Self-Supervised Autoencoders for Visual Anomaly Detection

We focus on detecting anomalies in images where the data distribution is supported by a lower-dimensional embedded manifold. Approaches based on autoencoders have aimed to control their capacity either by reducing the size of the bottleneck layer or by imposing sparsity constraints on their activati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 12; číslo 24; s. 3988
Hlavní autoři: Bauer, Alexander, Nakajima, Shinichi, Müller, Klaus-Robert
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.12.2024
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We focus on detecting anomalies in images where the data distribution is supported by a lower-dimensional embedded manifold. Approaches based on autoencoders have aimed to control their capacity either by reducing the size of the bottleneck layer or by imposing sparsity constraints on their activations. However, none of these techniques explicitly penalize the reconstruction of anomalous regions, often resulting in poor detection. We tackle this problem by adapting a self-supervised learning regime that essentially implements a denoising autoencoder with structured non-i.i.d. noise. Informally, our objective is to regularize the model to produce locally consistent reconstructions while replacing irregularities by acting as a filter that removes anomalous patterns. Formally, we show that the resulting model resembles a nonlinear orthogonal projection of partially corrupted images onto the submanifold of uncorrupted examples. Furthermore, we identify the orthogonal projection as an optimal solution for a specific regularized autoencoder related to contractive and denoising variants. In addition, orthogonal projection provides a conservation effect by largely preserving the original content of its arguments. Together, these properties facilitate an accurate detection and localization of anomalous regions by means of the reconstruction error. We support our theoretical analysis by achieving state-of-the-art results (image/pixel-level AUROC of 99.8/99.2%) on the MVTec AD dataset—a challenging benchmark for anomaly detection in the manufacturing domain.
AbstractList We focus on detecting anomalies in images where the data distribution is supported by a lower-dimensional embedded manifold. Approaches based on autoencoders have aimed to control their capacity either by reducing the size of the bottleneck layer or by imposing sparsity constraints on their activations. However, none of these techniques explicitly penalize the reconstruction of anomalous regions, often resulting in poor detection. We tackle this problem by adapting a self-supervised learning regime that essentially implements a denoising autoencoder with structured non-i.i.d. noise. Informally, our objective is to regularize the model to produce locally consistent reconstructions while replacing irregularities by acting as a filter that removes anomalous patterns. Formally, we show that the resulting model resembles a nonlinear orthogonal projection of partially corrupted images onto the submanifold of uncorrupted examples. Furthermore, we identify the orthogonal projection as an optimal solution for a specific regularized autoencoder related to contractive and denoising variants. In addition, orthogonal projection provides a conservation effect by largely preserving the original content of its arguments. Together, these properties facilitate an accurate detection and localization of anomalous regions by means of the reconstruction error. We support our theoretical analysis by achieving state-of-the-art results (image/pixel-level AUROC of 99.8/99.2%) on the MVTec AD dataset—a challenging benchmark for anomaly detection in the manufacturing domain.
Audience Academic
Author Bauer, Alexander
Müller, Klaus-Robert
Nakajima, Shinichi
Author_xml – sequence: 1
  givenname: Alexander
  surname: Bauer
  fullname: Bauer, Alexander
– sequence: 2
  givenname: Shinichi
  orcidid: 0000-0003-3970-4569
  surname: Nakajima
  fullname: Nakajima, Shinichi
– sequence: 3
  givenname: Klaus-Robert
  surname: Müller
  fullname: Müller, Klaus-Robert
BookMark eNptUV1rFTEQDdKCte2bP2DBV7fN52bzeKlWCwUfqr6G2UlSc9m7uSZZof_e1FtKKWYeMsycc-brHTla0uIJec_ohRCGXu6g_mKcS2HG8Q054ZzrXrfE0Qv_LTkvZUvbM0yM0pwQc-fn0N-te5__xOJdt1lr8gsm53PpQsrdz1hWmLvNknYwP3SffPVYY1rOyHGAufjzp_-U_Lj-_P3qa3_77cvN1ea2R0mH2gvJDFAE5h1wF9BgwIkJ57XzlGoxccWNGvgkHVIl1aRgNJOhkkmKg0ZxSm4Oui7B1u5z3EF-sAmi_RdI-d5CrhFnb7XR0NhacQXScTqJAaGNzVGZYBQ0rQ8HrX1Ov1dfqt2mNS-tfSuYNIORXOuGujig7qGJxiWkmgGbOb-L2LYeYotvRs4MoyNTjfDxQMCcSsk-PLfJqH08jn15nAbnr-AYKzzutNWJ8_9JfwF715LM
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3592815
crossref_primary_10_3390_math13081226
crossref_primary_10_1007_s10462_025_11287_7
Cites_doi 10.1109/ACCESS.2022.3193699
10.3390/app10238660
10.1109/TIE.2021.3094452
10.1145/3097983.3098052
10.1109/ACII.2013.90
10.1109/TPAMI.2016.2644615
10.1007/978-3-642-23783-6_41
10.1016/j.patcog.2020.107706
10.1007/s007780050006
10.1109/TIM.2021.3107586
10.1162/089976601750264965
10.1109/ICCV.2019.00457
10.1109/ICCV48922.2021.00822
10.1109/CASE49997.2022.9926547
10.1109/ACCESS.2022.3149130
10.1007/978-3-030-01252-6_6
10.1109/TMM.2022.3175611
10.1109/TII.2022.3182385
10.1109/JPROC.2021.3052449
10.1162/089976698300017467
10.1109/ICASSP49357.2023.10096400
10.1007/s11263-020-01400-4
10.3390/math11122628
10.1109/WACV51458.2022.00188
10.1109/WACV56688.2023.00262
10.1109/TNNLS.2013.2281761
10.1037/h0071325
10.1109/ACCESS.2022.3171559
10.1016/j.patcog.2020.107198
10.1109/CVPR.2019.00266
10.1109/ICME52920.2022.9859925
10.1109/ICCV51070.2023.00586
10.1109/CVPR.2014.461
10.1109/TNNLS.2015.2497149
10.1109/CVPR.2016.278
10.1109/TII.2022.3199228
10.1007/978-3-030-58520-4_29
10.1109/CVPR52688.2022.00951
10.1109/TNNLS.2023.3344118
10.1016/j.patcog.2006.07.009
10.1109/IJCNN48605.2020.9206975
10.1109/ICIP42928.2021.9506433
10.1109/CVPR46437.2021.01466
10.1109/CVPR42600.2020.00867
10.1214/aoms/1177704472
10.1016/j.patcog.2016.03.028
10.1109/CVPR.2019.00982
10.1109/CVPR42600.2020.00424
10.1109/ICPR48806.2021.9412842
10.1109/TNNLS.2016.2598721
10.1016/j.patrec.2022.12.009
10.1561/2200000001
10.1016/j.engappai.2023.105835
10.1109/ICCV48922.2021.00433
10.1109/IJCNN48605.2020.9207209
10.1109/CVPR46437.2021.00954
10.1016/j.media.2019.01.010
10.1109/TII.2022.3142326
10.1109/IJCNN.2017.7966273
10.1023/B:MACH.0000008084.60811.49
10.1134/S1054661816010053
10.1016/j.knosys.2022.108846
10.1016/j.patrec.2021.11.030
10.1109/ICME51207.2021.9428370
10.1145/3072959.3073659
10.3390/s18010209
10.1109/CVPR52688.2022.01392
10.1109/CVPR.2018.00577
10.1109/CVPR.2019.00057
10.1109/WACV51458.2022.00312
10.1109/CVPR52729.2023.01954
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/math12243988
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_797aa897525a4d20b36ca3902c59f95a
A821910815
10_3390_math12243988
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c406t-3419a0ca1eda2dfc9cfcb13de7de0073b2529562b4dc0545b5a89b904140c67c3
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001384640500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Tue Oct 14 19:06:23 EDT 2025
Fri Jul 25 11:54:32 EDT 2025
Tue Nov 04 18:24:35 EST 2025
Sat Nov 29 07:15:41 EST 2025
Tue Nov 18 22:41:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-3419a0ca1eda2dfc9cfcb13de7de0073b2529562b4dc0545b5a89b904140c67c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3970-4569
OpenAccessLink https://doaj.org/article/797aa897525a4d20b36ca3902c59f95a
PQID 3149694277
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_797aa897525a4d20b36ca3902c59f95a
proquest_journals_3149694277
gale_infotracacademiconefile_A821910815
crossref_primary_10_3390_math12243988
crossref_citationtrail_10_3390_math12243988
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_94
Wan (ref_53) 2023; 19
ref_93
Sclaroff (ref_41) 2022; Volume 13232
ref_91
Kim (ref_34) 2023; 167
Ferrari (ref_89) 2018; Volume 11215
ref_90
ref_12
ref_99
ref_10
Jiang (ref_75) 2023; 19
ref_96
ref_16
Wainwright (ref_101) 2008; 1
Kim (ref_65) 2022; 10
Ceci (ref_27) 2017; Volume 10534
ref_24
Hotelling (ref_18) 1933; 24
ref_29
ref_28
Cattin (ref_14) 2021; Volume 12905
ref_26
ref_72
Bauer (ref_103) 2014; 25
ref_70
ref_77
ref_76
ref_73
Schlegl (ref_13) 2019; 54
Cohen (ref_92) 2008; Volume 307
ref_83
ref_82
ref_81
ref_80
Erfani (ref_33) 2016; 58
ref_88
ref_86
ref_84
Bauer (ref_106) 2019; 21
Hoffmann (ref_20) 2007; 40
Knorr (ref_23) 2000; 8
Avidan (ref_69) 2022; Volume 13691
Cao (ref_51) 2022; 248
Lee (ref_42) 2022; 10
ref_50
Ulrich (ref_8) 2016; 26
Iizuka (ref_87) 2017; 36
ref_57
ref_56
ref_55
ref_54
Bauer (ref_104) 2017; 28
ref_59
Avidan (ref_46) 2022; Volume 13690
ref_68
ref_67
ref_66
Platt (ref_21) 2001; 13
ref_64
Niethammer (ref_6) 2017; Volume 10265
ref_62
Tao (ref_63) 2022; 18
Bimbo (ref_17) 2020; Volume 12664
Yan (ref_61) 2021; 70
Zavrtanik (ref_39) 2021; 112
Ruff (ref_78) 2021; 109
Bauer (ref_105) 2017; 28
Dy (ref_35) 2018; Volume 80
Yang (ref_60) 2023; 119
ref_36
ref_32
ref_111
ref_31
ref_110
Smola (ref_19) 1998; 10
ref_30
Wan (ref_11) 2022; 69
Ishikawa (ref_58) 2020; Volume 12627
Bergmann (ref_95) 2021; 129
ref_38
Precup (ref_71) 2017; Volume 70
Parzen (ref_25) 1962; 33
ref_37
Vedaldi (ref_5) 2020; Volume 12362
Tax (ref_22) 2004; 54
ref_108
ref_107
ref_109
ref_47
ref_45
ref_44
ref_43
Kauffmann (ref_79) 2020; 101
ref_100
Navab (ref_98) 2015; Volume 9351
ref_102
ref_40
ref_1
Zhang (ref_52) 2022; 153
ref_3
ref_2
Badrinarayanan (ref_97) 2017; 39
Shen (ref_15) 2019; Volume 11767
ref_49
ref_48
Alain (ref_85) 2014; 15
ref_9
ref_4
ref_7
Lee (ref_74) 2022; 10
References_xml – volume: 10
  start-page: 78446
  year: 2022
  ident: ref_42
  article-title: CFA: Coupled-Hypersphere-Based Feature Adaptation for Target-Oriented Anomaly Localization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3193699
– ident: ref_3
  doi: 10.3390/app10238660
– volume: 69
  start-page: 6182
  year: 2022
  ident: ref_11
  article-title: Industrial Image Anomaly Localization Based on Gaussian Clustering of Pretrained Feature
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3094452
– ident: ref_100
– ident: ref_29
  doi: 10.1145/3097983.3098052
– ident: ref_32
  doi: 10.1109/ACII.2013.90
– volume: 39
  start-page: 2481
  year: 2017
  ident: ref_97
  article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref_84
  doi: 10.1007/978-3-642-23783-6_41
– ident: ref_1
– volume: 112
  start-page: 107706
  year: 2021
  ident: ref_39
  article-title: Reconstruction by inpainting for visual anomaly detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107706
– volume: Volume 10265
  start-page: 146
  year: 2017
  ident: ref_6
  article-title: Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
  publication-title: Proceedings of the Information Processing in Medical Imaging—25th International Conference, IPMI 2017
– volume: 8
  start-page: 237
  year: 2000
  ident: ref_23
  article-title: Distance-Based Outliers: Algorithms and Applications
  publication-title: VLDB J.
  doi: 10.1007/s007780050006
– volume: 70
  start-page: 5015712
  year: 2021
  ident: ref_61
  article-title: Unsupervised Anomaly Segmentation Via Multilevel Image Reconstruction and Adaptive Attention-Level Transition
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3107586
– ident: ref_77
– volume: 13
  start-page: 1443
  year: 2001
  ident: ref_21
  article-title: Estimating the Support of a High-Dimensional Distribution
  publication-title: Neural Comput.
  doi: 10.1162/089976601750264965
– ident: ref_90
  doi: 10.1109/ICCV.2019.00457
– ident: ref_31
– volume: 21
  start-page: 2680
  year: 2019
  ident: ref_106
  article-title: Optimizing for Measure of Performance in Max-Margin Parsing
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– ident: ref_38
  doi: 10.1109/ICCV48922.2021.00822
– ident: ref_54
  doi: 10.1109/CASE49997.2022.9926547
– volume: 10
  start-page: 17366
  year: 2022
  ident: ref_65
  article-title: Spatial Contrastive Learning for Anomaly Detection and Localization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3149130
– ident: ref_83
– volume: Volume 11215
  start-page: 89
  year: 2018
  ident: ref_89
  article-title: Image Inpainting for Irregular Holes Using Partial Convolutions
  publication-title: Proceedings of the Computer Vision—ECCV 2018—15th European Conference
  doi: 10.1007/978-3-030-01252-6_6
– ident: ref_66
  doi: 10.1109/TMM.2022.3175611
– volume: 19
  start-page: 2330
  year: 2023
  ident: ref_53
  article-title: Unsupervised Image Anomaly Detection and Segmentation Based on Pretrained Feature Mapping
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3182385
– volume: 109
  start-page: 756
  year: 2021
  ident: ref_78
  article-title: A Unifying Review of Deep and Shallow Anomaly Detection
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3052449
– volume: 10
  start-page: 1299
  year: 1998
  ident: ref_19
  article-title: Nonlinear Component Analysis as a Kernel Eigenvalue Problem
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017467
– ident: ref_43
  doi: 10.1109/ICASSP49357.2023.10096400
– volume: Volume 10534
  start-page: 36
  year: 2017
  ident: ref_27
  article-title: Robust, Deep and Inductive Anomaly Detection
  publication-title: Proceedings of the Machine Learning and Knowledge Discovery in Databases—European Conference, ECML PKDD 2017
– ident: ref_28
– volume: Volume 70
  start-page: 1520
  year: 2017
  ident: ref_71
  article-title: Minimizing Trust Leaks for Robust Sybil Detection
  publication-title: Proceedings of the 34th International Conference on Machine Learning, ICML 2017
– ident: ref_30
– volume: 129
  start-page: 1038
  year: 2021
  ident: ref_95
  article-title: The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-020-01400-4
– ident: ref_108
  doi: 10.3390/math11122628
– ident: ref_56
  doi: 10.1109/WACV51458.2022.00188
– ident: ref_50
  doi: 10.1109/WACV56688.2023.00262
– ident: ref_67
– volume: 25
  start-page: 870
  year: 2014
  ident: ref_103
  article-title: Efficient Algorithms for Exact Inference in Sequence Labeling SVMs
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2281761
– volume: 24
  start-page: 417
  year: 1933
  ident: ref_18
  article-title: Analysis of a complex of statistical variables into principal components
  publication-title: J. Educ. Psychol.
  doi: 10.1037/h0071325
– volume: 10
  start-page: 46717
  year: 2022
  ident: ref_74
  article-title: AnoViT: Unsupervised Anomaly Detection and Localization with Vision Transformer-Based Encoder-Decoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3171559
– volume: 101
  start-page: 107198
  year: 2020
  ident: ref_79
  article-title: Towards explaining anomalies: A deep Taylor decomposition of one-class models
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107198
– ident: ref_99
  doi: 10.1109/CVPR.2019.00266
– ident: ref_55
  doi: 10.1109/ICME52920.2022.9859925
– ident: ref_44
  doi: 10.1109/ICCV51070.2023.00586
– ident: ref_96
  doi: 10.1109/CVPR.2014.461
– ident: ref_68
  doi: 10.1109/ICCV51070.2023.00586
– ident: ref_81
– volume: 28
  start-page: 44
  year: 2017
  ident: ref_104
  article-title: Accurate Maximum-Margin Training for Parsing with Context-Free Grammars
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2497149
– ident: ref_86
  doi: 10.1109/CVPR.2016.278
– volume: 15
  start-page: 3563
  year: 2014
  ident: ref_85
  article-title: What regularized auto-encoders learn from the data-generating distribution
  publication-title: J. Mach. Learn. Res.
– volume: Volume 12664
  start-page: 475
  year: 2020
  ident: ref_17
  article-title: PaDiM: A Patch Distribution Modeling Framework for Anomaly Detection and Localization
  publication-title: Proceedings of the Pattern Recognition. ICPR International Workshops and Challenges
– volume: 19
  start-page: 2200
  year: 2023
  ident: ref_75
  article-title: Masked Swin Transformer Unet for Industrial Anomaly Detection
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3199228
– volume: Volume 12362
  start-page: 485
  year: 2020
  ident: ref_5
  article-title: Attention Guided Anomaly Localization in Images
  publication-title: Proceedings of the Computer Vision—ECCV 2020—16th European Conference
  doi: 10.1007/978-3-030-58520-4_29
– ident: ref_64
– ident: ref_49
  doi: 10.1109/CVPR52688.2022.00951
– ident: ref_36
– ident: ref_70
– ident: ref_111
  doi: 10.1109/TNNLS.2023.3344118
– volume: 40
  start-page: 863
  year: 2007
  ident: ref_20
  article-title: Kernel PCA for novelty detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2006.07.009
– ident: ref_73
  doi: 10.1109/IJCNN48605.2020.9206975
– ident: ref_47
  doi: 10.1109/ICIP42928.2021.9506433
– ident: ref_48
  doi: 10.1109/CVPR46437.2021.01466
– ident: ref_9
  doi: 10.1109/CVPR42600.2020.00867
– volume: 33
  start-page: 106
  year: 1962
  ident: ref_25
  article-title: On estimation of a probability density function and mode
  publication-title: Ann. Math. Statist
  doi: 10.1214/aoms/1177704472
– volume: 58
  start-page: 121
  year: 2016
  ident: ref_33
  article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.03.028
– ident: ref_109
  doi: 10.1109/CVPR.2019.00982
– volume: Volume 80
  start-page: 4390
  year: 2018
  ident: ref_35
  article-title: Deep One-Class Classification
  publication-title: Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan
– ident: ref_4
  doi: 10.1109/CVPR42600.2020.00424
– ident: ref_62
  doi: 10.1109/ICPR48806.2021.9412842
– volume: Volume 12627
  start-page: 375
  year: 2020
  ident: ref_58
  article-title: Patch SVDD: Patch-Level SVDD for Anomaly Detection and Segmentation
  publication-title: Proceedings of the Computer Vision—ACCV 2020—15th Asian Conference on Computer Vision
– volume: 28
  start-page: 2566
  year: 2017
  ident: ref_105
  article-title: Efficient Exact Inference with Loss Augmented Objective in Structured Learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2598721
– volume: 167
  start-page: 18
  year: 2023
  ident: ref_34
  article-title: Active anomaly detection based on deep one-class classification
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2022.12.009
– volume: 1
  start-page: 1
  year: 2008
  ident: ref_101
  article-title: Graphical Models, Exponential Families, and Variational Inference
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000001
– volume: 119
  start-page: 105835
  year: 2023
  ident: ref_60
  article-title: MemSeg: A semi-supervised method for image surface defect detection using differences and commonalities
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.105835
– ident: ref_76
  doi: 10.1109/ICCV48922.2021.00433
– ident: ref_80
  doi: 10.1109/IJCNN48605.2020.9207209
– volume: Volume 9351
  start-page: 234
  year: 2015
  ident: ref_98
  article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation
  publication-title: Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015—18th International Conference
– ident: ref_40
  doi: 10.1109/CVPR46437.2021.00954
– volume: 54
  start-page: 30
  year: 2019
  ident: ref_13
  article-title: f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.01.010
– volume: 18
  start-page: 7707
  year: 2022
  ident: ref_63
  article-title: Unsupervised Anomaly Detection for Surface Defects with Dual-Siamese Network
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3142326
– volume: Volume 13232
  start-page: 394
  year: 2022
  ident: ref_41
  article-title: Inpainting Transformer for Anomaly Detection
  publication-title: Proceedings of the Image Analysis and Processing—ICIAP 2022—21st International Conference
– volume: Volume 307
  start-page: 1096
  year: 2008
  ident: ref_92
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the Machine Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008)
– ident: ref_107
– ident: ref_110
– volume: Volume 13690
  start-page: 392
  year: 2022
  ident: ref_46
  article-title: SPot-the-Difference Self-supervised Pre-training for Anomaly Detection and Segmentation
  publication-title: Proceedings of the Computer Vision—ECCV 2022—17th European Conference
– ident: ref_72
– ident: ref_26
  doi: 10.1109/IJCNN.2017.7966273
– ident: ref_93
– volume: 54
  start-page: 45
  year: 2004
  ident: ref_22
  article-title: Support Vector Data Description
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000008084.60811.49
– volume: Volume 11767
  start-page: 289
  year: 2019
  ident: ref_15
  article-title: Unsupervised Anomaly Localization Using Variational Auto-Encoders
  publication-title: Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2019—22nd International Conference
– volume: 26
  start-page: 88
  year: 2016
  ident: ref_8
  article-title: Real-time texture error detection on textured surfaces with compressed sensing
  publication-title: Pattern Recognit. Image Anal.
  doi: 10.1134/S1054661816010053
– ident: ref_24
– volume: 248
  start-page: 108846
  year: 2022
  ident: ref_51
  article-title: Informative knowledge distillation for image anomaly segmentation
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.108846
– ident: ref_82
– volume: 153
  start-page: 144
  year: 2022
  ident: ref_52
  article-title: PEDENet: Image anomaly localization via patch embedding and density estimation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2021.11.030
– ident: ref_59
  doi: 10.1109/ICME51207.2021.9428370
– ident: ref_37
– ident: ref_102
– volume: Volume 12905
  start-page: 581
  year: 2021
  ident: ref_14
  article-title: Detecting Outliers with Poisson Image Interpolation
  publication-title: Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2021—24th International Conference
– volume: Volume 13691
  start-page: 474
  year: 2022
  ident: ref_69
  article-title: Natural Synthetic Anomalies for Self-supervised Anomaly Detection and Localization
  publication-title: Proceedings of the Computer Vision—ECCV 2022—17th European Conference
– ident: ref_2
– ident: ref_12
– volume: 36
  start-page: 107:1
  year: 2017
  ident: ref_87
  article-title: Globally and locally consistent image completion
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3072959.3073659
– ident: ref_7
  doi: 10.3390/s18010209
– ident: ref_10
  doi: 10.1109/CVPR52688.2022.01392
– ident: ref_91
– ident: ref_88
  doi: 10.1109/CVPR.2018.00577
– ident: ref_16
  doi: 10.1109/CVPR.2019.00057
– ident: ref_45
  doi: 10.1109/WACV51458.2022.00312
– ident: ref_57
– ident: ref_94
  doi: 10.1109/CVPR52729.2023.01954
SSID ssj0000913849
Score 2.2963533
Snippet We focus on detecting anomalies in images where the data distribution is supported by a lower-dimensional embedded manifold. Approaches based on autoencoders...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3988
SubjectTerms Anomalies
anomaly detection
autoencoders
Corruption
Error analysis
Error detection
Image filters
Image reconstruction
Localization
Machine learning
manifolds
Manifolds (mathematics)
Noise reduction
self-supervised
Self-supervised learning
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcCiHUl5iaalyKOKArG4cO45P1fKoemgrpIWqN2tiO1BpSZZNFol_3xmvd8ulvXBNLGvi8cx89ky-YexQgNdCNob7GgJHSwRuQl1yJTH6VAq8iLU5l2f64qK6ujJf04Vbn8oq1z4xOmrfObojPyoQypdGCq2P5785dY2i7GpqofGQPSKWhDyW7k03dyzEeVlJs6p3L_B0f4Qo8CflkgoTW63cRqJI2H-XW46x5uTp_0q5y3YSyswmq23xjD0I7XP25HxD0dq_YGYaZg2fLufkLPrgs8ly6IjVkiqbM4Sy2eV1v6RJ2u4XzP5mn8MQy7bal-z7yZdvn0556qPAHYbrgRNlG4wd5MGD8I0zrnF1XvigfaBMXS0o21eKWnqHCE7VCipTm7HEw5crtStesa22a8NrlhklZQNo5B4XEXQODipEXIXzYgzK-RH7sF5T6xLJOPW6mFk8bJAG7L8aGLF3m9HzFbnGHeM-kno2Y4gSOz7oFj9ssjCrjQaUWyuhQKI4dVE6wJmEU6YxCkbsPSnXkuGiSA7S_wf4YUSBZScVOu8cEZIasf21cm2y6N7eavbN_a_32LZA4LMqedlnW8NiGd6yx-7PcN0vDuIGvQE7u-7R
  priority: 102
  providerName: ProQuest
Title Self-Supervised Autoencoders for Visual Anomaly Detection
URI https://www.proquest.com/docview/3149694277
https://doaj.org/article/797aa897525a4d20b36ca3902c59f95a
Volume 12
WOSCitedRecordID wos001384640500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQ6QEOFS0gti2rHIo4IKsbx47j45ZuBSpdrVioysma2I5aaZutmiwSF76dGSdd9lJx4eJDMoqcNxnPG3nyzNiRAK-FrAz3JQSOkQjchDLnSmL2KRR4EXtzLr_o6bS4ujKzjaO-qCeskwfugDvWRgMURiuhQHoxKrPcARbqwilTGRWp0UibjWIqrsEmzQppuk73DM2Pkf9d0y5SZuIhK39zUJTqf2xBjlnm7AXb6elhMu6mtcuehHqPPb9Ya6s2L5mZh0XF56s7ivIm-GS8apckR0ktyQly0OTyplnRQ-rlLSx-Jaehjf1W9Sv2_Wzy7eMn3h-AwB3m2ZaT1hqMHKTBg_CVM65yZZr5oH2gLbZS0DZdLkrpHVIvVSpEqjQjiVWTy7XLXrOtelmHNywxSsoKMDo9YgA6BQcFUqXMIaSgnB-wDw-QWNerg9MhFQuLVQIBaDcBHLB3a-u7ThXjEbsTQndtQ1rW8QJ62PYetv_y8IC9J99YijickoP-xwF8MdKusuMCV90UqY0asMMH99k-FBubYQ2YGym03v8fszlgzwTymq6j5ZBttfer8JZtu5_tTXM_ZE9PJtPZ12H8GnE813xI7aRzGn9P8P7s88Xsxx-Q4uZN
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceCMWCuRAxQFZ3XXsOD4gtFCqVrtdIbVUvRnHdqDSkiybLKh_it_ITB5bLuXWA9fEsiaZ8cxnz_gbgFfcesVFrpnPbGC4Ei3TIUuYFBh9Umk9b2pzTqZqNktPT_WnDfjd34WhssreJzaO2peOzsh3YoTyiRZcqXeLH4y6RlF2tW-h0ZrFJJz_wi1b9fZgF_W7zfnex-MP-6zrKsAcBq-aEYGZHTo7Ct5ynzvtcpeNYh-UD5S3yjjlvhKeCe8Qz8hM2lRneihwK-IS5WKc9xpcF3GqaF1NFFuf6RDHZip0W18fx3q4g6jzG-WuYt20drmIfE2DgMvCQBPb9u7-b3_lHtzpUHQ0bs3-PmyE4gHcPlxT0FYPQR-Fec6OVgtyhlXw0XhVl8TaSZXbEUL16OSsWtEkRfndzs-j3VA3ZWnFI_h8JbI_hs2iLMITiLQUIrfoxDwqzaqRdTZFRBk7z4dWOj-AN70OjetI1KmXx9zgZoo0bv7W-AC216MXLXnIJePekzmsxxDld_OgXH41nQcxSiuLcivJpRUoThYnzuJM3Emda2kH8JqMyZBjQpGc7e5X4IcRxZcZpxicRogA5QC2emMynceqzIUlPf3365dwc__4cGqmB7PJM7jFEeS15T1bsFkvV-E53HA_67Nq-aJZHBF8uWq7-wMZ0EwB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFCE48EYNFNgDFQe0SuK11-sDQoEQEbWNIhWqcnK9tpdWCpuQ3YD61_h1zOwj5VJuPXDdtazZnfHMZ8_4G4BXzDjJeKZClxof4ko0ofJpHAqO0ScRxrGqNuf4QE6nycmJmm3B7_YuDJVVtj6xctRuYemMvBchlI8VZ1L2sqYsYjYav1v-CKmDFGVa23YatYns-4tfuH0r3k5GqOs9xsYfP3_4FDYdBkKLgawMiczM9K0ZeGeYy6yymU0HkfPSecphpYzyYDFLubOIbUQqTKJS1ee4LbGxtBHOewO2EZJz1oHt2eRw9nVzwkOMmwlXdbV9FKl-DzHoGWWyIlU1ermMg1W7gKuCQhXpxvf-5390H-42-DoY1gviAWz5_CHcOdyQ0xaPQB35eRYerZfkJgvvguG6XBCfJ9V0Bwjig-PzYk2T5IvvZn4RjHxZFazlj-HLtcj-BDr5Ivc7ECjBeWbQvTlUoJEDY02CWDOyjvWNsK4Lb1p9atvQq1OXj7nGbRZpX_-t_S7sbUYva1qRK8a9J9PYjCEy8OrBYvVNN75FSyUNyi0FE4ajOGkUW4MzMStUpoTpwmsyLE0uC0Wyprl5gR9G5F96mGDYGiA2FF3YbQ1LN76s0JdW9fTfr1_CLTQ3fTCZ7j-D2wzRX133swudcrX2z-Gm_VmeF6sXzUoJ4PS6De8P9FxWgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Supervised+Autoencoders+for+Visual+Anomaly+Detection&rft.jtitle=Mathematics+%28Basel%29&rft.au=Alexander+Bauer&rft.au=Shinichi+Nakajima&rft.au=Klaus-Robert+M%C3%BCller&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=12&rft.issue=24&rft.spage=3988&rft_id=info:doi/10.3390%2Fmath12243988&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_797aa897525a4d20b36ca3902c59f95a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon