A Boundary Shape Function Method for Computing Eigenvalues and Eigenfunctions of Sturm–Liouville Problems

In the paper, we transform the general Sturm–Liouville problem (SLP) into two canonical forms: one with the homogeneous Dirichlet boundary conditions and another with the homogeneous Neumann boundary conditions. A boundary shape function method (BSFM) was constructed to solve the SLPs of these two c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) Jg. 10; H. 19; S. 3689
Hauptverfasser: Liu, Chein-Shan, Chang, Jiang-Ren, Shen, Jian-Hung, Chen, Yung-Wei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.10.2022
Schlagworte:
ISSN:2227-7390, 2227-7390
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the paper, we transform the general Sturm–Liouville problem (SLP) into two canonical forms: one with the homogeneous Dirichlet boundary conditions and another with the homogeneous Neumann boundary conditions. A boundary shape function method (BSFM) was constructed to solve the SLPs of these two canonical forms. Owing to the property of the boundary shape function, we could transform the SLPs into an initial value problem for the new variable with initial values that were given definitely. Meanwhile, the terminal value at the right boundary could be entirely determined by using a given normalization condition for the uniqueness of the eigenfunction. In such a manner, we could directly determine the eigenvalues as the intersection points of an eigenvalue curve to the zero line, which was a horizontal line in the plane consisting of the zero values of the target function with respect to the eigen-parameter. We employed a more delicate tuning technique or the fictitious time integration method to solve an implicit algebraic equation for the eigenvalue curve. We could integrate the Sturm–Liouville equation using the given initial values to obtain the associated eigenfunction when the eigenvalue was obtained. Eight numerical examples revealed a great advantage of the BSFM, which easily obtained eigenvalues and eigenfunctions with the desired accuracy.
AbstractList In the paper, we transform the general Sturm-Liouville problem (SLP) into two canonical forms: one with the homogeneous Dirichlet boundary conditions and another with the homogeneous Neumann boundary conditions. A boundary shape function method (BSFM) was constructed to solve the SLPs of these two canonical forms. Owing to the property of the boundary shape function, we could transform the SLPs into an initial value problem for the new variable with initial values that were given definitely. Meanwhile, the terminal value at the right boundary could be entirely determined by using a given normalization condition for the uniqueness of the eigenfunction. In such a manner, we could directly determine the eigenvalues as the intersection points of an eigenvalue curve to the zero line, which was a horizontal line in the plane consisting of the zero values of the target function with respect to the eigen-parameter. We employed a more delicate tuning technique or the fictitious time integration method to solve an implicit algebraic equation for the eigenvalue curve. We could integrate the Sturm-Liouville equation using the given initial values to obtain the associated eigenfunction when the eigenvalue was obtained. Eight numerical examples revealed a great advantage of the BSFM, which easily obtained eigenvalues and eigenfunctions with the desired accuracy.
Audience Academic
Author Chang, Jiang-Ren
Chen, Yung-Wei
Liu, Chein-Shan
Shen, Jian-Hung
Author_xml – sequence: 1
  givenname: Chein-Shan
  orcidid: 0000-0001-6366-3539
  surname: Liu
  fullname: Liu, Chein-Shan
– sequence: 2
  givenname: Jiang-Ren
  surname: Chang
  fullname: Chang, Jiang-Ren
– sequence: 3
  givenname: Jian-Hung
  orcidid: 0000-0002-2059-1122
  surname: Shen
  fullname: Shen, Jian-Hung
– sequence: 4
  givenname: Yung-Wei
  surname: Chen
  fullname: Chen, Yung-Wei
BookMark eNptUd1OHCEYJY1Nqta7PgCJt67lb2C4XDdaTbZpE9trwvCzyzoDK8OY9K7v0Df0SYodTYwpXMD3cc4J53xH4CCm6AD4hNE5pRJ9HnTZYoQl5a18Bw4JIWIh6sPBq_sHcDKOO1SXxLRl8hDcLeFFmqLV-Re83eq9g1dTNCWkCL-6sk0W-pThKg37qYS4gZdh4-KD7ic3Qh3tXPtnygiTh7dlysPj7z_rkKaH0PcOfs-p690wfgTvve5Hd_J8HoOfV5c_VteL9bcvN6vlemEY4mVBDWlRi4T0gnKHpcacM0a7zjAvOloLrqWmzDDNnO2EaTrEW0ZMQ3yHjaXH4GbWtUnv1D6HobpTSQf1r5HyRulcgumd4h4bYxBrfWsZanxLGtswLElXk3ScV63TWWuf0301XdQuTTnW7ysiCCO8kUJU1PmM2ugqGqJPJWtTt3VDMHVOPtT-UjAmGlbTrwQyE0xO45idVyYU_ZRhJYZeYaSehqpeD7WSzt6QXrz9F_4XkS6lyQ
CitedBy_id crossref_primary_10_1016_j_matcom_2023_11_008
crossref_primary_10_1016_j_matcom_2023_03_025
Cites_doi 10.1016/S0377-0427(00)00446-5
10.1142/S0218348X22501560
10.1002/num.22577
10.1016/j.apnum.2008.11.005
10.1112/plms/s3-64.3.545
10.1016/j.cam.2005.12.022
10.1016/j.cnsns.2014.05.032
10.1016/j.aml.2019.106151
10.1016/0021-9991(87)90163-X
10.1016/S0362-546X(01)00231-0
10.1016/j.cnsns.2010.04.004
10.1016/j.camwa.2009.02.029
10.1016/j.apm.2012.10.019
10.1016/j.cam.2005.05.008
10.1155/2022/8531858
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/math10193689
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_6f1ccc048f8d405f825d54192b019e66
A744754000
10_3390_math10193689
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c406t-3c2808079f736e19a166443bbc4f7b36646a9a34c4a4edb7c5b06842c52fb1cd3
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000867095300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Thu Oct 30 06:29:32 EDT 2025
Fri Jul 25 11:57:22 EDT 2025
Tue Nov 04 18:07:59 EST 2025
Sat Nov 29 07:17:02 EST 2025
Tue Nov 18 22:02:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-3c2808079f736e19a166443bbc4f7b36646a9a34c4a4edb7c5b06842c52fb1cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2059-1122
0000-0001-6366-3539
OpenAccessLink https://doaj.org/article/6f1ccc048f8d405f825d54192b019e66
PQID 2724265977
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_6f1ccc048f8d405f825d54192b019e66
proquest_journals_2724265977
gale_infotracacademiconefile_A744754000
crossref_citationtrail_10_3390_math10193689
crossref_primary_10_3390_math10193689
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References (ref_6) 2005; 168
Alquran (ref_12) 2010; 5
(ref_11) 2013; 37
Attili (ref_13) 2005; 168
Liu (ref_24) 2008; 31
(ref_10) 2006; 192
(ref_5) 2005; 160
Aceto (ref_20) 2009; 4
Abbasbandy (ref_14) 2011; 16
Kumar (ref_1) 2021; 37
Liu (ref_17) 2008; 26
Eggert (ref_25) 1987; 69
Ghelardoni (ref_8) 2001; 132
Liu (ref_18) 2010; 56
Amodio (ref_21) 2015; 20
Liu (ref_22) 2020; 102
ref_3
Gokmen (ref_7) 2005; 170
Ghelardoni (ref_16) 2001; 47
Aceto (ref_19) 2009; 59
Niessen (ref_23) 1992; 3
ref_26
(ref_9) 2007; 200
Wang (ref_2) 2022; 2022
(ref_15) 2009; 58
Ain (ref_4) 2022; 2022
References_xml – volume: 132
  start-page: 443
  year: 2001
  ident: ref_8
  article-title: Spectral corrections for Sturm–Liouville problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(00)00446-5
– ident: ref_3
  doi: 10.1142/S0218348X22501560
– ident: ref_26
– volume: 170
  start-page: 285
  year: 2005
  ident: ref_7
  article-title: Approximate solution of periodic Sturm–Liouville problems with Chebyshev collocation method
  publication-title: Appl. Math. Comput.
– volume: 56
  start-page: 85
  year: 2010
  ident: ref_18
  article-title: The Lie-group shooting method for computing the generalized Sturm-Liouville problems
  publication-title: CMES-Comp. Model. Eng. Sci.
– volume: 31
  start-page: 71
  year: 2008
  ident: ref_24
  article-title: A novel time integration method for solving a large system of non-linear algebraic equations
  publication-title: CMES-Comp. Model. Eng. Sci.
– volume: 37
  start-page: 1250
  year: 2021
  ident: ref_1
  article-title: A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.22577
– volume: 168
  start-page: 1306
  year: 2005
  ident: ref_13
  article-title: The Adomian decomposition method for computing eigenelements of Sturm–Liouville two point boundary vateraturelue problems
  publication-title: Appl. Math. Comput.
– volume: 59
  start-page: 1644
  year: 2009
  ident: ref_19
  article-title: Boundary Value Methods as an extension of Numerov’s method for Sturm–Liouville eigenvalue estimates
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2008.11.005
– volume: 3
  start-page: 545
  year: 1992
  ident: ref_23
  article-title: Singular Sturm-Liouville problems: The Friedrichs extension and comparison of eigenvalues
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/s3-64.3.545
– volume: 26
  start-page: 157
  year: 2008
  ident: ref_17
  article-title: A Lie-group shooting method for computing eigenvalues and eigenfunctions of Sturm-Liouville problems
  publication-title: CMES-Comp. Model. Eng. Sci.
– volume: 4
  start-page: 113
  year: 2009
  ident: ref_20
  article-title: BVMs for Sturm-Liouville eigenvalue estimates with general boundary conditions
  publication-title: J. Numer. Anal. Ind. Appl. Math.
– volume: 2022
  start-page: 1
  year: 2022
  ident: ref_2
  article-title: A novel perspective to the local fractional Zakharov–Kuznetsov-modified equal width dynamical model on Cantor sets
  publication-title: Math. Methods Appl. Sci.
– volume: 200
  start-page: 140
  year: 2007
  ident: ref_9
  article-title: Exponentially-fitted Numerov methods
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2005.12.022
– volume: 160
  start-page: 401
  year: 2005
  ident: ref_5
  article-title: Approximate calculation of eigenvalues with the method of weighted residuals–collocation method
  publication-title: Appl. Math. Comput.
– volume: 20
  start-page: 641
  year: 2015
  ident: ref_21
  article-title: Variable-step finite difference schemes for the solution of Sturm–Liouville problems
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2014.05.032
– volume: 102
  start-page: 106151
  year: 2020
  ident: ref_22
  article-title: The periods and periodic solutions of nonlinear jerk equations solved by an iterative algorithm based on a shape function method
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.106151
– volume: 69
  start-page: 209
  year: 1987
  ident: ref_25
  article-title: Sinc function computation of the eigenvalues of Sturm-Liouville problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(87)90163-X
– volume: 47
  start-page: 885
  year: 2001
  ident: ref_16
  article-title: Improved shooting technique for numerical computations of eigenvalues in Sturm-Liouville problems
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(01)00231-0
– volume: 16
  start-page: 112
  year: 2011
  ident: ref_14
  article-title: A new application of the homotopy analysis method: Solving the Sturm–Liouville problems
  publication-title: Commun. Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.04.004
– volume: 58
  start-page: 322
  year: 2009
  ident: ref_15
  article-title: Variational iteration method for Sturm–Liouville differential equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.02.029
– volume: 37
  start-page: 5039
  year: 2013
  ident: ref_11
  article-title: Two very accurate and efficient methods for computing eigenvalues of Sturm–Liouville problems
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.10.019
– volume: 192
  start-page: 310
  year: 2006
  ident: ref_10
  article-title: Approximations of Sturm–Liouville eigenvalues using differential quadrature (DQ) method
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2005.05.008
– volume: 2022
  start-page: 8531858
  year: 2022
  ident: ref_4
  article-title: ABC fractional derivative for the alcohol drinking model using two-scale fractal dimension
  publication-title: Complexity
  doi: 10.1155/2022/8531858
– volume: 5
  start-page: 128
  year: 2010
  ident: ref_12
  article-title: Approximations of Sturm-Liouville eigenvalues using sinc-Galerkin and differential transform methods
  publication-title: Appl. Appl. Math.
– volume: 168
  start-page: 125
  year: 2005
  ident: ref_6
  article-title: Approximate computation of eigenvalues with Chebyshev collocation method
  publication-title: Appl. Math. Comput.
SSID ssj0000913849
Score 2.2178025
Snippet In the paper, we transform the general Sturm–Liouville problem (SLP) into two canonical forms: one with the homogeneous Dirichlet boundary conditions and...
In the paper, we transform the general Sturm-Liouville problem (SLP) into two canonical forms: one with the homogeneous Dirichlet boundary conditions and...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3689
SubjectTerms Boundary conditions
boundary shape function method
Boundary value problems
Canonical forms
Dirichlet problem
Eigenvalues
Eigenvectors
Liouville equations
Mathematical research
Methods
Numerical analysis
Ordinary differential equations
Partial differential equations
shape function
Shape functions
Sturm–Liouville problems
Time integration
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWg5QAHvisWWuQDiAOKuokdOzmhXbQrDnS1oiD1Ztljm1aUzbLZVuLGf-Af8kuYSbxLL-XSoxMnSjTjeTP-eI-xV6W2YejkMKstlqvS-jKrgwoZxsECvHReWtmJTejZrDo5qedpwq1N2yo3MbEL1L4BmiM_LDSBCbGlvVv-yEg1ilZXk4TGbbZLTGXo57vjyWz-aTvLQqyXlaz7He8C6_tDzANP0Q1roUjZ_QoWdZT91wXmDm2mD276nQ_Z_ZRn8lHvGI_YrbB4zO4dbUla2yfs24iPO1Gl1U9-fGqXgU8R5MhQ_KjTleaY0PJe9gEBjk-IuJPIwUPL7cL37ZgeaXkT-THi1_c_v35_PGsuLumQIZ_3ejXtU_ZlOvn8_kOWtBcyQIhfZwIKYpzUddRChby2ucLMSTgHMmonsKFsbYUEtGXwTkPphrSkB2URXQ5e7LGdRbMIzxivVB5K6QrICyu1lZgiFEKDdFba6EM1YG83VjCQiMlJH-PcYIFCNjNXbTZgr7e9lz0hxzX9xmTQbR-i0e4uNKuvJo1Ko2IOABjEYuUxc41YLvuS1sUdviUoNWBvyB0MDXb8JLDpzAL-GNFmmZEmvkQMg8MB29-4g0lRoDX_fOH5_2-_YHcLOlbRbRLcZzvr1UU4YHfgcn3Wrl4mp_4L1RQDPg
  priority: 102
  providerName: ProQuest
Title A Boundary Shape Function Method for Computing Eigenvalues and Eigenfunctions of Sturm–Liouville Problems
URI https://www.proquest.com/docview/2724265977
https://doaj.org/article/6f1ccc048f8d405f825d54192b019e66
Volume 10
WOSCitedRecordID wos000867095300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYh6aE9hLRp6TbpokNDD8XEtmTLOu6WXVraXUw3hfQk9EtC292w3gRyCXmHvGGeJDOys-wl9NKLQLYM8sxIM4NG30fIh0JonxqeJlJDusq1KxLpS5_APphbx43jmkeyCTGdVqenst6g-sKasBYeuBXccRkyay3YWagcBBcBMhpX4NGlgeDElxFsOxVyI5mKe7DMWMVlW-nOIK8_hvjvDMxPshIZ3Td8UITqf2pDjl5mvEd2u_CQDtppvSRbfv6KvJissVWbffJ7QIeRC2l5TWdn-sLTMfgmlC-dRDpoCnEobdkawC_REeJtIqa3b6ieu7Yfuk8augh0Bm7n7_3t3ffzxeUV3g2kdUsz07wmP8ejk89fko4yIbHgmVcJszkCRQoZBCt9JnVWQsDDjLE8CMOgU2qpGbegAu-MsIVJ8STOFnkwmXXsDdmeL-b-LaFVmfmCm9xmueZCc_DsOROWG811cL7qkU-PQlS2wxNHWos_CvIKFLnaFHmPHK1HX7Q4Gk-MG6I-1mMQ_To-AJtQnU2of9lEj3xEbSpcozAlq7urBvBjiHalBgJhDmH3Snvk8FHhqlu8jcoFxi0IzPfuf8zmgDzP8c5ErAA8JNur5aV_T57Zq9V5s-yTneFoWv_oR_uF9ptI-liAOsP2ZgTv66-T-tcDBuz5Xg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKRKw4I0IFJgFFQtk1Z4ZvxYIpdCoUZMoUotUVtN5mVZAHOK0qDv-gf_go_gS7rWd0E3ZdcFy7PHI4zm-987jngPwMk61D40Mg1zjdFVqFwe5T3yAdpBbJ42TWtZiE-l4nB0e5pM1-LXMhaFjlUubWBtqV1paI9_iKTkTYkt7O_sWkGoU7a4uJTQaWOz58-84ZaveDN7j-G5y3t85eLcbtKoCgUXntQiE5cSlmOZFKhIf5TpKMCYQxlhZpEZgIdG5FtLiW3pnUhubkDarbMwLE1knsN1rsC4R7GEH1ieD0eTjalWHWDYzmTcn7IXIwy2MO48R9rlISEn-gu-rJQIucwS1d-vf-d--y1243cbRrNcA_x6s-el9uDVakdBWD-Bzj23XolHzc7Z_rGee9dGJExDZqNbNZhiws0bWAh042yFiUiI_9xXTU9eUi_aRipUF20f__PX3j5_Dk_L0jJIo2aTR46kewocr6e0j6EzLqX8MLEsiH0vDbcS1TLXEEIiL1EqjpS6cz7rwejnqyrbE66T_8UXhBIwwoi5ipAubq9qzhnDkknrbBKBVHaIJry-U80-qtToqKSJrLRrpInMYmRcZj11M-_4GW_FJ0oVXBD9Fxgxfyeo2JwM7RrRgqpcSHySa-bALG0v4qdbKVeov9p78-_YLuLF7MBqq4WC89xRuckohqQ9EbkBnMT_1z-C6PVucVPPn7Q_F4OiqsfoHO2BfZA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLUJw4B-xUMAHKg4o2sR24uSAqi3tilW7q0gFqZyC7Ti0AjbLZlvUG-_A2_RxeBJm8rP0Um49cEziWHbyeWZsj78P4GWotPON9L1E43RV6jz0Ehc5D-0gt7k0udSyFptQ02l8eJika3DenYWhtMrOJtaGOi8trZEPuCJnQmxpg6JNi0h3Rlvz7x4pSNFOayen0UBkz539wOlb9Wa8g_96k_PR7vu377xWYcCz6MiWnrCceBVVUigRuSDRQYTxgTDGykIZgReRTrSQFlvscqNsaHzauLIhL0xgc4H1XoN1Rfq9PVhPx5P042qFhxg3Y5k02fZCJP4AY9AjHAKJiEhV_oIfrOUCLnMKtacb3fmfv9FduN3G12zYDIh7sOZm9-HWZEVOWz2AL0O2XYtJLc7YwZGeOzZC504AZZNaT5thIM8auQt07GyXCEuJFN1VTM_y5rpoX6lYWbAD9Nvffv_8tX9cnpzS4UqWNjo91UP4cCW9fQS9WTlzj4HFUeBCabgNuJZKSwyNuFBWGi11kbu4D687BGS2JWQnXZCvGU7MCC_ZRbz0YXNVet4QkVxSbpvAtCpD9OH1jXLxOWutURYVgbUWjXcR5xixFzEP85DyAQzW4qKoD68IihkZOWyS1e1ZDewY0YVlQ0U8kWj-_T5sdFDMWutXZX9x-OTfj1_ADQRotj-e7j2Fm5xOltR5khvQWy5O3DO4bk-Xx9XieTu2GHy6aqj-AZJWaC0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Boundary+Shape+Function+Method+for+Computing+Eigenvalues+and+Eigenfunctions+of+Sturm%E2%80%93Liouville+Problems&rft.jtitle=Mathematics+%28Basel%29&rft.au=Chein-Shan+Liu&rft.au=Jiang-Ren+Chang&rft.au=Jian-Hung+Shen&rft.au=Yung-Wei+Chen&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=19&rft.spage=3689&rft_id=info:doi/10.3390%2Fmath10193689&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6f1ccc048f8d405f825d54192b019e66
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon