  year: 2016
  end-page: 484
  ident: bib14
  article-title: Investigation internal parameters of neural network model for flood forecasting at Upper River Ping, Chiang Mai
  publication-title: KSCE J Civ Eng
– volume: 495
  start-page: 1
  year: 2019
  end-page: 7
  ident: bib33
  article-title: Review of second-order optimization techniques in artificial neural networks backpropagation
  publication-title: Mater Sci Eng
– reference: M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: The RPROP algorithm. Proceedings of IEEE International Conference on Neural Networks San Fransisco U.S.A. 1993; 586–591.
– reference: K. Karakaya, “ Artificial Intelligence-Based Modeling for prediction of Biogas Production Rate from Full-Scale Anaerobic Sludge Digestion Reactors; Neural Networks and Fuzzy Logic Applications”, M.Sc. Dissertation, Yildiz Technical University, Institute of Science and Technology Istanbul, 2012.
– volume: 29
  start-page: 151
  year: 2017
  end-page: 158
  ident: bib9
  article-title: Prediction of dissolved oxygen in Surma River influenced by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks
  publication-title: J Kind Saud Univ - Eng Sci
– reference: .
– volume: 23
  start-page: 296
  year: 2013
  end-page: 320
  ident: bib37
  article-title: A nonlinear conjugate gradient algorithm with an optimal property and an improved wolfe line search
  publication-title: SIAM J OPTIM
– volume: 639
  start-page: 826
  year: 2018
  end-page: 840
  ident: bib19
  article-title: Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models
  publication-title: Sci Total Environ
– reference: Z. Salleh, G. Alhamzi, I. Masmali, A. Alhawarat, A Modified Liu and Storey Conjugate Gradient Method for Large Scale Unconstrained Optimization Problems, 14(2021), 1–18.
– volume: 10
  start-page: 1
  year: 2013
  end-page: 13
  ident: bib41
  article-title: Prediction of compressional wave velocity by an artificial neural network using some conventional well logs in a carbonate reservoir
  publication-title: J Geophys Eng
– volume: 12
  start-page: 8
  year: 2014
  ident: bib4
  article-title: Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters
  publication-title: J Environ Health Sci Eng
– reference: Hydrology and water Management Centre for Upper Northern Region. Upper Northern Region Flood warning Brochures, [online], [Accessed 16 November 2007], Available at
– volume: 2
  start-page: 35
  year: 2006
  end-page: 58
  ident: bib21
  article-title: A survey of nonlinear conjugate gradient methods
  publication-title: Pac J Optim
– volume: 3
  start-page: 416
  year: 2011
  end-page: 422
  ident: bib24
  article-title: Finite step conjugate gradients methods for the solution of an impedance operator equation arising in electromagnetics
  publication-title: J Electromagn Anal Appl
– volume: 26
  start-page: 265
  year: 2016
  end-page: 281
  ident: bib44
  article-title: Efficiency of magnitized graphene oxide nanoparticles in removal of 2,4-dichlorophenol from aqueous solution
  publication-title: J Mazandaran Univ Med Sci
– reference: O.T. Baki and E. Aras, Estimation of BOD in wastewater treatment plant by using different ANN algorithms, 9(2018). 455–462.
– volume: 8
  start-page: 85664
  year: 2020
  end-page: 85674
  ident: bib29
  article-title: An efficient single-parameter scaling memoryless broyden-fletcher-goldfarb-shanno algorithm for solving large scale unconstrained optimization problems
  publication-title: IEEE Access
– volume: 31
  start-page: 1
  year: 2022
  end-page: 9
  ident: bib23
  article-title: Constructing a heat source parameter estimation model for heat conduction finite element analysis using deep convolutional neural network
  publication-title: Mater Today Commun
– volume: 3
  start-page: 85
  year: 2011
  end-page: 90
  ident: bib26
  article-title: A hybrid conjugate gradient method for optimization problems
  publication-title: Nat Sci
– ident: 10.1016/j.dwt.2024.100004_bib2
  doi: 10.5897/AJAR11.1645
– volume: 495
  start-page: 1
  year: 2019
  ident: 10.1016/j.dwt.2024.100004_bib33
  article-title: Review of second-order optimization techniques in artificial neural networks backpropagation
  publication-title: Mater Sci Eng
– volume: 23
  start-page: 296
  year: 2013
  ident: 10.1016/j.dwt.2024.100004_bib37
  article-title: A nonlinear conjugate gradient algorithm with an optimal property and an improved wolfe line search
  publication-title: SIAM J OPTIM
  doi: 10.1137/100813026
– volume: 3
  start-page: 416
  year: 2011
  ident: 10.1016/j.dwt.2024.100004_bib24
  article-title: Finite step conjugate gradients methods for the solution of an impedance operator equation arising in electromagnetics
  publication-title: J Electromagn Anal Appl
– volume: 3
  start-page: 85
  year: 2011
  ident: 10.1016/j.dwt.2024.100004_bib26
  article-title: A hybrid conjugate gradient method for optimization problems
  publication-title: Nat Sci
– volume: 220
  start-page: 888
  year: 2009
  ident: 10.1016/j.dwt.2024.100004_bib8
  article-title: Artificial neural network modeling of the river water quality – a case study
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2009.01.004
– volume: 4
  start-page: 131
  year: 2015
  ident: 10.1016/j.dwt.2024.100004_bib13
  article-title: The efficiency of input determination techniques in ANN for flood forecasting, Mun Basin, Thailand
  publication-title: J Water Resour Dygraulic Eng
  doi: 10.5963/JWRHE0402002
– volume: 639
  start-page: 826
  year: 2018
  ident: 10.1016/j.dwt.2024.100004_bib19
  article-title: Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.05.153
– ident: 10.1016/j.dwt.2024.100004_bib10
– volume: 6
  start-page: 90
  year: 2014
  ident: 10.1016/j.dwt.2024.100004_bib12
  article-title: Comparison of the efficiency of input determination techniques with LM and BR algorithms in ANN for flood forecasting, Mun Basin, Thailand
  publication-title: Int J Comput Electr Eng
  doi: 10.7763/IJCEE.2014.V6.800
– volume: 26
  start-page: 265
  year: 2016
  ident: 10.1016/j.dwt.2024.100004_bib44
  article-title: Efficiency of magnitized graphene oxide nanoparticles in removal of 2,4-dichlorophenol from aqueous solution
  publication-title: J Mazandaran Univ Med Sci
– ident: 10.1016/j.dwt.2024.100004_bib16
– ident: 10.1016/j.dwt.2024.100004_bib27
  doi: 10.1155/2021/6219062
– ident: 10.1016/j.dwt.2024.100004_bib18
– ident: 10.1016/j.dwt.2024.100004_bib39
– volume: 68
  start-page: 481
  year: 2015
  ident: 10.1016/j.dwt.2024.100004_bib36
  article-title: A hybridization of the Polak-Ribière-Polyak and Fletcher-Reeves conjugate gradient methods
  publication-title: Numer Algorithms
  doi: 10.1007/s11075-014-9856-6
– volume: 12
  start-page: 8
  issue: 1
  year: 2014
  ident: 10.1016/j.dwt.2024.100004_bib4
  article-title: Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters
  publication-title: J Environ Health Sci Eng
– ident: 10.1016/j.dwt.2024.100004_bib35
  doi: 10.1137/1.9781611973655
– volume: 221
  start-page: 1239
  year: 2010
  ident: 10.1016/j.dwt.2024.100004_bib3
  article-title: Neural network modeling of dissolved oxygen in the Gruza reservoir, Serbia
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2009.12.023
– volume: 12
  start-page: 166
  year: 2003
  ident: 10.1016/j.dwt.2024.100004_bib7
  article-title: A neural network based approach for calculating dissolved oxygen profiles in reservoirs
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-003-0378-8
– volume: 4
  start-page: 415
  year: 1992
  ident: 10.1016/j.dwt.2024.100004_bib34
  article-title: Bayesian interpolation
  publication-title: Neural Comput
  doi: 10.1162/neco.1992.4.3.415
– volume: 29
  start-page: 151
  year: 2017
  ident: 10.1016/j.dwt.2024.100004_bib9
  article-title: Prediction of dissolved oxygen in Surma River influenced by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks
  publication-title: J Kind Saud Univ - Eng Sci
– volume: 6
  start-page: 525
  year: 1993
  ident: 10.1016/j.dwt.2024.100004_bib40
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80056-5
– volume: 10
  start-page: 1
  year: 2013
  ident: 10.1016/j.dwt.2024.100004_bib41
  article-title: Prediction of compressional wave velocity by an artificial neural network using some conventional well logs in a carbonate reservoir
  publication-title: J Geophys Eng
– ident: 10.1016/j.dwt.2024.100004_bib25
– ident: 10.1016/j.dwt.2024.100004_bib31
  doi: 10.1016/S0377-0427(00)00420-9
– volume: 20
  start-page: 478
  year: 2016
  ident: 10.1016/j.dwt.2024.100004_bib14
  article-title: Investigation internal parameters of neural network model for flood forecasting at Upper River Ping, Chiang Mai
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-015-1282-3
– volume: 53
  start-page: 1157
  year: 2008
  ident: 10.1016/j.dwt.2024.100004_bib5
  article-title: Evaluation of water quality parameters for the Mamasin Dam in Aksaray city in the central Anatolian part of Turkey by means of artificial neural networks
  publication-title: Environ Geol
  doi: 10.1007/s00254-007-0705-y
– ident: 10.1016/j.dwt.2024.100004_bib28
– volume: 13
  start-page: 717
  year: 2017
  ident: 10.1016/j.dwt.2024.100004_bib30
  article-title: A combination of Broyden-Fletcher-Goldfarb-Shanno (BFGS) and n-th section method for solving small-scale unconstrained optimization
  publication-title: Malays J Fundam Appl Sci
  doi: 10.11113/mjfas.v0n0.560
– volume: Volume 168
  start-page: 248
  year: 2016
  ident: 10.1016/j.dwt.2024.100004_bib43
  article-title: Reuse of polycyclic aromatic hydrocarbons (PAHs) contaminated soil washing effluent by bioaugmentation/biostimulation process
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2016.05.022
– ident: 10.1016/j.dwt.2024.100004_bib11
– year: 1983
  ident: 10.1016/j.dwt.2024.100004_bib38
– ident: 10.1016/j.dwt.2024.100004_bib15
– ident: 10.1016/j.dwt.2024.100004_bib17
– year: 2003
  ident: 10.1016/j.dwt.2024.100004_bib1
– volume: 31
  start-page: 1
  year: 2022
  ident: 10.1016/j.dwt.2024.100004_bib23
  article-title: Constructing a heat source parameter estimation model for heat conduction finite element analysis using deep convolutional neural network
  publication-title: Mater Today Commun
– volume: 8
  start-page: 85664
  year: 2020
  ident: 10.1016/j.dwt.2024.100004_bib29
  article-title: An efficient single-parameter scaling memoryless broyden-fletcher-goldfarb-shanno algorithm for solving large scale unconstrained optimization problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992340
– year: 1997
  ident: 10.1016/j.dwt.2024.100004_bib22
– volume: 2
  start-page: 184
  year: 2007
  ident: 10.1016/j.dwt.2024.100004_bib6
  article-title: Prediction and elucidation of the population dynamics of Mycrocystis spp. In Lake Dianchi (China) by means of artificial neural networks
  publication-title: Ecol Inf
  doi: 10.1016/j.ecoinf.2007.03.007
– start-page: 37
  year: 2022
  ident: 10.1016/j.dwt.2024.100004_bib32
  article-title: Chapter three - convex optimization
  publication-title: Mob Edge Artif Intell - Oppor Chall
– volume: 4
  start-page: 517
  year: 2012
  ident: 10.1016/j.dwt.2024.100004_bib42
  article-title: Mathematical modeling and neural network control for dissolved oxygen of aquaculture pond aeration system
  publication-title: Online J Electron Electr Eng
– ident: 10.1016/j.dwt.2024.100004_bib20
– volume: 2
  start-page: 35
  year: 2006
  ident: 10.1016/j.dwt.2024.100004_bib21
  article-title: A survey of nonlinear conjugate gradient methods
  publication-title: Pac J Optim
SSID ssj0000547542
Score 2.338366
Snippet The monitoring and measurement of dissolved oxygen (DO), plays a significant role in industrial effluent, and disposal of effluents has been a serious...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100004
SubjectTerms Artificial neural network
Dissolved oxygen
Dissolved oxygen parameter
Machine learning algorithms
Paper industry effluent
Regression analysis
Semi-batch fermenter
Title Smart solutions for dissolved oxygen control in semi-batch fermenters: A machine learning approach
URI https://dx.doi.org/10.1016/j.dwt.2024.100004
https://doaj.org/article/8c752d253fcc4da499cc330700f9646e
Volume 317
WOSCitedRecordID wos001347745600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1944-3986
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000547542
  issn: 1944-3986
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RTlJQ9MSAE3duyYrSAqBlQhAVK3yE8oalPUlgL_nnMeVRiAhTVybOv8-e5zfPkOoRNDiaKpTSPrGY2YdyxSMlVwSokJ-EzBpC5-FL4VvV7a78u7RqmvkBNWygOXhjtPjUhiGyfUG8OsAoJuDA1AJV5yxl3wvkTIxmGqVPVmobRrfY1ZJHTZ95A7GbOz4pM2-xaICr3-RjxqxJjuBlqvyCHulJPaREsu30JrDcnAbaTvRzBnvEAMBtKJw6X6eDh3Fo8_PgERuEpAx4McT90Ijr_gcJ-xBy8cJDgn0wvcwaMijdLhqm7EE67lxXfQY_f64eomquokRAbC8SxiVGvT1rEFj-E5Z9Il1GrjCNOwgQXXieGJ1ZIop4gR1CjVloaKmDsqEqAQu2g5H-duD2EP_CkYTlJKmeWwubVNEy9E6lMlYtdCpDZaZioR8VDLYpjV2WIvGdg5C3bOSju30OnilddSQeO3xpdhJRYNg_h18QAgkVWQyP6CRAuxeh2zikeU_AC6Gvw89v5_jH2AVkOX5UeaQ7Q8m7y5I7Ri5rPBdHJcgPQLv0XrGw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+solutions+for+dissolved+oxygen+control+in+semi-batch+fermenters%3A+A+machine+learning+approach&rft.jtitle=Desalination+and+water+treatment&rft.au=Sumathi%2C+J.&rft.au=Aravind%2C+P.&rft.au=Gandhimathi%2C+G.&rft.date=2024-01-01&rft.issn=1944-3986&rft.volume=317&rft.spage=100004&rft_id=info:doi/10.1016%2Fj.dwt.2024.100004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dwt_2024_100004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-3986&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-3986&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-3986&client=summon