On the sensitivity of Pareto efficiency in set-valued optimization problems
In this paper we present two main situations when the limit of Pareto minima of a sequence of perturbations of a set-valued map F is a critical point of F . The concept of criticality is understood in the Fermat generalized sense by means of limiting (Mordukhovich) coderivative. Firstly, we consider...
Uložené v:
| Vydané v: | Journal of global optimization Ročník 78; číslo 3; s. 581 - 596 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.11.2020
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper we present two main situations when the limit of Pareto minima of a sequence of perturbations of a set-valued map
F
is a critical point of
F
. The concept of criticality is understood in the Fermat generalized sense by means of limiting (Mordukhovich) coderivative. Firstly, we consider perturbations of enlargement type which, in particular, cover the case of perturbation with dilating cones. Secondly, we present the case of Aubin type perturbations, and for this we introduce and study a new concept of openness with respect to a cone. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-020-00925-9 |