DDANF: Deep denoising autoencoder normalizing flow for unsupervised multivariate time series anomaly detection

In recent years, the proliferation of IoT technologies and the widespread adoption of wireless sensors across various critical infrastructures such as power plants, service monitoring systems, space and earth exploration missions, and water treatment facilities have resulted in the generation of vas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alexandria engineering journal Jg. 108; S. 436 - 444
Hauptverfasser: Zhao, Xigang, Liu, Peng, Mahmoudi, Saïd, Garg, Sahil, Kaddoum, Georges, Hassan, Mohammad Mehedi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2024
Elsevier
Schlagworte:
ISSN:1110-0168
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent years, the proliferation of IoT technologies and the widespread adoption of wireless sensors across various critical infrastructures such as power plants, service monitoring systems, space and earth exploration missions, and water treatment facilities have resulted in the generation of vast quantities of multivariate time series data. Within this context, unsupervised anomaly detection has emerged as a pivotal yet challenging problem in time series research, necessitating machine learning models capable of identifying rare anomalies amidst massive datasets. Traditionally, unsupervised methods have approached this issue by learning representations of primary patterns within sequences and detecting deviations through reconstruction errors. However, the effectiveness of this approach is often limited due to the intricate dynamics and diverse patterns inherent in these dynamic systems. Moreover, many existing unsupervised anomaly detection techniques fail to fully exploit inter-feature relationships within multivariate time series data, thereby overlooking a crucial criterion for accurate detection. To address these shortcomings, this paper introduces a novel unsupervised method for multivariate time series anomaly detection based on normalized flows and autoencoders. Central to our approach is the incorporation of a channel shuffling mechanism during training, enhancing the model’s capacity to discern inter-channel patterns and anomalies. Concurrently, the application of normalized flows within the autoencoder framework serves to constrain the latent space, effectively isolating anomalies and improving detection accuracy. Experimental validation conducted on two large-scale public datasets demonstrates the efficacy of the proposed method compared to established benchmarks, highlighting its superior performance.
AbstractList In recent years, the proliferation of IoT technologies and the widespread adoption of wireless sensors across various critical infrastructures such as power plants, service monitoring systems, space and earth exploration missions, and water treatment facilities have resulted in the generation of vast quantities of multivariate time series data. Within this context, unsupervised anomaly detection has emerged as a pivotal yet challenging problem in time series research, necessitating machine learning models capable of identifying rare anomalies amidst massive datasets. Traditionally, unsupervised methods have approached this issue by learning representations of primary patterns within sequences and detecting deviations through reconstruction errors. However, the effectiveness of this approach is often limited due to the intricate dynamics and diverse patterns inherent in these dynamic systems. Moreover, many existing unsupervised anomaly detection techniques fail to fully exploit inter-feature relationships within multivariate time series data, thereby overlooking a crucial criterion for accurate detection. To address these shortcomings, this paper introduces a novel unsupervised method for multivariate time series anomaly detection based on normalized flows and autoencoders. Central to our approach is the incorporation of a channel shuffling mechanism during training, enhancing the model’s capacity to discern inter-channel patterns and anomalies. Concurrently, the application of normalized flows within the autoencoder framework serves to constrain the latent space, effectively isolating anomalies and improving detection accuracy. Experimental validation conducted on two large-scale public datasets demonstrates the efficacy of the proposed method compared to established benchmarks, highlighting its superior performance.
Author Liu, Peng
Garg, Sahil
Mahmoudi, Saïd
Zhao, Xigang
Kaddoum, Georges
Hassan, Mohammad Mehedi
Author_xml – sequence: 1
  givenname: Xigang
  surname: Zhao
  fullname: Zhao, Xigang
  organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China
– sequence: 2
  givenname: Peng
  orcidid: 0000-0002-3403-2604
  surname: Liu
  fullname: Liu, Peng
  email: perryliu@hdu.edu.cn
  organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China
– sequence: 3
  givenname: Saïd
  orcidid: 0000-0001-8272-9425
  surname: Mahmoudi
  fullname: Mahmoudi, Saïd
  organization: Computer Science Department, Faculty of Engineering, University of Mons, Mons, 7000, Belgium
– sequence: 4
  givenname: Sahil
  surname: Garg
  fullname: Garg, Sahil
  organization: École de technologie supérieure, Montreal, H3C 1K3, Canada
– sequence: 5
  givenname: Georges
  orcidid: 0000-0002-5025-6624
  surname: Kaddoum
  fullname: Kaddoum, Georges
  organization: École de technologie supérieure, Montreal, H3C 1K3, Canada
– sequence: 6
  givenname: Mohammad Mehedi
  surname: Hassan
  fullname: Hassan, Mohammad Mehedi
  organization: Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh, 11543, Saudi Arabia
BookMark eNp9kc9uFDEMh3NoJUrpA3DLC-yQZP5kBk5Vl0KlCi5wjjyJU3k0m6yS7KLy9M2ycOFQXyw5-n6yv7xlFyEGZOy9FI0UcviwNIBLo4TqGqEbIdsLdiWlFJv6OL5hNzkvolavp24arljYbm-_3X_kW8Q9dxgiZQpPHA4lYrDRYeIhph2s9Ps092v8xX1M_BDyYY_pSBkd3x3WQkdIBAV5oR3yjIkwcwixos81uKAtFMM7dulhzXjzt1-zn_eff9x93Tx-__Jwd_u4sZ0YyqaVqNWkwYH13snOqVm0ylmlh36WfT_O0Etl3ehnCW7Uc6dbO2A3jL6HaZDtNXs457oIi9kn2kF6NhHI_BnE9GQgFbIrGlRSTEJha9uxw0mC9DXY9pObwTox1yx9zrIp5pzQG0sFTteUBLQaKczJvFlMNW9O5o3QppqvpPyP_LfJa8ynM4NVz5EwmWypfgU6StVh3Z9eoV8A0-SiZg
CitedBy_id crossref_primary_10_1016_j_engappai_2024_109770
crossref_primary_10_3390_electronics14153141
crossref_primary_10_3390_e27080823
crossref_primary_10_7717_peerj_cs_2542
Cites_doi 10.1016/j.dcan.2020.06.001
10.1109/WACV51458.2022.00188
10.1145/3292500.3330672
10.1145/3055366.3055375
10.1145/3219819.3219845
10.1145/3394486.3403392
10.1145/3439950
10.1016/j.dcan.2021.11.004
10.3390/electronics11142146
10.1016/j.dcan.2022.02.007
10.1109/WACV48630.2021.00195
10.1007/s10489-022-03905-6
10.1109/TKDE.2013.184
10.1109/LRA.2018.2801475
10.1109/TSMCA.2007.897589
10.1109/CVPR.2016.90
10.1109/TKDE.2021.3140058
10.1109/TWC.2022.3145399
10.1145/342009.335388
10.1109/JIOT.2022.3202628
10.1109/CVPR.2018.00684
10.1016/j.dcan.2022.04.021
ContentType Journal Article
Copyright 2024 Faculty of Engineering, Alexandria University
Copyright_xml – notice: 2024 Faculty of Engineering, Alexandria University
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.aej.2024.07.013
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 444
ExternalDocumentID oai_doaj_org_article_e210902e3c384e91a1fcd8c59dbacd0b
10_1016_j_aej_2024_07_013
S1110016824007348
GroupedDBID --K
0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
XH2
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-c406t-31e7297adacffd14d2b032dc2765b1558ba512cd8fb1ad87b473c6e468f5a9613
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001287818400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1110-0168
IngestDate Fri Oct 03 12:36:47 EDT 2025
Tue Nov 18 22:18:27 EST 2025
Sat Nov 29 06:34:33 EST 2025
Sat Nov 23 15:55:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Normalizing flow
Autoencoder
Anomaly detection
Time series
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-31e7297adacffd14d2b032dc2765b1558ba512cd8fb1ad87b473c6e468f5a9613
ORCID 0000-0001-8272-9425
0000-0002-5025-6624
0000-0002-3403-2604
OpenAccessLink https://doaj.org/article/e210902e3c384e91a1fcd8c59dbacd0b
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_e210902e3c384e91a1fcd8c59dbacd0b
crossref_citationtrail_10_1016_j_aej_2024_07_013
crossref_primary_10_1016_j_aej_2024_07_013
elsevier_sciencedirect_doi_10_1016_j_aej_2024_07_013
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Alexandria engineering journal
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Pang, Shen, Cao, Hengel (b9) 2021; 54
Chung, Gulcehre, Cho, Bengio (b28) 2014
Goh, Adepu, Junejo, Mathur (b43) 2017
Malhotra, Vig, Shroff, Agarwal (b39) 2015; Vol. 2015
Malhotra, Ramakrishnan, Anand, Vig, Agarwal, Shroff (b37) 2016
Guo, Yu, Kumar, Wei, Mumtaz, Guizani (b26) 2022; 10
Gupta, Gao, Aggarwal, Han (b1) 2013; 26
M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 93–104.
D. Gudovskiy, S. Ishizaka, K. Kozuka, Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 98–107.
Papamakarios, Nalisnick, Rezende, Mohamed, Lakshminarayanan (b21) 2021; 22
Park, Hoshi, Kemp (b41) 2018; 3
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b29) 2017; 30
Dinh, Krueger, Bengio (b34) 2014
Y. Zhao, Q. Ding, X. Zhang, AE-FLOW: Autoencoders with Normalizing Flows for Medical Images Anomaly Detection, in: The Eleventh International Conference on Learning Representations, 2023.
Li, Peng, Zhang, Li, Wen (b14) 2021
Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, D. Pei, Robust anomaly detection for multivariate time series through stochastic recurrent neural network, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 2828–2837.
Pan, Ye, Yu, Hong, Al-Rubaye, Mumtaz, Al-Dulaimi, Chih-Lin (b27) 2022; 21
B. Zong, Q. Song, M.R. Min, W. Cheng, C. Lumezanu, D. Cho, H. Chen, Deep autoencoding gaussian mixture model for unsupervised anomaly detection, in: International Conference on Learning Representations, 2018.
Liu, Zhou, Ding, Hooi, Zhang, Shen, Cheng (b45) 2022; 35
Maru, Kobayashi (b15) 2020
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Xiao, Xia, Yin, Zhang, Qian, Liu, Liang, Li (b32) 2022
Schlegl, Seeböck, Waldstein, Schmidt-Erfurth, Langs (b18) 2017
M. Rudolph, B. Wandt, B. Rosenhahn, Same same but differnet: Semi-supervised defect detection with normalizing flows, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 1907–1916.
Tong, Wolf, Krishnaswamyt (b33) 2020
Li, Li (b10) 2023; 53
Li, Chen, Jin, Shi, Goh, Ng (b13) 2019
Naito, Taguchi, Nakata, Kato (b11) 2021
Bashar, Nayak (b12) 2020
W. Liu, W. Luo, D. Lian, S. Gao, Future frame prediction for anomaly detection–a new baseline, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6536–6545.
Oussidi, Elhassouny (b8) 2018
Yang, Ding, Liu, Meng, Chi, Ma, Yan (b16) 2022; 8
Zenati, Foo, Lecouat, Manek, Chandrasekhar (b19) 2018
Kingma, Dhariwal (b20) 2018; 31
Kingma, Ba (b46) 2014
Ayed, Stella, Januschowski, Gasthaus (b31) 2021
Chaovalitwongse, Fan, Sachdeo (b3) 2007; 37
Tran, Nguyen, Nguyen, Jang (b38) 2022; 11
C.M. Ahmed, V.R. Palleti, A.P. Mathur, WADI: a water distribution testbed for research in the design of secure cyber physical systems, in: Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks, 2017, pp. 25–28.
Liu, Ting, Zhou (b40) 2008
K. Hundman, V. Constantinou, C. Laporte, I. Colwell, T. Soderstrom, Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 387–395.
Wei, Wang, Dai, Li, He (b7) 2023; 9
Baek, Kwon, Suh, Kim, Kim, Kim (b5) 2021; 7
J. Audibert, P. Michiardi, F. Guyard, S. Marti, M.A. Zuluaga, Usad: Unsupervised anomaly detection on multivariate time series, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 3395–3404.
Ma, Perkins (b4) 2003; Vol. 3
Weinger, Kim, Sim, Nakashima, Moustafa, Wu (b17) 2022; 8
Wei (10.1016/j.aej.2024.07.013_b7) 2023; 9
Baek (10.1016/j.aej.2024.07.013_b5) 2021; 7
Weinger (10.1016/j.aej.2024.07.013_b17) 2022; 8
Xiao (10.1016/j.aej.2024.07.013_b32) 2022
10.1016/j.aej.2024.07.013_b30
10.1016/j.aej.2024.07.013_b6
Li (10.1016/j.aej.2024.07.013_b13) 2019
10.1016/j.aej.2024.07.013_b35
10.1016/j.aej.2024.07.013_b36
Oussidi (10.1016/j.aej.2024.07.013_b8) 2018
Pang (10.1016/j.aej.2024.07.013_b9) 2021; 54
Vaswani (10.1016/j.aej.2024.07.013_b29) 2017; 30
Gupta (10.1016/j.aej.2024.07.013_b1) 2013; 26
Ayed (10.1016/j.aej.2024.07.013_b31) 2021
Chaovalitwongse (10.1016/j.aej.2024.07.013_b3) 2007; 37
Goh (10.1016/j.aej.2024.07.013_b43) 2017
Bashar (10.1016/j.aej.2024.07.013_b12) 2020
Malhotra (10.1016/j.aej.2024.07.013_b39) 2015; Vol. 2015
Ma (10.1016/j.aej.2024.07.013_b4) 2003; Vol. 3
Dinh (10.1016/j.aej.2024.07.013_b34) 2014
Tran (10.1016/j.aej.2024.07.013_b38) 2022; 11
Park (10.1016/j.aej.2024.07.013_b41) 2018; 3
Li (10.1016/j.aej.2024.07.013_b14) 2021
Schlegl (10.1016/j.aej.2024.07.013_b18) 2017
Kingma (10.1016/j.aej.2024.07.013_b20) 2018; 31
Pan (10.1016/j.aej.2024.07.013_b27) 2022; 21
Liu (10.1016/j.aej.2024.07.013_b40) 2008
10.1016/j.aej.2024.07.013_b2
Tong (10.1016/j.aej.2024.07.013_b33) 2020
Li (10.1016/j.aej.2024.07.013_b10) 2023; 53
Yang (10.1016/j.aej.2024.07.013_b16) 2022; 8
10.1016/j.aej.2024.07.013_b42
Liu (10.1016/j.aej.2024.07.013_b45) 2022; 35
Kingma (10.1016/j.aej.2024.07.013_b46) 2014
10.1016/j.aej.2024.07.013_b22
10.1016/j.aej.2024.07.013_b44
10.1016/j.aej.2024.07.013_b23
Chung (10.1016/j.aej.2024.07.013_b28) 2014
10.1016/j.aej.2024.07.013_b24
Malhotra (10.1016/j.aej.2024.07.013_b37) 2016
10.1016/j.aej.2024.07.013_b25
Maru (10.1016/j.aej.2024.07.013_b15) 2020
Naito (10.1016/j.aej.2024.07.013_b11) 2021
Zenati (10.1016/j.aej.2024.07.013_b19) 2018
Papamakarios (10.1016/j.aej.2024.07.013_b21) 2021; 22
Guo (10.1016/j.aej.2024.07.013_b26) 2022; 10
References_xml – volume: 37
  start-page: 1005
  year: 2007
  end-page: 1016
  ident: b3
  article-title: On the time series
  publication-title: IEEE Trans. Syst. Man Cybern. A
– volume: 35
  start-page: 4293
  year: 2022
  end-page: 4306
  ident: b45
  article-title: Time series anomaly detection with adversarial reconstruction networks
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: K. Hundman, V. Constantinou, C. Laporte, I. Colwell, T. Soderstrom, Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 387–395.
– year: 2014
  ident: b46
  article-title: Adam: A method for stochastic optimization
– reference: B. Zong, Q. Song, M.R. Min, W. Cheng, C. Lumezanu, D. Cho, H. Chen, Deep autoencoding gaussian mixture model for unsupervised anomaly detection, in: International Conference on Learning Representations, 2018.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– volume: Vol. 3
  start-page: 1741
  year: 2003
  end-page: 1745
  ident: b4
  article-title: Time-series novelty detection using one-class support vector machines
  publication-title: Proceedings of the International Joint Conference on Neural Networks, 2003.
– volume: 10
  start-page: 303
  year: 2022
  end-page: 317
  ident: b26
  article-title: Deep-distributed-learning-based POI recommendation under mobile-edge networks
  publication-title: IEEE Internet Things J.
– volume: 26
  start-page: 2250
  year: 2013
  end-page: 2267
  ident: b1
  article-title: Outlier detection for temporal data: A survey
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 146
  year: 2017
  end-page: 157
  ident: b18
  article-title: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery
  publication-title: Information Processing in Medical Imaging: 25th International Conference, IPMI 2017, Boone, NC, USA, June 25-30, 2017, Proceedings
– reference: M. Rudolph, B. Wandt, B. Rosenhahn, Same same but differnet: Semi-supervised defect detection with normalizing flows, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 1907–1916.
– start-page: 703
  year: 2019
  end-page: 716
  ident: b13
  article-title: MAD-gan: Multivariate anomaly detection for time series data with generative adversarial networks
  publication-title: Artificial Neural Networks and Machine Learning–ICANN 2019: Text and Time Series: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings, Part IV
– reference: J. Audibert, P. Michiardi, F. Guyard, S. Marti, M.A. Zuluaga, Usad: Unsupervised anomaly detection on multivariate time series, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 3395–3404.
– year: 2016
  ident: b37
  article-title: LSTM-based encoder-decoder for multi-sensor anomaly detection
– year: 2022
  ident: b32
  article-title: AFSTGCN: Prediction for multivariate time series using an adaptive fused spatial-temporal graph convolutional network
  publication-title: Digit. Commun. Netw.
– volume: 54
  start-page: 1
  year: 2021
  end-page: 38
  ident: b9
  article-title: Deep learning for anomaly detection: A review
  publication-title: ACM Comput. Surv. (CSUR)
– reference: D. Gudovskiy, S. Ishizaka, K. Kozuka, Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 98–107.
– year: 2014
  ident: b34
  article-title: Nice: Non-linear independent components estimation
– start-page: 542
  year: 2021
  end-page: 551
  ident: b11
  article-title: Anomaly detection for multivariate time series on large-scale fluid handling plant using two-stage autoencoder
  publication-title: 2021 International Conference on Data Mining Workshops
– reference: Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, D. Pei, Robust anomaly detection for multivariate time series through stochastic recurrent neural network, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 2828–2837.
– volume: 31
  year: 2018
  ident: b20
  article-title: Glow: Generative flow with invertible 1x1 convolutions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  year: 2017
  ident: b29
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1778
  year: 2020
  end-page: 1785
  ident: b12
  article-title: Tanogan: Time series anomaly detection with generative adversarial networks
  publication-title: 2020 IEEE Symposium Series on Computational Intelligence
– volume: 11
  start-page: 2146
  year: 2022
  ident: b38
  article-title: Self-supervised learning for time-series anomaly detection in industrial internet of things
  publication-title: Electronics
– volume: Vol. 2015
  start-page: 89
  year: 2015
  ident: b39
  article-title: Long short term memory networks for anomaly detection in time series
  publication-title: ESANN
– volume: 7
  start-page: 37
  year: 2021
  end-page: 44
  ident: b5
  article-title: Clustering-based label estimation for network anomaly detection
  publication-title: Digit. Commun. Netw.
– reference: M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 93–104.
– year: 2018
  ident: b19
  article-title: Efficient gan-based anomaly detection
– year: 2021
  ident: b14
  article-title: DCT-gan: dilated convolutional transformer-based gan for time series anomaly detection
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 3
  start-page: 1544
  year: 2018
  end-page: 1551
  ident: b41
  article-title: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder
  publication-title: IEEE Robot. Autom. Lett.
– start-page: 97
  year: 2021
  end-page: 109
  ident: b31
  article-title: Anomaly detection at scale: The case for deep distributional time series models
  publication-title: Service-Oriented Computing–ICSOC 2020 Workshops: AIOps, CFTIC, STRAPS, AI-PA, AI-IOTS, and Satellite Events, Dubai, United Arab Emirates, December 14–17, 2020, Proceedings
– volume: 53
  start-page: 8209
  year: 2023
  end-page: 8231
  ident: b10
  article-title: Anomaly detection methods based on GAN: a survey
  publication-title: Appl. Intell.
– year: 2014
  ident: b28
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– volume: 9
  start-page: 14
  year: 2023
  end-page: 21
  ident: b7
  article-title: A novel intrusion detection model for the CAN bus packet of in-vehicle network based on attention mechanism and autoencoder
  publication-title: Digit. Commun. Netw.
– reference: W. Liu, W. Luo, D. Lian, S. Gao, Future frame prediction for anomaly detection–a new baseline, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6536–6545.
– start-page: 88
  year: 2017
  end-page: 99
  ident: b43
  article-title: A dataset to support research in the design of secure water treatment systems
  publication-title: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11
– volume: 21
  start-page: 6033
  year: 2022
  end-page: 6047
  ident: b27
  article-title: AI-driven blind signature classification for IoT connectivity: A deep learning approach
  publication-title: IEEE Trans. Wireless Commun.
– start-page: 1
  year: 2020
  end-page: 6
  ident: b33
  article-title: Fixing bias in reconstruction-based anomaly detection with lipschitz discriminators
  publication-title: 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing
– reference: C.M. Ahmed, V.R. Palleti, A.P. Mathur, WADI: a water distribution testbed for research in the design of secure cyber physical systems, in: Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks, 2017, pp. 25–28.
– volume: 8
  start-page: 314
  year: 2022
  end-page: 323
  ident: b17
  article-title: Enhancing IoT anomaly detection performance for federated learning
  publication-title: Digit. Commun. Netw.
– volume: 22
  start-page: 1
  year: 2021
  end-page: 64
  ident: b21
  article-title: Normalizing flows for probabilistic modeling and inference
  publication-title: J. Mach. Learn. Res.
– start-page: 413
  year: 2008
  end-page: 422
  ident: b40
  article-title: Isolation forest
  publication-title: 2008 Eighth Ieee International Conference on Data Mining
– reference: Y. Zhao, Q. Ding, X. Zhang, AE-FLOW: Autoencoders with Normalizing Flows for Medical Images Anomaly Detection, in: The Eleventh International Conference on Learning Representations, 2023.
– start-page: 1
  year: 2018
  end-page: 8
  ident: b8
  article-title: Deep generative models: Survey
  publication-title: 2018 International Conference on Intelligent Systems and Computer Vision
– start-page: 598
  year: 2020
  end-page: 604
  ident: b15
  article-title: Collective anomaly detection for multivariate data using generative adversarial networks
  publication-title: 2020 International Conference on Computational Science and Computational Intelligence
– volume: 8
  start-page: 498
  year: 2022
  end-page: 507
  ident: b16
  article-title: Fast wireless sensor for anomaly detection based on data stream in an edge-computing-enabled smart greenhouse
  publication-title: Digit. Commun. Netw.
– volume: 7
  start-page: 37
  issue: 1
  year: 2021
  ident: 10.1016/j.aej.2024.07.013_b5
  article-title: Clustering-based label estimation for network anomaly detection
  publication-title: Digit. Commun. Netw.
  doi: 10.1016/j.dcan.2020.06.001
– ident: 10.1016/j.aej.2024.07.013_b23
  doi: 10.1109/WACV51458.2022.00188
– year: 2014
  ident: 10.1016/j.aej.2024.07.013_b46
– ident: 10.1016/j.aej.2024.07.013_b42
  doi: 10.1145/3292500.3330672
– start-page: 413
  year: 2008
  ident: 10.1016/j.aej.2024.07.013_b40
  article-title: Isolation forest
– start-page: 1778
  year: 2020
  ident: 10.1016/j.aej.2024.07.013_b12
  article-title: Tanogan: Time series anomaly detection with generative adversarial networks
– start-page: 598
  year: 2020
  ident: 10.1016/j.aej.2024.07.013_b15
  article-title: Collective anomaly detection for multivariate data using generative adversarial networks
– ident: 10.1016/j.aej.2024.07.013_b44
  doi: 10.1145/3055366.3055375
– ident: 10.1016/j.aej.2024.07.013_b24
  doi: 10.1145/3219819.3219845
– ident: 10.1016/j.aej.2024.07.013_b6
  doi: 10.1145/3394486.3403392
– volume: 54
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.aej.2024.07.013_b9
  article-title: Deep learning for anomaly detection: A review
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3439950
– volume: 8
  start-page: 498
  issue: 4
  year: 2022
  ident: 10.1016/j.aej.2024.07.013_b16
  article-title: Fast wireless sensor for anomaly detection based on data stream in an edge-computing-enabled smart greenhouse
  publication-title: Digit. Commun. Netw.
  doi: 10.1016/j.dcan.2021.11.004
– year: 2018
  ident: 10.1016/j.aej.2024.07.013_b19
– ident: 10.1016/j.aej.2024.07.013_b30
– volume: 11
  start-page: 2146
  issue: 14
  year: 2022
  ident: 10.1016/j.aej.2024.07.013_b38
  article-title: Self-supervised learning for time-series anomaly detection in industrial internet of things
  publication-title: Electronics
  doi: 10.3390/electronics11142146
– start-page: 542
  year: 2021
  ident: 10.1016/j.aej.2024.07.013_b11
  article-title: Anomaly detection for multivariate time series on large-scale fluid handling plant using two-stage autoencoder
– volume: 8
  start-page: 314
  issue: 3
  year: 2022
  ident: 10.1016/j.aej.2024.07.013_b17
  article-title: Enhancing IoT anomaly detection performance for federated learning
  publication-title: Digit. Commun. Netw.
  doi: 10.1016/j.dcan.2022.02.007
– ident: 10.1016/j.aej.2024.07.013_b22
  doi: 10.1109/WACV48630.2021.00195
– ident: 10.1016/j.aej.2024.07.013_b35
– volume: 53
  start-page: 8209
  issue: 7
  year: 2023
  ident: 10.1016/j.aej.2024.07.013_b10
  article-title: Anomaly detection methods based on GAN: a survey
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03905-6
– volume: 26
  start-page: 2250
  issue: 9
  year: 2013
  ident: 10.1016/j.aej.2024.07.013_b1
  article-title: Outlier detection for temporal data: A survey
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.184
– volume: 3
  start-page: 1544
  issue: 3
  year: 2018
  ident: 10.1016/j.aej.2024.07.013_b41
  article-title: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2801475
– volume: Vol. 2015
  start-page: 89
  year: 2015
  ident: 10.1016/j.aej.2024.07.013_b39
  article-title: Long short term memory networks for anomaly detection in time series
– volume: 37
  start-page: 1005
  issue: 6
  year: 2007
  ident: 10.1016/j.aej.2024.07.013_b3
  article-title: On the time series k-nearest neighbor classification of abnormal brain activity
  publication-title: IEEE Trans. Syst. Man Cybern. A
  doi: 10.1109/TSMCA.2007.897589
– year: 2022
  ident: 10.1016/j.aej.2024.07.013_b32
  article-title: AFSTGCN: Prediction for multivariate time series using an adaptive fused spatial-temporal graph convolutional network
  publication-title: Digit. Commun. Netw.
– start-page: 703
  year: 2019
  ident: 10.1016/j.aej.2024.07.013_b13
  article-title: MAD-gan: Multivariate anomaly detection for time series data with generative adversarial networks
– ident: 10.1016/j.aej.2024.07.013_b36
  doi: 10.1109/CVPR.2016.90
– start-page: 1
  year: 2020
  ident: 10.1016/j.aej.2024.07.013_b33
  article-title: Fixing bias in reconstruction-based anomaly detection with lipschitz discriminators
– start-page: 1
  year: 2018
  ident: 10.1016/j.aej.2024.07.013_b8
  article-title: Deep generative models: Survey
– volume: 35
  start-page: 4293
  issue: 4
  year: 2022
  ident: 10.1016/j.aej.2024.07.013_b45
  article-title: Time series anomaly detection with adversarial reconstruction networks
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3140058
– year: 2021
  ident: 10.1016/j.aej.2024.07.013_b14
  article-title: DCT-gan: dilated convolutional transformer-based gan for time series anomaly detection
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2014
  ident: 10.1016/j.aej.2024.07.013_b34
– start-page: 146
  year: 2017
  ident: 10.1016/j.aej.2024.07.013_b18
  article-title: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery
– start-page: 88
  year: 2017
  ident: 10.1016/j.aej.2024.07.013_b43
  article-title: A dataset to support research in the design of secure water treatment systems
– volume: 21
  start-page: 6033
  issue: 8
  year: 2022
  ident: 10.1016/j.aej.2024.07.013_b27
  article-title: AI-driven blind signature classification for IoT connectivity: A deep learning approach
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2022.3145399
– volume: Vol. 3
  start-page: 1741
  year: 2003
  ident: 10.1016/j.aej.2024.07.013_b4
  article-title: Time-series novelty detection using one-class support vector machines
– volume: 31
  year: 2018
  ident: 10.1016/j.aej.2024.07.013_b20
  article-title: Glow: Generative flow with invertible 1x1 convolutions
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 97
  year: 2021
  ident: 10.1016/j.aej.2024.07.013_b31
  article-title: Anomaly detection at scale: The case for deep distributional time series models
– year: 2014
  ident: 10.1016/j.aej.2024.07.013_b28
– ident: 10.1016/j.aej.2024.07.013_b2
  doi: 10.1145/342009.335388
– volume: 22
  start-page: 1
  issue: 57
  year: 2021
  ident: 10.1016/j.aej.2024.07.013_b21
  article-title: Normalizing flows for probabilistic modeling and inference
  publication-title: J. Mach. Learn. Res.
– volume: 10
  start-page: 303
  issue: 1
  year: 2022
  ident: 10.1016/j.aej.2024.07.013_b26
  article-title: Deep-distributed-learning-based POI recommendation under mobile-edge networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2022.3202628
– ident: 10.1016/j.aej.2024.07.013_b25
  doi: 10.1109/CVPR.2018.00684
– volume: 9
  start-page: 14
  issue: 1
  year: 2023
  ident: 10.1016/j.aej.2024.07.013_b7
  article-title: A novel intrusion detection model for the CAN bus packet of in-vehicle network based on attention mechanism and autoencoder
  publication-title: Digit. Commun. Netw.
  doi: 10.1016/j.dcan.2022.04.021
– volume: 30
  year: 2017
  ident: 10.1016/j.aej.2024.07.013_b29
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2016
  ident: 10.1016/j.aej.2024.07.013_b37
SSID ssj0000579496
Score 2.3570898
Snippet In recent years, the proliferation of IoT technologies and the widespread adoption of wireless sensors across various critical infrastructures such as power...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 436
SubjectTerms Anomaly detection
Autoencoder
Normalizing flow
Time series
Title DDANF: Deep denoising autoencoder normalizing flow for unsupervised multivariate time series anomaly detection
URI https://dx.doi.org/10.1016/j.aej.2024.07.013
https://doaj.org/article/e210902e3c384e91a1fcd8c59dbacd0b
Volume 108
WOSCitedRecordID wos001287818400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1110-0168
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0000579496
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EPOhBfGJ9sQdPQjHZbLuJt2otnooHhd6WfUJLSUqbVvTXO7NJSzyoF6_LPsLsZOYb8uUbQm58poXJPIMbEL7NPdQpGAPbWtg40lnmI29CswkxHKajUfbSaPWFnLBKHrgy3J1jgTroEpOk3GWxij3-zt7JrFbGRhqjL6CeRjFVqXqDn4XmXPAuI_Oqm64_aQZyl3ITqA0ZD8KdcfItKQXt_kZuauSbwQHZr4Ei7VUPeEi2XH5E9hrygcck7_d7w8E97Ts3oxA_ijEW_lQtywLlKa2b0xwh6XT8ieN-WrxTwKh0mS-WM4wRC2dpYBSuoGIG0Emx0zxFp3QLqvICln7AxmWga-Un5G3w9Pr43K77J7QNpOkSwqsD6CyUVcZ7G3PLdJQwa5jodjTgiFQrSPdgTa9jZVOhuUhM1_Fu6jsqgzx_SrbzIndnhMaaOQ-Vn_MJ54pFinmhtDbaJMZzZlokWhtQmlpcHHtcTOWaRTaRYHOJNpeRkGDzFrndLJlVyhq_TX7AW9lMRFHsMACuImtXkX-5Sovw9Z3KGl9UuAG2Gv989vl_nH1BdnHLighzSbbL-dJdkR2zKseL-XVw3i--6_Xh
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DDANF%3A+Deep+denoising+autoencoder+normalizing+flow+for+unsupervised+multivariate+time+series+anomaly+detection&rft.jtitle=Alexandria+engineering+journal&rft.au=Zhao%2C+Xigang&rft.au=Liu%2C+Peng&rft.au=Mahmoudi%2C+Sa%C3%AFd&rft.au=Garg%2C+Sahil&rft.date=2024-12-01&rft.issn=1110-0168&rft.volume=108&rft.spage=436&rft.epage=444&rft_id=info:doi/10.1016%2Fj.aej.2024.07.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aej_2024_07_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon