A Boundary Shape Function Method for Computing Eigenvalues and Eigenfunctions of Sturm–Liouville Problems
In the paper, we transform the general Sturm–Liouville problem (SLP) into two canonical forms: one with the homogeneous Dirichlet boundary conditions and another with the homogeneous Neumann boundary conditions. A boundary shape function method (BSFM) was constructed to solve the SLPs of these two c...
Gespeichert in:
| Veröffentlicht in: | Mathematics (Basel) Jg. 10; H. 19; S. 3689 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.10.2022
|
| Schlagworte: | |
| ISSN: | 2227-7390, 2227-7390 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the paper, we transform the general Sturm–Liouville problem (SLP) into two canonical forms: one with the homogeneous Dirichlet boundary conditions and another with the homogeneous Neumann boundary conditions. A boundary shape function method (BSFM) was constructed to solve the SLPs of these two canonical forms. Owing to the property of the boundary shape function, we could transform the SLPs into an initial value problem for the new variable with initial values that were given definitely. Meanwhile, the terminal value at the right boundary could be entirely determined by using a given normalization condition for the uniqueness of the eigenfunction. In such a manner, we could directly determine the eigenvalues as the intersection points of an eigenvalue curve to the zero line, which was a horizontal line in the plane consisting of the zero values of the target function with respect to the eigen-parameter. We employed a more delicate tuning technique or the fictitious time integration method to solve an implicit algebraic equation for the eigenvalue curve. We could integrate the Sturm–Liouville equation using the given initial values to obtain the associated eigenfunction when the eigenvalue was obtained. Eight numerical examples revealed a great advantage of the BSFM, which easily obtained eigenvalues and eigenfunctions with the desired accuracy. |
|---|---|
| AbstractList | In the paper, we transform the general Sturm-Liouville problem (SLP) into two canonical forms: one with the homogeneous Dirichlet boundary conditions and another with the homogeneous Neumann boundary conditions. A boundary shape function method (BSFM) was constructed to solve the SLPs of these two canonical forms. Owing to the property of the boundary shape function, we could transform the SLPs into an initial value problem for the new variable with initial values that were given definitely. Meanwhile, the terminal value at the right boundary could be entirely determined by using a given normalization condition for the uniqueness of the eigenfunction. In such a manner, we could directly determine the eigenvalues as the intersection points of an eigenvalue curve to the zero line, which was a horizontal line in the plane consisting of the zero values of the target function with respect to the eigen-parameter. We employed a more delicate tuning technique or the fictitious time integration method to solve an implicit algebraic equation for the eigenvalue curve. We could integrate the Sturm-Liouville equation using the given initial values to obtain the associated eigenfunction when the eigenvalue was obtained. Eight numerical examples revealed a great advantage of the BSFM, which easily obtained eigenvalues and eigenfunctions with the desired accuracy. |
| Audience | Academic |
| Author | Chang, Jiang-Ren Chen, Yung-Wei Liu, Chein-Shan Shen, Jian-Hung |
| Author_xml | – sequence: 1 givenname: Chein-Shan orcidid: 0000-0001-6366-3539 surname: Liu fullname: Liu, Chein-Shan – sequence: 2 givenname: Jiang-Ren surname: Chang fullname: Chang, Jiang-Ren – sequence: 3 givenname: Jian-Hung orcidid: 0000-0002-2059-1122 surname: Shen fullname: Shen, Jian-Hung – sequence: 4 givenname: Yung-Wei surname: Chen fullname: Chen, Yung-Wei |
| BookMark | eNptUd1OHCEYJY1Nqta7PgCJt67lb2C4XDdaTbZpE9trwvCzyzoDK8OY9K7v0Df0SYodTYwpXMD3cc4J53xH4CCm6AD4hNE5pRJ9HnTZYoQl5a18Bw4JIWIh6sPBq_sHcDKOO1SXxLRl8hDcLeFFmqLV-Re83eq9g1dTNCWkCL-6sk0W-pThKg37qYS4gZdh4-KD7ic3Qh3tXPtnygiTh7dlysPj7z_rkKaH0PcOfs-p690wfgTvve5Hd_J8HoOfV5c_VteL9bcvN6vlemEY4mVBDWlRi4T0gnKHpcacM0a7zjAvOloLrqWmzDDNnO2EaTrEW0ZMQ3yHjaXH4GbWtUnv1D6HobpTSQf1r5HyRulcgumd4h4bYxBrfWsZanxLGtswLElXk3ScV63TWWuf0301XdQuTTnW7ysiCCO8kUJU1PmM2ugqGqJPJWtTt3VDMHVOPtT-UjAmGlbTrwQyE0xO45idVyYU_ZRhJYZeYaSehqpeD7WSzt6QXrz9F_4XkS6lyQ |
| CitedBy_id | crossref_primary_10_1016_j_matcom_2023_11_008 crossref_primary_10_1016_j_matcom_2023_03_025 |
| Cites_doi | 10.1016/S0377-0427(00)00446-5 10.1142/S0218348X22501560 10.1002/num.22577 10.1016/j.apnum.2008.11.005 10.1112/plms/s3-64.3.545 10.1016/j.cam.2005.12.022 10.1016/j.cnsns.2014.05.032 10.1016/j.aml.2019.106151 10.1016/0021-9991(87)90163-X 10.1016/S0362-546X(01)00231-0 10.1016/j.cnsns.2010.04.004 10.1016/j.camwa.2009.02.029 10.1016/j.apm.2012.10.019 10.1016/j.cam.2005.05.008 10.1155/2022/8531858 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
| DOI | 10.3390/math10193689 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_6f1ccc048f8d405f825d54192b019e66 A744754000 10_3390_math10193689 |
| GeographicLocations | Taiwan |
| GeographicLocations_xml | – name: Taiwan |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c406t-3c2808079f736e19a166443bbc4f7b36646a9a34c4a4edb7c5b06842c52fb1cd3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000867095300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-7390 |
| IngestDate | Thu Oct 30 06:29:32 EDT 2025 Fri Jul 25 11:57:22 EDT 2025 Tue Nov 04 18:07:59 EST 2025 Sat Nov 29 07:17:02 EST 2025 Tue Nov 18 22:02:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-3c2808079f736e19a166443bbc4f7b36646a9a34c4a4edb7c5b06842c52fb1cd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2059-1122 0000-0001-6366-3539 |
| OpenAccessLink | https://doaj.org/article/6f1ccc048f8d405f825d54192b019e66 |
| PQID | 2724265977 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6f1ccc048f8d405f825d54192b019e66 proquest_journals_2724265977 gale_infotracacademiconefile_A744754000 crossref_citationtrail_10_3390_math10193689 crossref_primary_10_3390_math10193689 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | (ref_6) 2005; 168 Alquran (ref_12) 2010; 5 (ref_11) 2013; 37 Attili (ref_13) 2005; 168 Liu (ref_24) 2008; 31 (ref_10) 2006; 192 (ref_5) 2005; 160 Aceto (ref_20) 2009; 4 Abbasbandy (ref_14) 2011; 16 Kumar (ref_1) 2021; 37 Liu (ref_17) 2008; 26 Eggert (ref_25) 1987; 69 Ghelardoni (ref_8) 2001; 132 Liu (ref_18) 2010; 56 Amodio (ref_21) 2015; 20 Liu (ref_22) 2020; 102 ref_3 Gokmen (ref_7) 2005; 170 Ghelardoni (ref_16) 2001; 47 Aceto (ref_19) 2009; 59 Niessen (ref_23) 1992; 3 ref_26 (ref_9) 2007; 200 Wang (ref_2) 2022; 2022 (ref_15) 2009; 58 Ain (ref_4) 2022; 2022 |
| References_xml | – volume: 132 start-page: 443 year: 2001 ident: ref_8 article-title: Spectral corrections for Sturm–Liouville problems publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(00)00446-5 – ident: ref_3 doi: 10.1142/S0218348X22501560 – ident: ref_26 – volume: 170 start-page: 285 year: 2005 ident: ref_7 article-title: Approximate solution of periodic Sturm–Liouville problems with Chebyshev collocation method publication-title: Appl. Math. Comput. – volume: 56 start-page: 85 year: 2010 ident: ref_18 article-title: The Lie-group shooting method for computing the generalized Sturm-Liouville problems publication-title: CMES-Comp. Model. Eng. Sci. – volume: 31 start-page: 71 year: 2008 ident: ref_24 article-title: A novel time integration method for solving a large system of non-linear algebraic equations publication-title: CMES-Comp. Model. Eng. Sci. – volume: 37 start-page: 1250 year: 2021 ident: ref_1 article-title: A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.22577 – volume: 168 start-page: 1306 year: 2005 ident: ref_13 article-title: The Adomian decomposition method for computing eigenelements of Sturm–Liouville two point boundary vateraturelue problems publication-title: Appl. Math. Comput. – volume: 59 start-page: 1644 year: 2009 ident: ref_19 article-title: Boundary Value Methods as an extension of Numerov’s method for Sturm–Liouville eigenvalue estimates publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2008.11.005 – volume: 3 start-page: 545 year: 1992 ident: ref_23 article-title: Singular Sturm-Liouville problems: The Friedrichs extension and comparison of eigenvalues publication-title: Proc. Lond. Math. Soc. doi: 10.1112/plms/s3-64.3.545 – volume: 26 start-page: 157 year: 2008 ident: ref_17 article-title: A Lie-group shooting method for computing eigenvalues and eigenfunctions of Sturm-Liouville problems publication-title: CMES-Comp. Model. Eng. Sci. – volume: 4 start-page: 113 year: 2009 ident: ref_20 article-title: BVMs for Sturm-Liouville eigenvalue estimates with general boundary conditions publication-title: J. Numer. Anal. Ind. Appl. Math. – volume: 2022 start-page: 1 year: 2022 ident: ref_2 article-title: A novel perspective to the local fractional Zakharov–Kuznetsov-modified equal width dynamical model on Cantor sets publication-title: Math. Methods Appl. Sci. – volume: 200 start-page: 140 year: 2007 ident: ref_9 article-title: Exponentially-fitted Numerov methods publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2005.12.022 – volume: 160 start-page: 401 year: 2005 ident: ref_5 article-title: Approximate calculation of eigenvalues with the method of weighted residuals–collocation method publication-title: Appl. Math. Comput. – volume: 20 start-page: 641 year: 2015 ident: ref_21 article-title: Variable-step finite difference schemes for the solution of Sturm–Liouville problems publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2014.05.032 – volume: 102 start-page: 106151 year: 2020 ident: ref_22 article-title: The periods and periodic solutions of nonlinear jerk equations solved by an iterative algorithm based on a shape function method publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2019.106151 – volume: 69 start-page: 209 year: 1987 ident: ref_25 article-title: Sinc function computation of the eigenvalues of Sturm-Liouville problems publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(87)90163-X – volume: 47 start-page: 885 year: 2001 ident: ref_16 article-title: Improved shooting technique for numerical computations of eigenvalues in Sturm-Liouville problems publication-title: Nonlinear Anal. doi: 10.1016/S0362-546X(01)00231-0 – volume: 16 start-page: 112 year: 2011 ident: ref_14 article-title: A new application of the homotopy analysis method: Solving the Sturm–Liouville problems publication-title: Commun. Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.04.004 – volume: 58 start-page: 322 year: 2009 ident: ref_15 article-title: Variational iteration method for Sturm–Liouville differential equations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.02.029 – volume: 37 start-page: 5039 year: 2013 ident: ref_11 article-title: Two very accurate and efficient methods for computing eigenvalues of Sturm–Liouville problems publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.10.019 – volume: 192 start-page: 310 year: 2006 ident: ref_10 article-title: Approximations of Sturm–Liouville eigenvalues using differential quadrature (DQ) method publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2005.05.008 – volume: 2022 start-page: 8531858 year: 2022 ident: ref_4 article-title: ABC fractional derivative for the alcohol drinking model using two-scale fractal dimension publication-title: Complexity doi: 10.1155/2022/8531858 – volume: 5 start-page: 128 year: 2010 ident: ref_12 article-title: Approximations of Sturm-Liouville eigenvalues using sinc-Galerkin and differential transform methods publication-title: Appl. Appl. Math. – volume: 168 start-page: 125 year: 2005 ident: ref_6 article-title: Approximate computation of eigenvalues with Chebyshev collocation method publication-title: Appl. Math. Comput. |
| SSID | ssj0000913849 |
| Score | 2.2178025 |
| Snippet | In the paper, we transform the general Sturm–Liouville problem (SLP) into two canonical forms: one with the homogeneous Dirichlet boundary conditions and... In the paper, we transform the general Sturm-Liouville problem (SLP) into two canonical forms: one with the homogeneous Dirichlet boundary conditions and... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3689 |
| SubjectTerms | Boundary conditions boundary shape function method Boundary value problems Canonical forms Dirichlet problem Eigenvalues Eigenvectors Liouville equations Mathematical research Methods Numerical analysis Ordinary differential equations Partial differential equations shape function Shape functions Sturm–Liouville problems Time integration |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWg5QAHvisWWuQDiAOKuokdOzmhXbQrDnS1oiD1Ztljm1aUzbLZVuLGf-Af8kuYSbxLL-XSoxMnSjTjeTP-eI-xV6W2YejkMKstlqvS-jKrgwoZxsECvHReWtmJTejZrDo5qedpwq1N2yo3MbEL1L4BmiM_LDSBCbGlvVv-yEg1ilZXk4TGbbZLTGXo57vjyWz-aTvLQqyXlaz7He8C6_tDzANP0Q1roUjZ_QoWdZT91wXmDm2mD276nQ_Z_ZRn8lHvGI_YrbB4zO4dbUla2yfs24iPO1Gl1U9-fGqXgU8R5MhQ_KjTleaY0PJe9gEBjk-IuJPIwUPL7cL37ZgeaXkT-THi1_c_v35_PGsuLumQIZ_3ejXtU_ZlOvn8_kOWtBcyQIhfZwIKYpzUddRChby2ucLMSTgHMmonsKFsbYUEtGXwTkPphrSkB2URXQ5e7LGdRbMIzxivVB5K6QrICyu1lZgiFEKDdFba6EM1YG83VjCQiMlJH-PcYIFCNjNXbTZgr7e9lz0hxzX9xmTQbR-i0e4uNKuvJo1Ko2IOABjEYuUxc41YLvuS1sUdviUoNWBvyB0MDXb8JLDpzAL-GNFmmZEmvkQMg8MB29-4g0lRoDX_fOH5_2-_YHcLOlbRbRLcZzvr1UU4YHfgcn3Wrl4mp_4L1RQDPg priority: 102 providerName: ProQuest |
| Title | A Boundary Shape Function Method for Computing Eigenvalues and Eigenfunctions of Sturm–Liouville Problems |
| URI | https://www.proquest.com/docview/2724265977 https://doaj.org/article/6f1ccc048f8d405f825d54192b019e66 |
| Volume | 10 |
| WOSCitedRecordID | wos000867095300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: K7- dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYh6aE9hLRp6TbpokNDD8XEtmTLOu6WXVraXUw3hfQk9EtC292w3gRyCXmHvGGeJDOys-wl9NKLQLYM8sxIM4NG30fIh0JonxqeJlJDusq1KxLpS5_APphbx43jmkeyCTGdVqenst6g-sKasBYeuBXccRkyay3YWagcBBcBMhpX4NGlgeDElxFsOxVyI5mKe7DMWMVlW-nOIK8_hvjvDMxPshIZ3Td8UITqf2pDjl5mvEd2u_CQDtppvSRbfv6KvJissVWbffJ7QIeRC2l5TWdn-sLTMfgmlC-dRDpoCnEobdkawC_REeJtIqa3b6ieu7Yfuk8augh0Bm7n7_3t3ffzxeUV3g2kdUsz07wmP8ejk89fko4yIbHgmVcJszkCRQoZBCt9JnVWQsDDjLE8CMOgU2qpGbegAu-MsIVJ8STOFnkwmXXsDdmeL-b-LaFVmfmCm9xmueZCc_DsOROWG811cL7qkU-PQlS2wxNHWos_CvIKFLnaFHmPHK1HX7Q4Gk-MG6I-1mMQ_To-AJtQnU2of9lEj3xEbSpcozAlq7urBvBjiHalBgJhDmH3Snvk8FHhqlu8jcoFxi0IzPfuf8zmgDzP8c5ErAA8JNur5aV_T57Zq9V5s-yTneFoWv_oR_uF9ptI-liAOsP2ZgTv66-T-tcDBuz5Xg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKRKw4I0IFJgFFQtk1Z4ZvxYIpdCoUZMoUotUVtN5mVZAHOK0qDv-gf_go_gS7rWd0E3ZdcFy7PHI4zm-987jngPwMk61D40Mg1zjdFVqFwe5T3yAdpBbJ42TWtZiE-l4nB0e5pM1-LXMhaFjlUubWBtqV1paI9_iKTkTYkt7O_sWkGoU7a4uJTQaWOz58-84ZaveDN7j-G5y3t85eLcbtKoCgUXntQiE5cSlmOZFKhIf5TpKMCYQxlhZpEZgIdG5FtLiW3pnUhubkDarbMwLE1knsN1rsC4R7GEH1ieD0eTjalWHWDYzmTcn7IXIwy2MO48R9rlISEn-gu-rJQIucwS1d-vf-d--y1243cbRrNcA_x6s-el9uDVakdBWD-Bzj23XolHzc7Z_rGee9dGJExDZqNbNZhiws0bWAh042yFiUiI_9xXTU9eUi_aRipUF20f__PX3j5_Dk_L0jJIo2aTR46kewocr6e0j6EzLqX8MLEsiH0vDbcS1TLXEEIiL1EqjpS6cz7rwejnqyrbE66T_8UXhBIwwoi5ipAubq9qzhnDkknrbBKBVHaIJry-U80-qtToqKSJrLRrpInMYmRcZj11M-_4GW_FJ0oVXBD9Fxgxfyeo2JwM7RrRgqpcSHySa-bALG0v4qdbKVeov9p78-_YLuLF7MBqq4WC89xRuckohqQ9EbkBnMT_1z-C6PVucVPPn7Q_F4OiqsfoHO2BfZA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLUJw4B-xUMAHKg4o2sR24uSAqi3tilW7q0gFqZyC7Ti0AjbLZlvUG-_A2_RxeBJm8rP0Um49cEziWHbyeWZsj78P4GWotPON9L1E43RV6jz0Ehc5D-0gt7k0udSyFptQ02l8eJika3DenYWhtMrOJtaGOi8trZEPuCJnQmxpg6JNi0h3Rlvz7x4pSNFOayen0UBkz539wOlb9Wa8g_96k_PR7vu377xWYcCz6MiWnrCceBVVUigRuSDRQYTxgTDGykIZgReRTrSQFlvscqNsaHzauLIhL0xgc4H1XoN1Rfq9PVhPx5P042qFhxg3Y5k02fZCJP4AY9AjHAKJiEhV_oIfrOUCLnMKtacb3fmfv9FduN3G12zYDIh7sOZm9-HWZEVOWz2AL0O2XYtJLc7YwZGeOzZC504AZZNaT5thIM8auQt07GyXCEuJFN1VTM_y5rpoX6lYWbAD9Nvffv_8tX9cnpzS4UqWNjo91UP4cCW9fQS9WTlzj4HFUeBCabgNuJZKSwyNuFBWGi11kbu4D687BGS2JWQnXZCvGU7MCC_ZRbz0YXNVet4QkVxSbpvAtCpD9OH1jXLxOWutURYVgbUWjXcR5xixFzEP85DyAQzW4qKoD68IihkZOWyS1e1ZDewY0YVlQ0U8kWj-_T5sdFDMWutXZX9x-OTfj1_ADQRotj-e7j2Fm5xOltR5khvQWy5O3DO4bk-Xx9XieTu2GHy6aqj-AZJWaC0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Boundary+Shape+Function+Method+for+Computing+Eigenvalues+and+Eigenfunctions+of+Sturm%E2%80%93Liouville+Problems&rft.jtitle=Mathematics+%28Basel%29&rft.au=Chein-Shan+Liu&rft.au=Jiang-Ren+Chang&rft.au=Jian-Hung+Shen&rft.au=Yung-Wei+Chen&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=19&rft.spage=3689&rft_id=info:doi/10.3390%2Fmath10193689&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6f1ccc048f8d405f825d54192b019e66 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |