DDANF: Deep denoising autoencoder normalizing flow for unsupervised multivariate time series anomaly detection
In recent years, the proliferation of IoT technologies and the widespread adoption of wireless sensors across various critical infrastructures such as power plants, service monitoring systems, space and earth exploration missions, and water treatment facilities have resulted in the generation of vas...
Gespeichert in:
| Veröffentlicht in: | Alexandria engineering journal Jg. 108; S. 436 - 444 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.12.2024
Elsevier |
| Schlagworte: | |
| ISSN: | 1110-0168 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In recent years, the proliferation of IoT technologies and the widespread adoption of wireless sensors across various critical infrastructures such as power plants, service monitoring systems, space and earth exploration missions, and water treatment facilities have resulted in the generation of vast quantities of multivariate time series data. Within this context, unsupervised anomaly detection has emerged as a pivotal yet challenging problem in time series research, necessitating machine learning models capable of identifying rare anomalies amidst massive datasets. Traditionally, unsupervised methods have approached this issue by learning representations of primary patterns within sequences and detecting deviations through reconstruction errors. However, the effectiveness of this approach is often limited due to the intricate dynamics and diverse patterns inherent in these dynamic systems. Moreover, many existing unsupervised anomaly detection techniques fail to fully exploit inter-feature relationships within multivariate time series data, thereby overlooking a crucial criterion for accurate detection. To address these shortcomings, this paper introduces a novel unsupervised method for multivariate time series anomaly detection based on normalized flows and autoencoders. Central to our approach is the incorporation of a channel shuffling mechanism during training, enhancing the model’s capacity to discern inter-channel patterns and anomalies. Concurrently, the application of normalized flows within the autoencoder framework serves to constrain the latent space, effectively isolating anomalies and improving detection accuracy. Experimental validation conducted on two large-scale public datasets demonstrates the efficacy of the proposed method compared to established benchmarks, highlighting its superior performance. |
|---|---|
| AbstractList | In recent years, the proliferation of IoT technologies and the widespread adoption of wireless sensors across various critical infrastructures such as power plants, service monitoring systems, space and earth exploration missions, and water treatment facilities have resulted in the generation of vast quantities of multivariate time series data. Within this context, unsupervised anomaly detection has emerged as a pivotal yet challenging problem in time series research, necessitating machine learning models capable of identifying rare anomalies amidst massive datasets. Traditionally, unsupervised methods have approached this issue by learning representations of primary patterns within sequences and detecting deviations through reconstruction errors. However, the effectiveness of this approach is often limited due to the intricate dynamics and diverse patterns inherent in these dynamic systems. Moreover, many existing unsupervised anomaly detection techniques fail to fully exploit inter-feature relationships within multivariate time series data, thereby overlooking a crucial criterion for accurate detection. To address these shortcomings, this paper introduces a novel unsupervised method for multivariate time series anomaly detection based on normalized flows and autoencoders. Central to our approach is the incorporation of a channel shuffling mechanism during training, enhancing the model’s capacity to discern inter-channel patterns and anomalies. Concurrently, the application of normalized flows within the autoencoder framework serves to constrain the latent space, effectively isolating anomalies and improving detection accuracy. Experimental validation conducted on two large-scale public datasets demonstrates the efficacy of the proposed method compared to established benchmarks, highlighting its superior performance. |
| Author | Liu, Peng Garg, Sahil Mahmoudi, Saïd Zhao, Xigang Kaddoum, Georges Hassan, Mohammad Mehedi |
| Author_xml | – sequence: 1 givenname: Xigang surname: Zhao fullname: Zhao, Xigang organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China – sequence: 2 givenname: Peng orcidid: 0000-0002-3403-2604 surname: Liu fullname: Liu, Peng email: perryliu@hdu.edu.cn organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China – sequence: 3 givenname: Saïd orcidid: 0000-0001-8272-9425 surname: Mahmoudi fullname: Mahmoudi, Saïd organization: Computer Science Department, Faculty of Engineering, University of Mons, Mons, 7000, Belgium – sequence: 4 givenname: Sahil surname: Garg fullname: Garg, Sahil organization: École de technologie supérieure, Montreal, H3C 1K3, Canada – sequence: 5 givenname: Georges orcidid: 0000-0002-5025-6624 surname: Kaddoum fullname: Kaddoum, Georges organization: École de technologie supérieure, Montreal, H3C 1K3, Canada – sequence: 6 givenname: Mohammad Mehedi surname: Hassan fullname: Hassan, Mohammad Mehedi organization: Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh, 11543, Saudi Arabia |
| BookMark | eNp9kc9uFDEMh3NoJUrpA3DLC-yQZP5kBk5Vl0KlCi5wjjyJU3k0m6yS7KLy9M2ycOFQXyw5-n6yv7xlFyEGZOy9FI0UcviwNIBLo4TqGqEbIdsLdiWlFJv6OL5hNzkvolavp24arljYbm-_3X_kW8Q9dxgiZQpPHA4lYrDRYeIhph2s9Ps092v8xX1M_BDyYY_pSBkd3x3WQkdIBAV5oR3yjIkwcwixos81uKAtFMM7dulhzXjzt1-zn_eff9x93Tx-__Jwd_u4sZ0YyqaVqNWkwYH13snOqVm0ylmlh36WfT_O0Etl3ehnCW7Uc6dbO2A3jL6HaZDtNXs457oIi9kn2kF6NhHI_BnE9GQgFbIrGlRSTEJha9uxw0mC9DXY9pObwTox1yx9zrIp5pzQG0sFTteUBLQaKczJvFlMNW9O5o3QppqvpPyP_LfJa8ynM4NVz5EwmWypfgU6StVh3Z9eoV8A0-SiZg |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2024_109770 crossref_primary_10_3390_electronics14153141 crossref_primary_10_3390_e27080823 crossref_primary_10_7717_peerj_cs_2542 |
| Cites_doi | 10.1016/j.dcan.2020.06.001 10.1109/WACV51458.2022.00188 10.1145/3292500.3330672 10.1145/3055366.3055375 10.1145/3219819.3219845 10.1145/3394486.3403392 10.1145/3439950 10.1016/j.dcan.2021.11.004 10.3390/electronics11142146 10.1016/j.dcan.2022.02.007 10.1109/WACV48630.2021.00195 10.1007/s10489-022-03905-6 10.1109/TKDE.2013.184 10.1109/LRA.2018.2801475 10.1109/TSMCA.2007.897589 10.1109/CVPR.2016.90 10.1109/TKDE.2021.3140058 10.1109/TWC.2022.3145399 10.1145/342009.335388 10.1109/JIOT.2022.3202628 10.1109/CVPR.2018.00684 10.1016/j.dcan.2022.04.021 |
| ContentType | Journal Article |
| Copyright | 2024 Faculty of Engineering, Alexandria University |
| Copyright_xml | – notice: 2024 Faculty of Engineering, Alexandria University |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.aej.2024.07.013 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 444 |
| ExternalDocumentID | oai_doaj_org_article_e210902e3c384e91a1fcd8c59dbacd0b 10_1016_j_aej_2024_07_013 S1110016824007348 |
| GroupedDBID | --K 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ XH2 AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
| ID | FETCH-LOGICAL-c406t-31e7297adacffd14d2b032dc2765b1558ba512cd8fb1ad87b473c6e468f5a9613 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001287818400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1110-0168 |
| IngestDate | Fri Oct 03 12:36:47 EDT 2025 Tue Nov 18 22:18:27 EST 2025 Sat Nov 29 06:34:33 EST 2025 Sat Nov 23 15:55:04 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Normalizing flow Autoencoder Anomaly detection Time series |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-31e7297adacffd14d2b032dc2765b1558ba512cd8fb1ad87b473c6e468f5a9613 |
| ORCID | 0000-0001-8272-9425 0000-0002-5025-6624 0000-0002-3403-2604 |
| OpenAccessLink | https://doaj.org/article/e210902e3c384e91a1fcd8c59dbacd0b |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e210902e3c384e91a1fcd8c59dbacd0b crossref_citationtrail_10_1016_j_aej_2024_07_013 crossref_primary_10_1016_j_aej_2024_07_013 elsevier_sciencedirect_doi_10_1016_j_aej_2024_07_013 |
| PublicationCentury | 2000 |
| PublicationDate | December 2024 2024-12-00 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Alexandria engineering journal |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Pang, Shen, Cao, Hengel (b9) 2021; 54 Chung, Gulcehre, Cho, Bengio (b28) 2014 Goh, Adepu, Junejo, Mathur (b43) 2017 Malhotra, Vig, Shroff, Agarwal (b39) 2015; Vol. 2015 Malhotra, Ramakrishnan, Anand, Vig, Agarwal, Shroff (b37) 2016 Guo, Yu, Kumar, Wei, Mumtaz, Guizani (b26) 2022; 10 Gupta, Gao, Aggarwal, Han (b1) 2013; 26 M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 93–104. D. Gudovskiy, S. Ishizaka, K. Kozuka, Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 98–107. Papamakarios, Nalisnick, Rezende, Mohamed, Lakshminarayanan (b21) 2021; 22 Park, Hoshi, Kemp (b41) 2018; 3 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b29) 2017; 30 Dinh, Krueger, Bengio (b34) 2014 Y. Zhao, Q. Ding, X. Zhang, AE-FLOW: Autoencoders with Normalizing Flows for Medical Images Anomaly Detection, in: The Eleventh International Conference on Learning Representations, 2023. Li, Peng, Zhang, Li, Wen (b14) 2021 Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, D. Pei, Robust anomaly detection for multivariate time series through stochastic recurrent neural network, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 2828–2837. Pan, Ye, Yu, Hong, Al-Rubaye, Mumtaz, Al-Dulaimi, Chih-Lin (b27) 2022; 21 B. Zong, Q. Song, M.R. Min, W. Cheng, C. Lumezanu, D. Cho, H. Chen, Deep autoencoding gaussian mixture model for unsupervised anomaly detection, in: International Conference on Learning Representations, 2018. Liu, Zhou, Ding, Hooi, Zhang, Shen, Cheng (b45) 2022; 35 Maru, Kobayashi (b15) 2020 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. Xiao, Xia, Yin, Zhang, Qian, Liu, Liang, Li (b32) 2022 Schlegl, Seeböck, Waldstein, Schmidt-Erfurth, Langs (b18) 2017 M. Rudolph, B. Wandt, B. Rosenhahn, Same same but differnet: Semi-supervised defect detection with normalizing flows, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 1907–1916. Tong, Wolf, Krishnaswamyt (b33) 2020 Li, Li (b10) 2023; 53 Li, Chen, Jin, Shi, Goh, Ng (b13) 2019 Naito, Taguchi, Nakata, Kato (b11) 2021 Bashar, Nayak (b12) 2020 W. Liu, W. Luo, D. Lian, S. Gao, Future frame prediction for anomaly detection–a new baseline, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6536–6545. Oussidi, Elhassouny (b8) 2018 Yang, Ding, Liu, Meng, Chi, Ma, Yan (b16) 2022; 8 Zenati, Foo, Lecouat, Manek, Chandrasekhar (b19) 2018 Kingma, Dhariwal (b20) 2018; 31 Kingma, Ba (b46) 2014 Ayed, Stella, Januschowski, Gasthaus (b31) 2021 Chaovalitwongse, Fan, Sachdeo (b3) 2007; 37 Tran, Nguyen, Nguyen, Jang (b38) 2022; 11 C.M. Ahmed, V.R. Palleti, A.P. Mathur, WADI: a water distribution testbed for research in the design of secure cyber physical systems, in: Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks, 2017, pp. 25–28. Liu, Ting, Zhou (b40) 2008 K. Hundman, V. Constantinou, C. Laporte, I. Colwell, T. Soderstrom, Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 387–395. Wei, Wang, Dai, Li, He (b7) 2023; 9 Baek, Kwon, Suh, Kim, Kim, Kim (b5) 2021; 7 J. Audibert, P. Michiardi, F. Guyard, S. Marti, M.A. Zuluaga, Usad: Unsupervised anomaly detection on multivariate time series, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 3395–3404. Ma, Perkins (b4) 2003; Vol. 3 Weinger, Kim, Sim, Nakashima, Moustafa, Wu (b17) 2022; 8 Wei (10.1016/j.aej.2024.07.013_b7) 2023; 9 Baek (10.1016/j.aej.2024.07.013_b5) 2021; 7 Weinger (10.1016/j.aej.2024.07.013_b17) 2022; 8 Xiao (10.1016/j.aej.2024.07.013_b32) 2022 10.1016/j.aej.2024.07.013_b30 10.1016/j.aej.2024.07.013_b6 Li (10.1016/j.aej.2024.07.013_b13) 2019 10.1016/j.aej.2024.07.013_b35 10.1016/j.aej.2024.07.013_b36 Oussidi (10.1016/j.aej.2024.07.013_b8) 2018 Pang (10.1016/j.aej.2024.07.013_b9) 2021; 54 Vaswani (10.1016/j.aej.2024.07.013_b29) 2017; 30 Gupta (10.1016/j.aej.2024.07.013_b1) 2013; 26 Ayed (10.1016/j.aej.2024.07.013_b31) 2021 Chaovalitwongse (10.1016/j.aej.2024.07.013_b3) 2007; 37 Goh (10.1016/j.aej.2024.07.013_b43) 2017 Bashar (10.1016/j.aej.2024.07.013_b12) 2020 Malhotra (10.1016/j.aej.2024.07.013_b39) 2015; Vol. 2015 Ma (10.1016/j.aej.2024.07.013_b4) 2003; Vol. 3 Dinh (10.1016/j.aej.2024.07.013_b34) 2014 Tran (10.1016/j.aej.2024.07.013_b38) 2022; 11 Park (10.1016/j.aej.2024.07.013_b41) 2018; 3 Li (10.1016/j.aej.2024.07.013_b14) 2021 Schlegl (10.1016/j.aej.2024.07.013_b18) 2017 Kingma (10.1016/j.aej.2024.07.013_b20) 2018; 31 Pan (10.1016/j.aej.2024.07.013_b27) 2022; 21 Liu (10.1016/j.aej.2024.07.013_b40) 2008 10.1016/j.aej.2024.07.013_b2 Tong (10.1016/j.aej.2024.07.013_b33) 2020 Li (10.1016/j.aej.2024.07.013_b10) 2023; 53 Yang (10.1016/j.aej.2024.07.013_b16) 2022; 8 10.1016/j.aej.2024.07.013_b42 Liu (10.1016/j.aej.2024.07.013_b45) 2022; 35 Kingma (10.1016/j.aej.2024.07.013_b46) 2014 10.1016/j.aej.2024.07.013_b22 10.1016/j.aej.2024.07.013_b44 10.1016/j.aej.2024.07.013_b23 Chung (10.1016/j.aej.2024.07.013_b28) 2014 10.1016/j.aej.2024.07.013_b24 Malhotra (10.1016/j.aej.2024.07.013_b37) 2016 10.1016/j.aej.2024.07.013_b25 Maru (10.1016/j.aej.2024.07.013_b15) 2020 Naito (10.1016/j.aej.2024.07.013_b11) 2021 Zenati (10.1016/j.aej.2024.07.013_b19) 2018 Papamakarios (10.1016/j.aej.2024.07.013_b21) 2021; 22 Guo (10.1016/j.aej.2024.07.013_b26) 2022; 10 |
| References_xml | – volume: 37 start-page: 1005 year: 2007 end-page: 1016 ident: b3 article-title: On the time series publication-title: IEEE Trans. Syst. Man Cybern. A – volume: 35 start-page: 4293 year: 2022 end-page: 4306 ident: b45 article-title: Time series anomaly detection with adversarial reconstruction networks publication-title: IEEE Trans. Knowl. Data Eng. – reference: K. Hundman, V. Constantinou, C. Laporte, I. Colwell, T. Soderstrom, Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 387–395. – year: 2014 ident: b46 article-title: Adam: A method for stochastic optimization – reference: B. Zong, Q. Song, M.R. Min, W. Cheng, C. Lumezanu, D. Cho, H. Chen, Deep autoencoding gaussian mixture model for unsupervised anomaly detection, in: International Conference on Learning Representations, 2018. – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. – volume: Vol. 3 start-page: 1741 year: 2003 end-page: 1745 ident: b4 article-title: Time-series novelty detection using one-class support vector machines publication-title: Proceedings of the International Joint Conference on Neural Networks, 2003. – volume: 10 start-page: 303 year: 2022 end-page: 317 ident: b26 article-title: Deep-distributed-learning-based POI recommendation under mobile-edge networks publication-title: IEEE Internet Things J. – volume: 26 start-page: 2250 year: 2013 end-page: 2267 ident: b1 article-title: Outlier detection for temporal data: A survey publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 146 year: 2017 end-page: 157 ident: b18 article-title: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery publication-title: Information Processing in Medical Imaging: 25th International Conference, IPMI 2017, Boone, NC, USA, June 25-30, 2017, Proceedings – reference: M. Rudolph, B. Wandt, B. Rosenhahn, Same same but differnet: Semi-supervised defect detection with normalizing flows, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 1907–1916. – start-page: 703 year: 2019 end-page: 716 ident: b13 article-title: MAD-gan: Multivariate anomaly detection for time series data with generative adversarial networks publication-title: Artificial Neural Networks and Machine Learning–ICANN 2019: Text and Time Series: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings, Part IV – reference: J. Audibert, P. Michiardi, F. Guyard, S. Marti, M.A. Zuluaga, Usad: Unsupervised anomaly detection on multivariate time series, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 3395–3404. – year: 2016 ident: b37 article-title: LSTM-based encoder-decoder for multi-sensor anomaly detection – year: 2022 ident: b32 article-title: AFSTGCN: Prediction for multivariate time series using an adaptive fused spatial-temporal graph convolutional network publication-title: Digit. Commun. Netw. – volume: 54 start-page: 1 year: 2021 end-page: 38 ident: b9 article-title: Deep learning for anomaly detection: A review publication-title: ACM Comput. Surv. (CSUR) – reference: D. Gudovskiy, S. Ishizaka, K. Kozuka, Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 98–107. – year: 2014 ident: b34 article-title: Nice: Non-linear independent components estimation – start-page: 542 year: 2021 end-page: 551 ident: b11 article-title: Anomaly detection for multivariate time series on large-scale fluid handling plant using two-stage autoencoder publication-title: 2021 International Conference on Data Mining Workshops – reference: Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, D. Pei, Robust anomaly detection for multivariate time series through stochastic recurrent neural network, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 2828–2837. – volume: 31 year: 2018 ident: b20 article-title: Glow: Generative flow with invertible 1x1 convolutions publication-title: Adv. Neural Inf. Process. Syst. – volume: 30 year: 2017 ident: b29 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1778 year: 2020 end-page: 1785 ident: b12 article-title: Tanogan: Time series anomaly detection with generative adversarial networks publication-title: 2020 IEEE Symposium Series on Computational Intelligence – volume: 11 start-page: 2146 year: 2022 ident: b38 article-title: Self-supervised learning for time-series anomaly detection in industrial internet of things publication-title: Electronics – volume: Vol. 2015 start-page: 89 year: 2015 ident: b39 article-title: Long short term memory networks for anomaly detection in time series publication-title: ESANN – volume: 7 start-page: 37 year: 2021 end-page: 44 ident: b5 article-title: Clustering-based label estimation for network anomaly detection publication-title: Digit. Commun. Netw. – reference: M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 93–104. – year: 2018 ident: b19 article-title: Efficient gan-based anomaly detection – year: 2021 ident: b14 article-title: DCT-gan: dilated convolutional transformer-based gan for time series anomaly detection publication-title: IEEE Trans. Knowl. Data Eng. – volume: 3 start-page: 1544 year: 2018 end-page: 1551 ident: b41 article-title: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder publication-title: IEEE Robot. Autom. Lett. – start-page: 97 year: 2021 end-page: 109 ident: b31 article-title: Anomaly detection at scale: The case for deep distributional time series models publication-title: Service-Oriented Computing–ICSOC 2020 Workshops: AIOps, CFTIC, STRAPS, AI-PA, AI-IOTS, and Satellite Events, Dubai, United Arab Emirates, December 14–17, 2020, Proceedings – volume: 53 start-page: 8209 year: 2023 end-page: 8231 ident: b10 article-title: Anomaly detection methods based on GAN: a survey publication-title: Appl. Intell. – year: 2014 ident: b28 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – volume: 9 start-page: 14 year: 2023 end-page: 21 ident: b7 article-title: A novel intrusion detection model for the CAN bus packet of in-vehicle network based on attention mechanism and autoencoder publication-title: Digit. Commun. Netw. – reference: W. Liu, W. Luo, D. Lian, S. Gao, Future frame prediction for anomaly detection–a new baseline, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6536–6545. – start-page: 88 year: 2017 end-page: 99 ident: b43 article-title: A dataset to support research in the design of secure water treatment systems publication-title: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11 – volume: 21 start-page: 6033 year: 2022 end-page: 6047 ident: b27 article-title: AI-driven blind signature classification for IoT connectivity: A deep learning approach publication-title: IEEE Trans. Wireless Commun. – start-page: 1 year: 2020 end-page: 6 ident: b33 article-title: Fixing bias in reconstruction-based anomaly detection with lipschitz discriminators publication-title: 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing – reference: C.M. Ahmed, V.R. Palleti, A.P. Mathur, WADI: a water distribution testbed for research in the design of secure cyber physical systems, in: Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks, 2017, pp. 25–28. – volume: 8 start-page: 314 year: 2022 end-page: 323 ident: b17 article-title: Enhancing IoT anomaly detection performance for federated learning publication-title: Digit. Commun. Netw. – volume: 22 start-page: 1 year: 2021 end-page: 64 ident: b21 article-title: Normalizing flows for probabilistic modeling and inference publication-title: J. Mach. Learn. Res. – start-page: 413 year: 2008 end-page: 422 ident: b40 article-title: Isolation forest publication-title: 2008 Eighth Ieee International Conference on Data Mining – reference: Y. Zhao, Q. Ding, X. Zhang, AE-FLOW: Autoencoders with Normalizing Flows for Medical Images Anomaly Detection, in: The Eleventh International Conference on Learning Representations, 2023. – start-page: 1 year: 2018 end-page: 8 ident: b8 article-title: Deep generative models: Survey publication-title: 2018 International Conference on Intelligent Systems and Computer Vision – start-page: 598 year: 2020 end-page: 604 ident: b15 article-title: Collective anomaly detection for multivariate data using generative adversarial networks publication-title: 2020 International Conference on Computational Science and Computational Intelligence – volume: 8 start-page: 498 year: 2022 end-page: 507 ident: b16 article-title: Fast wireless sensor for anomaly detection based on data stream in an edge-computing-enabled smart greenhouse publication-title: Digit. Commun. Netw. – volume: 7 start-page: 37 issue: 1 year: 2021 ident: 10.1016/j.aej.2024.07.013_b5 article-title: Clustering-based label estimation for network anomaly detection publication-title: Digit. Commun. Netw. doi: 10.1016/j.dcan.2020.06.001 – ident: 10.1016/j.aej.2024.07.013_b23 doi: 10.1109/WACV51458.2022.00188 – year: 2014 ident: 10.1016/j.aej.2024.07.013_b46 – ident: 10.1016/j.aej.2024.07.013_b42 doi: 10.1145/3292500.3330672 – start-page: 413 year: 2008 ident: 10.1016/j.aej.2024.07.013_b40 article-title: Isolation forest – start-page: 1778 year: 2020 ident: 10.1016/j.aej.2024.07.013_b12 article-title: Tanogan: Time series anomaly detection with generative adversarial networks – start-page: 598 year: 2020 ident: 10.1016/j.aej.2024.07.013_b15 article-title: Collective anomaly detection for multivariate data using generative adversarial networks – ident: 10.1016/j.aej.2024.07.013_b44 doi: 10.1145/3055366.3055375 – ident: 10.1016/j.aej.2024.07.013_b24 doi: 10.1145/3219819.3219845 – ident: 10.1016/j.aej.2024.07.013_b6 doi: 10.1145/3394486.3403392 – volume: 54 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.aej.2024.07.013_b9 article-title: Deep learning for anomaly detection: A review publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3439950 – volume: 8 start-page: 498 issue: 4 year: 2022 ident: 10.1016/j.aej.2024.07.013_b16 article-title: Fast wireless sensor for anomaly detection based on data stream in an edge-computing-enabled smart greenhouse publication-title: Digit. Commun. Netw. doi: 10.1016/j.dcan.2021.11.004 – year: 2018 ident: 10.1016/j.aej.2024.07.013_b19 – ident: 10.1016/j.aej.2024.07.013_b30 – volume: 11 start-page: 2146 issue: 14 year: 2022 ident: 10.1016/j.aej.2024.07.013_b38 article-title: Self-supervised learning for time-series anomaly detection in industrial internet of things publication-title: Electronics doi: 10.3390/electronics11142146 – start-page: 542 year: 2021 ident: 10.1016/j.aej.2024.07.013_b11 article-title: Anomaly detection for multivariate time series on large-scale fluid handling plant using two-stage autoencoder – volume: 8 start-page: 314 issue: 3 year: 2022 ident: 10.1016/j.aej.2024.07.013_b17 article-title: Enhancing IoT anomaly detection performance for federated learning publication-title: Digit. Commun. Netw. doi: 10.1016/j.dcan.2022.02.007 – ident: 10.1016/j.aej.2024.07.013_b22 doi: 10.1109/WACV48630.2021.00195 – ident: 10.1016/j.aej.2024.07.013_b35 – volume: 53 start-page: 8209 issue: 7 year: 2023 ident: 10.1016/j.aej.2024.07.013_b10 article-title: Anomaly detection methods based on GAN: a survey publication-title: Appl. Intell. doi: 10.1007/s10489-022-03905-6 – volume: 26 start-page: 2250 issue: 9 year: 2013 ident: 10.1016/j.aej.2024.07.013_b1 article-title: Outlier detection for temporal data: A survey publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2013.184 – volume: 3 start-page: 1544 issue: 3 year: 2018 ident: 10.1016/j.aej.2024.07.013_b41 article-title: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2801475 – volume: Vol. 2015 start-page: 89 year: 2015 ident: 10.1016/j.aej.2024.07.013_b39 article-title: Long short term memory networks for anomaly detection in time series – volume: 37 start-page: 1005 issue: 6 year: 2007 ident: 10.1016/j.aej.2024.07.013_b3 article-title: On the time series k-nearest neighbor classification of abnormal brain activity publication-title: IEEE Trans. Syst. Man Cybern. A doi: 10.1109/TSMCA.2007.897589 – year: 2022 ident: 10.1016/j.aej.2024.07.013_b32 article-title: AFSTGCN: Prediction for multivariate time series using an adaptive fused spatial-temporal graph convolutional network publication-title: Digit. Commun. Netw. – start-page: 703 year: 2019 ident: 10.1016/j.aej.2024.07.013_b13 article-title: MAD-gan: Multivariate anomaly detection for time series data with generative adversarial networks – ident: 10.1016/j.aej.2024.07.013_b36 doi: 10.1109/CVPR.2016.90 – start-page: 1 year: 2020 ident: 10.1016/j.aej.2024.07.013_b33 article-title: Fixing bias in reconstruction-based anomaly detection with lipschitz discriminators – start-page: 1 year: 2018 ident: 10.1016/j.aej.2024.07.013_b8 article-title: Deep generative models: Survey – volume: 35 start-page: 4293 issue: 4 year: 2022 ident: 10.1016/j.aej.2024.07.013_b45 article-title: Time series anomaly detection with adversarial reconstruction networks publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2021.3140058 – year: 2021 ident: 10.1016/j.aej.2024.07.013_b14 article-title: DCT-gan: dilated convolutional transformer-based gan for time series anomaly detection publication-title: IEEE Trans. Knowl. Data Eng. – year: 2014 ident: 10.1016/j.aej.2024.07.013_b34 – start-page: 146 year: 2017 ident: 10.1016/j.aej.2024.07.013_b18 article-title: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery – start-page: 88 year: 2017 ident: 10.1016/j.aej.2024.07.013_b43 article-title: A dataset to support research in the design of secure water treatment systems – volume: 21 start-page: 6033 issue: 8 year: 2022 ident: 10.1016/j.aej.2024.07.013_b27 article-title: AI-driven blind signature classification for IoT connectivity: A deep learning approach publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2022.3145399 – volume: Vol. 3 start-page: 1741 year: 2003 ident: 10.1016/j.aej.2024.07.013_b4 article-title: Time-series novelty detection using one-class support vector machines – volume: 31 year: 2018 ident: 10.1016/j.aej.2024.07.013_b20 article-title: Glow: Generative flow with invertible 1x1 convolutions publication-title: Adv. Neural Inf. Process. Syst. – start-page: 97 year: 2021 ident: 10.1016/j.aej.2024.07.013_b31 article-title: Anomaly detection at scale: The case for deep distributional time series models – year: 2014 ident: 10.1016/j.aej.2024.07.013_b28 – ident: 10.1016/j.aej.2024.07.013_b2 doi: 10.1145/342009.335388 – volume: 22 start-page: 1 issue: 57 year: 2021 ident: 10.1016/j.aej.2024.07.013_b21 article-title: Normalizing flows for probabilistic modeling and inference publication-title: J. Mach. Learn. Res. – volume: 10 start-page: 303 issue: 1 year: 2022 ident: 10.1016/j.aej.2024.07.013_b26 article-title: Deep-distributed-learning-based POI recommendation under mobile-edge networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2022.3202628 – ident: 10.1016/j.aej.2024.07.013_b25 doi: 10.1109/CVPR.2018.00684 – volume: 9 start-page: 14 issue: 1 year: 2023 ident: 10.1016/j.aej.2024.07.013_b7 article-title: A novel intrusion detection model for the CAN bus packet of in-vehicle network based on attention mechanism and autoencoder publication-title: Digit. Commun. Netw. doi: 10.1016/j.dcan.2022.04.021 – volume: 30 year: 2017 ident: 10.1016/j.aej.2024.07.013_b29 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – year: 2016 ident: 10.1016/j.aej.2024.07.013_b37 |
| SSID | ssj0000579496 |
| Score | 2.3570898 |
| Snippet | In recent years, the proliferation of IoT technologies and the widespread adoption of wireless sensors across various critical infrastructures such as power... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 436 |
| SubjectTerms | Anomaly detection Autoencoder Normalizing flow Time series |
| Title | DDANF: Deep denoising autoencoder normalizing flow for unsupervised multivariate time series anomaly detection |
| URI | https://dx.doi.org/10.1016/j.aej.2024.07.013 https://doaj.org/article/e210902e3c384e91a1fcd8c59dbacd0b |
| Volume | 108 |
| WOSCitedRecordID | wos001287818400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1110-0168 databaseCode: DOA dateStart: 20100101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0000579496 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwELYQooAC3fEQy3EnF1RIEUmcxAkd3N6KAq0oANFZfkykRatktZtdBL_-ZpwsCgXQ0KSw_IjGE883yudvGDsVWjuIwiJIQSZBIiENtChEkOeQpbbQQnhRn4cbOR7nj4_Fba_UF3HCWnng1nDnEHvqIAgr8gSKSEclXWdPC2e0daGh0xdRTy-ZalW90c98cS78lol5leXrX5qe3KXhCXPDOPHCnZF4F5S8dn8vNvXizegH2-2AIr9sX_An24Bqj-305AP3WTUcXo5HF3wIMON4ftQTSvy5XjY1yVM6mPOKIOl08krt5bR-5ohR-bJaLGd0RizAcc8oXGHGjKCTU6V5Tk4JC66rGoe-4MSNp2tVB-x-9O_u73XQ1U8ILIbpBo9XQOgstdO2LF2UuNiEInY2lllqEEfkRmO4R2uWJtIulyaRwmaQZHmZ6gLj_CHbrOoKjhgPC7qwWyI-0CQRWBoT4UNIsJg-YqQbsHBtQGU7cXGqcTFVaxbZk0KbK7K5CqVCmw_Y2duQWaus8VnnK9qVt44kiu0b0FVU5yrqK1cZsGS9p6rDFy1uwKkmH699_B1r_2LbNGVLhDlhm818Cb_Zll01k8X8j3fe_4Yg8_0 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DDANF%3A+Deep+denoising+autoencoder+normalizing+flow+for+unsupervised+multivariate+time+series+anomaly+detection&rft.jtitle=Alexandria+engineering+journal&rft.au=Zhao%2C+Xigang&rft.au=Liu%2C+Peng&rft.au=Mahmoudi%2C+Sa%C3%AFd&rft.au=Garg%2C+Sahil&rft.date=2024-12-01&rft.issn=1110-0168&rft.volume=108&rft.spage=436&rft.epage=444&rft_id=info:doi/10.1016%2Fj.aej.2024.07.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aej_2024_07_013 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon |