A Study on the Prediction of Compressive Strength of Self-Compacting Recycled Aggregate Concrete Utilizing Novel Computational Approaches

A considerable amount of discarded building materials are produced each year worldwide, resulting in ecosystem degradation. Self-compacting concrete (SCC) has 60–70% coarse and fine particles in its composition, so replacing this material with another waste material, such as recycled aggregate (RA),...

Full description

Saved in:
Bibliographic Details
Published in:Materials Vol. 15; no. 15; p. 5232
Main Authors: de-Prado-Gil, Jesús, Palencia, Covadonga, Jagadesh, P., Martínez-García, Rebeca
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 28.07.2022
MDPI
Subjects:
ISSN:1996-1944, 1996-1944
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A considerable amount of discarded building materials are produced each year worldwide, resulting in ecosystem degradation. Self-compacting concrete (SCC) has 60–70% coarse and fine particles in its composition, so replacing this material with another waste material, such as recycled aggregate (RA), reduces the cost of SCC. This study compares novel Artificial Neural Network algorithm techniques—Levenberg–Marquardt (LM), Bayesian regularization (BR), and Scaled Conjugate Gradient Backpropagation (SCGB)—to estimate the 28-day compressive strength (f’c) of SCC with RA. A total of 515 samples were collected from various published papers, randomly splitting into training, validation, and testing with percentages of 70, 10 and 20. Two statistical indicators, correlation coefficient (R) and mean squared error (MSE), were used to assess the models; the greater the R and lower the MSE, the more accurate the algorithm. The findings demonstrate the higher accuracy of the three models. The best result is achieved by BR (R = 0.91 and MSE = 43.755), while the accuracy of LM is nearly the same (R = 0.90 and MSE = 48.14). LM processes the network in a much shorter time than BR. As a result, LM and BR are the best models in forecasting the 28 days f’c of SCC having RA. The sensitivity analysis showed that cement (28.39%) and water (23.47%) are the most critical variables for predicting the 28-day compressive strength of SCC with RA, while coarse aggregate contributes the least (9.23%).
AbstractList A considerable amount of discarded building materials are produced each year worldwide, resulting in ecosystem degradation. Self-compacting concrete (SCC) has 60–70% coarse and fine particles in its composition, so replacing this material with another waste material, such as recycled aggregate (RA), reduces the cost of SCC. This study compares novel Artificial Neural Network algorithm techniques—Levenberg–Marquardt (LM), Bayesian regularization (BR), and Scaled Conjugate Gradient Backpropagation (SCGB)—to estimate the 28-day compressive strength (f’c) of SCC with RA. A total of 515 samples were collected from various published papers, randomly splitting into training, validation, and testing with percentages of 70, 10 and 20. Two statistical indicators, correlation coefficient (R) and mean squared error (MSE), were used to assess the models; the greater the R and lower the MSE, the more accurate the algorithm. The findings demonstrate the higher accuracy of the three models. The best result is achieved by BR (R = 0.91 and MSE = 43.755), while the accuracy of LM is nearly the same (R = 0.90 and MSE = 48.14). LM processes the network in a much shorter time than BR. As a result, LM and BR are the best models in forecasting the 28 days f’c of SCC having RA. The sensitivity analysis showed that cement (28.39%) and water (23.47%) are the most critical variables for predicting the 28-day compressive strength of SCC with RA, while coarse aggregate contributes the least (9.23%).
A considerable amount of discarded building materials are produced each year worldwide, resulting in ecosystem degradation. Self-compacting concrete (SCC) has 60-70% coarse and fine particles in its composition, so replacing this material with another waste material, such as recycled aggregate (RA), reduces the cost of SCC. This study compares novel Artificial Neural Network algorithm techniques-Levenberg-Marquardt (LM), Bayesian regularization (BR), and Scaled Conjugate Gradient Backpropagation (SCGB)-to estimate the 28-day compressive strength (f'c) of SCC with RA. A total of 515 samples were collected from various published papers, randomly splitting into training, validation, and testing with percentages of 70, 10 and 20. Two statistical indicators, correlation coefficient (R) and mean squared error (MSE), were used to assess the models; the greater the R and lower the MSE, the more accurate the algorithm. The findings demonstrate the higher accuracy of the three models. The best result is achieved by BR (R = 0.91 and MSE = 43.755), while the accuracy of LM is nearly the same (R = 0.90 and MSE = 48.14). LM processes the network in a much shorter time than BR. As a result, LM and BR are the best models in forecasting the 28 days f'c of SCC having RA. The sensitivity analysis showed that cement (28.39%) and water (23.47%) are the most critical variables for predicting the 28-day compressive strength of SCC with RA, while coarse aggregate contributes the least (9.23%).A considerable amount of discarded building materials are produced each year worldwide, resulting in ecosystem degradation. Self-compacting concrete (SCC) has 60-70% coarse and fine particles in its composition, so replacing this material with another waste material, such as recycled aggregate (RA), reduces the cost of SCC. This study compares novel Artificial Neural Network algorithm techniques-Levenberg-Marquardt (LM), Bayesian regularization (BR), and Scaled Conjugate Gradient Backpropagation (SCGB)-to estimate the 28-day compressive strength (f'c) of SCC with RA. A total of 515 samples were collected from various published papers, randomly splitting into training, validation, and testing with percentages of 70, 10 and 20. Two statistical indicators, correlation coefficient (R) and mean squared error (MSE), were used to assess the models; the greater the R and lower the MSE, the more accurate the algorithm. The findings demonstrate the higher accuracy of the three models. The best result is achieved by BR (R = 0.91 and MSE = 43.755), while the accuracy of LM is nearly the same (R = 0.90 and MSE = 48.14). LM processes the network in a much shorter time than BR. As a result, LM and BR are the best models in forecasting the 28 days f'c of SCC having RA. The sensitivity analysis showed that cement (28.39%) and water (23.47%) are the most critical variables for predicting the 28-day compressive strength of SCC with RA, while coarse aggregate contributes the least (9.23%).
Author de-Prado-Gil, Jesús
Palencia, Covadonga
Jagadesh, P.
Martínez-García, Rebeca
AuthorAffiliation 3 Department of Mining Technology, Topography, and Structures, Campus de Vegazana s/n, University of León, 24071 León, Spain; rmartg@unileon.es
2 Department of Civil Engineering, Coimbatore Institute of Technology, Coimbatore 638056, Tamil Nadu, India; jaga.86@gmail.com
1 Department of Applied Physics, Campus de Vegazana s/n, University of León, 24071 León, Spain; c.palencia@unileon.es
AuthorAffiliation_xml – name: 3 Department of Mining Technology, Topography, and Structures, Campus de Vegazana s/n, University of León, 24071 León, Spain; rmartg@unileon.es
– name: 1 Department of Applied Physics, Campus de Vegazana s/n, University of León, 24071 León, Spain; c.palencia@unileon.es
– name: 2 Department of Civil Engineering, Coimbatore Institute of Technology, Coimbatore 638056, Tamil Nadu, India; jaga.86@gmail.com
Author_xml – sequence: 1
  givenname: Jesús
  surname: de-Prado-Gil
  fullname: de-Prado-Gil, Jesús
– sequence: 2
  givenname: Covadonga
  orcidid: 0000-0002-4895-2946
  surname: Palencia
  fullname: Palencia, Covadonga
– sequence: 3
  givenname: P.
  orcidid: 0000-0002-9803-748X
  surname: Jagadesh
  fullname: Jagadesh, P.
– sequence: 4
  givenname: Rebeca
  orcidid: 0000-0002-8974-5759
  surname: Martínez-García
  fullname: Martínez-García, Rebeca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35955167$$D View this record in MEDLINE/PubMed
BookMark eNptks1u1DAQxy3UipbSCw-AInGpkFL8kTjxBWm14kuqCqL0HDn2JOvKiYPtrLS8AW-N021LqfDFY89v_p4Zzwt0MLoREHpF8DljAr8bJClJWVJGn6FjIgTPiSiKg0f2EToN4QanxRipqXiOjlgpypLw6hj9XmVXcda7zI1Z3ED2zYM2Kpp0dF22dsPkIQSzhYR5GPu4We6vwHb54pQJHfvsO6idsqCzVd976GWEFDoqD8m4jsaaXwt16bZgbzXnKJcnpM1W0-SdVBsIL9FhJ22A07v9BF1__PBj_Tm_-Prpy3p1kasC85jTTqhWkqKoJKk4VwXHtWKFbDXBbacqXSjBNQclZMkU7WqOdatrrVvVllhSdoLe73WnuR1AKxijl7aZvBmk3zVOmuZfz2g2Te-2jWBVaqFIAmd3At79nCHEZjBBgbVyBDeHhlaYkrqmmCf0zRP0xs0-1X1L4arAFC-Crx9n9JDK_S8l4O0eUN6F4KF7QAhulilo_k5BgvETWJl9u1M1xv4v5A9zLrbH
CitedBy_id crossref_primary_10_1007_s41024_024_00440_4
crossref_primary_10_1007_s42107_024_01195_6
crossref_primary_10_1016_j_jreng_2024_12_002
crossref_primary_10_1016_j_heliyon_2024_e25858
crossref_primary_10_1016_j_jobe_2023_107279
crossref_primary_10_1016_j_rineng_2025_105537
crossref_primary_10_1515_rams_2024_0043
crossref_primary_10_1016_j_cscm_2024_e03084
crossref_primary_10_1007_s41939_024_00480_w
crossref_primary_10_1007_s42107_023_00726_x
crossref_primary_10_1080_13287982_2025_2471714
crossref_primary_10_1371_journal_pone_0303101
crossref_primary_10_3390_ma15196669
crossref_primary_10_1007_s41939_025_00811_5
crossref_primary_10_1016_j_conbuildmat_2023_132464
crossref_primary_10_3390_pr13072130
crossref_primary_10_1016_j_jobe_2023_107006
crossref_primary_10_1108_EC_02_2025_0124
crossref_primary_10_3390_app122110864
crossref_primary_10_1016_j_jobe_2023_107836
crossref_primary_10_1016_j_cscm_2023_e02557
Cites_doi 10.1016/j.conbuildmat.2013.05.065
10.1016/j.conbuildmat.2020.120671
10.1016/j.matpr.2020.11.896
10.3390/rs14092055
10.1016/j.jobe.2016.11.013
10.1007/s11709-013-0224-8
10.3390/ma14164488
10.1016/j.cemconcomp.2008.12.002
10.1007/s12633-020-00635-7
10.1016/j.conbuildmat.2017.07.087
10.1016/j.neunet.2014.09.003
10.1016/j.jclepro.2019.117707
10.1016/j.diamond.2022.108883
10.1002/rnc.727
10.1016/j.jclepro.2014.06.019
10.1021/ci990061k
10.1016/j.buildenv.2006.07.003
10.1016/j.conbuildmat.2016.07.057
10.1016/j.conbuildmat.2010.11.108
10.2298/FUACE170125005G
10.1007/s40999-016-0062-x
10.1162/neco.1992.4.3.448
10.1080/08927020008022374
10.1016/j.conbuildmat.2015.03.079
10.4028/www.scientific.net/AMR.639-640.399
10.3390/ma14143889
10.1155/2016/2761294
10.1016/j.conbuildmat.2014.01.098
10.1016/j.conbuildmat.2019.117115
10.1016/j.jobe.2022.104610
10.1016/j.conbuildmat.2009.12.029
10.3390/recycling6020023
10.1016/j.cemconcomp.2011.04.002
10.1002/fes3.109
10.1007/s11709-020-0618-3
10.3390/infrastructures6020017
10.1016/j.matdes.2013.07.100
10.3390/ma13040868
10.3389/fmats.2021.771423
10.1016/j.jclepro.2018.02.074
10.1090/qam/10666
10.1007/s42452-019-1012-4
10.1016/j.conbuildmat.2020.119323
10.1016/j.conbuildmat.2015.08.036
10.1016/j.jmrt.2020.04.038
10.1061/(ASCE)MT.1943-5533.0002566
10.1016/j.conbuildmat.2008.03.006
10.4186/ej.2017.21.7.233
10.1016/S0893-6080(05)80056-5
10.3390/ma12071120
10.3390/app112211077
10.1016/j.jobe.2020.101483
10.1109/YAC.2016.7804882
10.1007/s40030-014-0051-5
10.4028/www.scientific.net/AMM.638-640.1494
10.1007/s42107-020-00242-2
10.3390/ma14195762
10.1155/2015/849126
10.1007/s12649-020-01045-x
10.1016/j.jclepro.2020.123180
10.1016/j.ijsbe.2016.09.003
10.21203/rs.3.rs-381936/v1
10.1016/j.eswa.2006.10.030
10.3846/jcem.2021.14117
10.1038/s41598-021-92228-6
10.3390/su13020824
10.1016/j.conbuildmat.2017.09.129
10.1016/j.conbuildmat.2019.117054
10.1016/j.conbuildmat.2014.04.090
10.1021/ci025626i
10.1016/j.conbuildmat.2016.03.079
10.28991/cej-0309193
10.3390/buildings10060113
10.1080/13287982.2019.1636519
10.3390/en13071735
10.1016/j.resconrec.2020.104930
10.1016/j.conbuildmat.2020.118980
10.1016/j.cemconcomp.2011.04.005
10.1016/j.jobe.2020.101361
10.1016/j.conbuildmat.2019.116819
10.1016/j.cemconcomp.2009.06.005
10.1016/j.conbuildmat.2018.06.132
10.3389/fmats.2021.665625
10.1016/j.proeng.2016.08.882
10.1016/j.advengsoft.2008.05.005
10.3151/jact.1.5
10.3390/ma15020647
10.1520/ACEM20180058
10.1016/j.jobe.2017.06.007
10.3390/app11136028
10.1007/s43452-022-00436-2
10.1162/neco.1992.4.3.415
10.1016/j.conbuildmat.2018.12.150
10.1007/s12205-017-2022-7
10.1016/j.conbuildmat.2013.10.061
10.1137/0111030
10.1016/j.conbuildmat.2012.04.117
10.1016/j.jobe.2021.103406
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma15155232
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC9370039
35955167
10_3390_ma15155232
Genre Journal Article
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
TR2
TUS
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c406t-2f9cba1447a1766c4608c34abd10bfc7d4c96d6ec9a53c2f860dbd8ddbcb50a23
IEDL.DBID BENPR
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000839291900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1944
IngestDate Tue Nov 04 01:43:39 EST 2025
Sun Nov 09 10:05:49 EST 2025
Fri Jul 25 11:57:26 EDT 2025
Mon Jul 21 06:04:28 EDT 2025
Tue Nov 18 21:29:02 EST 2025
Sat Nov 29 07:15:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords compressive strength
artificial neural network
self-compacting concrete
recycled aggregates
Bayesian regularization
Levenberg–Marquardt
Scaled Conjugate Gradient Backpropagation
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-2f9cba1447a1766c4608c34abd10bfc7d4c96d6ec9a53c2f860dbd8ddbcb50a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9803-748X
0000-0002-4895-2946
0000-0002-8974-5759
OpenAccessLink https://www.proquest.com/docview/2700740209?pq-origsite=%requestingapplication%
PMID 35955167
PQID 2700740209
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9370039
proquest_miscellaneous_2702188206
proquest_journals_2700740209
pubmed_primary_35955167
crossref_primary_10_3390_ma15155232
crossref_citationtrail_10_3390_ma15155232
PublicationCentury 2000
PublicationDate 20220728
PublicationDateYYYYMMDD 2022-07-28
PublicationDate_xml – month: 7
  year: 2022
  text: 20220728
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hagan (ref_46) 2002; 12
Khademi (ref_104) 2016; 5
ref_13
Behera (ref_59) 2019; 228
ref_10
Kou (ref_29) 2022; 31
Zaid (ref_3) 2022; 124
ref_95
(ref_48) 1993; 6
Schmidhuber (ref_36) 2015; 61
Bilim (ref_105) 2009; 40
Adesina (ref_22) 2019; 1
Aslani (ref_51) 2018; 182
Salesa (ref_64) 2017; 153
Tuyan (ref_86) 2014; 53
Babajanzadeh (ref_109) 2018; 4
Skaf (ref_60) 2020; 263
Wang (ref_90) 2020; 277
ref_24
Li (ref_87) 2019; 236
Singh (ref_74) 2019; 9
Uysal (ref_106) 2011; 25
Zaid (ref_4) 2022; 16
(ref_88) 2014; 84
ref_28
Zaid (ref_23) 2021; 23
Althoey (ref_18) 2022; 54
Padmini (ref_12) 2009; 23
Bahrami (ref_55) 2021; 31
Revathi (ref_58) 2013; 94
Algin (ref_71) 2014; 64
Daungwilailuk (ref_20) 2017; 21
MacKay (ref_41) 1992; 4
ref_77
Zhou (ref_98) 2013; 639–640
Fiol (ref_67) 2018; 182
Yu (ref_92) 2014; 638–640
Nieto (ref_99) 2018; 31
Bidabadi (ref_61) 2020; 32
Erdal (ref_47) 2005; 12
ref_82
Chakkamalayath (ref_63) 2020; 21
Grdic (ref_30) 2010; 24
ref_89
Guo (ref_73) 2020; 231
Ali (ref_49) 2012; 35
Makul (ref_76) 2013; 47
(ref_45) 2000; 40
Ananthan (ref_85) 2017; 9
Yuan (ref_6) 2014; 4
Nguyen (ref_21) 2018; 22
Silva (ref_72) 2016; 124
Zaid (ref_16) 2022; 22
Zaid (ref_25) 2021; 8
ref_50
Babalola (ref_53) 2020; 9
Priano (ref_9) 2016; 113
Shi (ref_7) 2015; 84
Zaid (ref_27) 2021; 11
ref_57
Palencia (ref_15) 2022; 1
Mehta (ref_2) 2002; 24
Uysal (ref_32) 2011; 33
Fonseca (ref_31) 2011; 33
Hawkins (ref_43) 2003; 43
Sasanipour (ref_66) 2019; 228
Mahakavi (ref_91) 2019; 21
Levenberg (ref_37) 1944; 2
Berenjian (ref_62) 2018; 43
Marquardt (ref_38) 1963; 11
Lebret (ref_39) 1997; 18
Grdic (ref_70) 2018; 16
Surendar (ref_80) 2021; 44
Carvalho (ref_17) 2017; 6
Zaid (ref_11) 2021; 8
Kaewunruen (ref_19) 2020; 9
Nikbin (ref_8) 2014; 57
Park (ref_103) 2016; 28
Kou (ref_81) 2009; 31
(ref_83) 2018; 9
Okamura (ref_5) 2003; 1
Poongodi (ref_56) 2021; 13
Duan (ref_65) 2020; 254
ref_35
ref_34
Pan (ref_52) 2019; 200
ref_33
ref_111
Manzi (ref_93) 2017; 157
ref_113
ref_112
Mo (ref_97) 2021; 12
Sun (ref_78) 2020; 161
Kapoor (ref_75) 2016; 16
Hanbay (ref_107) 2008; 34
Sharifi (ref_69) 2013; 7
Ali (ref_14) 2020; 251
MacKay (ref_44) 1992; 4
Nepomuceno (ref_54) 2014; 51
Ali (ref_26) 2021; 16
Yu (ref_96) 2021; 27
ref_108
ref_100
ref_102
ref_40
ref_101
Yu (ref_94) 2020; 14
Gesoglu (ref_68) 2015; 98
Bilir (ref_1) 2007; 42
Winkler (ref_42) 2000; 24
Thienpont (ref_84) 2016; 160
Alaka (ref_110) 2022; 45
Khodair (ref_79) 2017; 12
References_xml – volume: 47
  start-page: 701
  year: 2013
  ident: ref_76
  article-title: Use of recycled alumina as fine aggregate replacement in self-compacting concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.05.065
– volume: 23
  start-page: 1947
  year: 2021
  ident: ref_23
  article-title: To evaluate the performance of waste marble powder and wheat straw ash in steel fiber reinforced concrete
  publication-title: Struct. Concr.
– volume: 263
  start-page: 120671
  year: 2020
  ident: ref_60
  article-title: Effect of fine recycled concrete aggregate on the mechanical behavior of self-compacting concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120671
– volume: 44
  start-page: 1723
  year: 2021
  ident: ref_80
  article-title: Mechanical properties of concrete with recycled aggregate and M−sand
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.11.896
– ident: ref_40
  doi: 10.3390/rs14092055
– volume: 9
  start-page: 100
  year: 2017
  ident: ref_85
  article-title: Experimental studies on utilization of coarse and finer fractions of recycled concrete aggregates in self compacting concrete mixes
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2016.11.013
– volume: 7
  start-page: 419
  year: 2013
  ident: ref_69
  article-title: Recycled glass replacement as fine aggregate in self-compacting concrete
  publication-title: Front. Struct. Civ. Eng.
  doi: 10.1007/s11709-013-0224-8
– volume: 9
  start-page: 1672
  year: 2018
  ident: ref_83
  article-title: Studies on Mechanical Properties of Ternary Blended Self-Compacting Concrete Using Different Percentages of Recycled Aggregate
  publication-title: Int. J. Civ. Eng. Technol. IJCIET
– ident: ref_28
  doi: 10.3390/ma14164488
– ident: ref_108
– volume: 31
  start-page: 107
  year: 2009
  ident: ref_81
  article-title: Properties of self-compacting concrete prepared with recycled glass aggregate
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2008.12.002
– volume: 13
  start-page: 2727
  year: 2021
  ident: ref_56
  article-title: Durability Properties of Self-compacting Concrete Made With Recycled Aggregate
  publication-title: Silicon
  doi: 10.1007/s12633-020-00635-7
– volume: 153
  start-page: 364
  year: 2017
  ident: ref_64
  article-title: Physico-mechanical properties of multi-recycled self-compacting concrete prepared with precast concrete rejects
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.07.087
– volume: 61
  start-page: 85
  year: 2015
  ident: ref_36
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 236
  start-page: 117707
  year: 2019
  ident: ref_87
  article-title: Properties of self-compacting concrete (SCC) with recycled tire rubber aggregate: A comprehensive study
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.117707
– volume: 124
  start-page: 108883
  year: 2022
  ident: ref_3
  article-title: Experimental study on the properties improvement of hyB.R.id graphene oxide fiber-reinforced composite concrete
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2022.108883
– volume: 12
  start-page: 959
  year: 2002
  ident: ref_46
  article-title: An introduction to the use of neural networks in control systems
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.727
– volume: 84
  start-page: 691
  year: 2014
  ident: ref_88
  article-title: Use of waste marble and recycled aggregates in self-compacting concrete for environmental sustainability
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.06.019
– volume: 40
  start-page: 403
  year: 2000
  ident: ref_45
  article-title: Nonlinear multivariate regression outperforms several concisely designed neural networks on three QSPR data sets
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci990061k
– volume: 42
  start-page: 2651
  year: 2007
  ident: ref_1
  article-title: Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2006.07.003
– volume: 124
  start-page: 639
  year: 2016
  ident: ref_72
  article-title: Properties of self-compacting concrete on fresh and hardened with residue of masonry and recycled concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.07.057
– volume: 25
  start-page: 4105
  year: 2011
  ident: ref_106
  article-title: Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2010.11.108
– volume: 16
  start-page: 57
  year: 2018
  ident: ref_70
  article-title: Potential of usage of self-compacting concrete with addition of recycled CRT glass for production of precast concrete elements
  publication-title: Facta Univ. Ser. Archit. Civ. Eng
  doi: 10.2298/FUACE170125005G
– volume: 16
  start-page: 47
  year: 2016
  ident: ref_75
  article-title: Water Permeation Properties of Self Compacting Concrete Made with Coarse and Fine Recycled Concrete Aggregates
  publication-title: Int. J. Civ. Eng.
  doi: 10.1007/s40999-016-0062-x
– volume: 4
  start-page: 448
  year: 1992
  ident: ref_41
  article-title: A Practical Bayesian Framework for Backpropagation Networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.3.448
– volume: 24
  start-page: 243
  year: 2000
  ident: ref_42
  article-title: Robust QSAR Models from Novel Descriptors and Bayesian Regularised Neural Networks
  publication-title: Mol. Simul.
  doi: 10.1080/08927020008022374
– volume: 84
  start-page: 387
  year: 2015
  ident: ref_7
  article-title: A review on mixture design methods for self-compacting concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.03.079
– volume: 28
  start-page: 123
  year: 2016
  ident: ref_103
  article-title: Chapter7—Artificial neural networks: Multilayer perceptron for ecological modeling
  publication-title: Dev. Environ. Model.
– volume: 639–640
  start-page: 399
  year: 2013
  ident: ref_98
  article-title: Research on Self-Compacting Concrete Made with Recycled Aggregate
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.639-640.399
– ident: ref_33
  doi: 10.3390/ma14143889
– ident: ref_82
  doi: 10.1155/2016/2761294
– volume: 57
  start-page: 69
  year: 2014
  ident: ref_8
  article-title: A comprehensive investigation into the effect of water to cement ratio and powder content on mechanical properties of self-compacting concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.01.098
– volume: 231
  start-page: 117115
  year: 2020
  ident: ref_73
  article-title: Mechanical and durability properties of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag and silica fume
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117115
– volume: 54
  start-page: 104610
  year: 2022
  ident: ref_18
  article-title: Impact of sulfate activation of rice husk ash on the performance of high strength steel fiber reinforced recycled aggregate concrete
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2022.104610
– volume: 24
  start-page: 1129
  year: 2010
  ident: ref_30
  article-title: Properties of self-compacting concrete prepared with coarse recycled concrete aggregate
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2009.12.029
– volume: 18
  start-page: 1035
  year: 1997
  ident: ref_39
  article-title: Robust solutions to least-squares problems with uncertain data
  publication-title: Soc. Ind. Appl. Math.
– volume: 16
  start-page: e00831
  year: 2021
  ident: ref_26
  article-title: Mechanical performance, water and chloride permeability of hybrid steel-polypropylene fiber-reinforced recycled aggregate concrete
  publication-title: Case Stud. Constr. Mater.
– ident: ref_77
  doi: 10.3390/recycling6020023
– volume: 33
  start-page: 637
  year: 2011
  ident: ref_31
  article-title: The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2011.04.002
– volume: 6
  start-page: 61
  year: 2017
  ident: ref_17
  article-title: Mining industry and sustainable development: Time for change
  publication-title: Food Energy Secur.
  doi: 10.1002/fes3.109
– volume: 14
  start-page: 760
  year: 2020
  ident: ref_94
  article-title: Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected to eccentric compression
  publication-title: Front. Struct. Civ. Eng.
  doi: 10.1007/s11709-020-0618-3
– volume: 4
  start-page: 1
  year: 2014
  ident: ref_6
  article-title: Degree of hydration-based creep modeling of concrete with blended binders: From concept to real applications
  publication-title: J. Sustain. Cem. Based Mater.
– ident: ref_10
  doi: 10.3390/infrastructures6020017
– volume: 53
  start-page: 983
  year: 2014
  ident: ref_86
  article-title: Freeze–thaw resistance, mechanical and transport properties of self-consolidating concrete incorporating coarse recycled concrete aggregate
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2013.07.100
– ident: ref_95
  doi: 10.3390/ma13040868
– volume: 8
  start-page: 481
  year: 2021
  ident: ref_11
  article-title: Experimental Study on Mechanical Performance of Recycled Fine Aggregate Concrete Reinforced with Discarded Carbon Fibers
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2021.771423
– volume: 182
  start-page: 553
  year: 2018
  ident: ref_51
  article-title: Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.02.074
– ident: ref_89
– volume: 2
  start-page: 164
  year: 1944
  ident: ref_37
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/10666
– volume: 1
  start-page: 962
  year: 2019
  ident: ref_22
  article-title: Overview of trends in the application of waste materials in self-compacting concrete production
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-019-1012-4
– volume: 9
  start-page: 165
  year: 2019
  ident: ref_74
  article-title: Incorporating recycled aggregates in self-compacting concrete: A review
  publication-title: J. Sustain. Cem. Based Mater.
– volume: 254
  start-page: 119323
  year: 2020
  ident: ref_65
  article-title: Combined use of recycled powder and recycled coarse aggregate derived from construction and demolition waste in self-compacting concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119323
– volume: 98
  start-page: 334
  year: 2015
  ident: ref_68
  article-title: Failure characteristics of self-compacting concretes made with recycled aggregates
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.08.036
– volume: 9
  start-page: 6521
  year: 2020
  ident: ref_53
  article-title: Mechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2020.04.038
– volume: 31
  start-page: 04018376
  year: 2018
  ident: ref_99
  article-title: Properties of Self-Compacting Concrete Prepared with Coarse Recycled Concrete Aggregates and Different Water: Cement Ratios
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0002566
– volume: 23
  start-page: 829
  year: 2009
  ident: ref_12
  article-title: Influence of parent concrete on the properties of recycled aggregate concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2008.03.006
– volume: 21
  start-page: 233
  year: 2017
  ident: ref_20
  article-title: Evaluating damaged concrete depth in reinforced concrete structures under different fire exposure times by means of NDT and DT techniques
  publication-title: Eng. J.
  doi: 10.4186/ej.2017.21.7.233
– volume: 6
  start-page: 525
  year: 1993
  ident: ref_48
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80056-5
– volume: 12
  start-page: 432
  year: 2005
  ident: ref_47
  article-title: Comparison of three back-propagation training algorithms for two case studies
  publication-title: Indian J. Eng. Mater. Sci.
– ident: ref_50
  doi: 10.3390/ma12071120
– volume: 16
  start-page: e00939
  year: 2022
  ident: ref_4
  article-title: Characteristics of high-performance steel fiber reinforced recycled aggregate concrete utilizing mineral filler
  publication-title: Case Stud. Constr. Mater.
– ident: ref_111
  doi: 10.3390/app112211077
– volume: 32
  start-page: 101483
  year: 2020
  ident: ref_61
  article-title: Optimum mix design of recycled concrete based on the fresh and hardened properties of concrete
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101483
– ident: ref_35
  doi: 10.1109/YAC.2016.7804882
– volume: 94
  start-page: 179
  year: 2013
  ident: ref_58
  article-title: Investigations on Fresh and Hardened Properties of Recycled Aggregate Self Compacting Concrete
  publication-title: J. Inst. Eng. Ser. A
  doi: 10.1007/s40030-014-0051-5
– volume: 638–640
  start-page: 1494
  year: 2014
  ident: ref_92
  article-title: Study on Properties of Self-Compacting Concrete Prepared with Coarse Recycled Concrete Aggregate
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.638-640.1494
– volume: 21
  start-page: 815
  year: 2020
  ident: ref_63
  article-title: Performance evaluation of self-compacting concrete containing volcanic ash and recycled coarse aggregates
  publication-title: Asian J. Civ. Eng.
  doi: 10.1007/s42107-020-00242-2
– ident: ref_113
  doi: 10.3390/ma14195762
– ident: ref_34
  doi: 10.1155/2015/849126
– volume: 12
  start-page: 1133
  year: 2021
  ident: ref_97
  article-title: Examining the Influence of Recycled Concrete Aggregate on the Hardened Properties of Self-compacting Concrete
  publication-title: Waste Biomass Valorization
  doi: 10.1007/s12649-020-01045-x
– volume: 277
  start-page: 123180
  year: 2020
  ident: ref_90
  article-title: Fresh and mechanical performance and freeze-thaw durability of steel fiber-reinforced rubber self-compacting concrete (SRSCC)
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123180
– volume: 5
  start-page: 355
  year: 2016
  ident: ref_104
  article-title: Predicting strength of recycled aggregate concrete using artificial neural network, adaptive neuro-fuzzy inference system and multiple linear regression
  publication-title: Int. J. Sustain. Built Environ.
  doi: 10.1016/j.ijsbe.2016.09.003
– ident: ref_100
  doi: 10.21203/rs.3.rs-381936/v1
– volume: 34
  start-page: 1038
  year: 2008
  ident: ref_107
  article-title: Prediction of wastewater treatment plant performance based on wavelet packet decomposition and neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.10.030
– volume: 27
  start-page: 188
  year: 2021
  ident: ref_96
  article-title: Mechanical performance of recycled aggregate self-consolidating concrete column
  publication-title: J. Civ. Eng. Manag.
  doi: 10.3846/jcem.2021.14117
– volume: 11
  start-page: 12822
  year: 2021
  ident: ref_27
  article-title: A step towards sustainable glass fiber reinforced concrete utilizing silica fume and waste coconut shell aggregate
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-92228-6
– ident: ref_24
  doi: 10.3390/su13020824
– volume: 157
  start-page: 582
  year: 2017
  ident: ref_93
  article-title: Self-compacting concrete with recycled concrete aggregate: Study of the long-term properties
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.09.129
– volume: 228
  start-page: 117054
  year: 2019
  ident: ref_66
  article-title: Effect of specimen shape, silica fume, and curing age on durability properties of self-compacting concrete incorporating coarse recycled concrete aggregates
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117054
– volume: 64
  start-page: 172
  year: 2014
  ident: ref_71
  article-title: Effect of surface treatment methods on the properties of self-compacting concrete with recycled aggregates
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.04.090
– volume: 43
  start-page: 579
  year: 2003
  ident: ref_43
  article-title: Assessing Model Fit by Cross-Validation
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci025626i
– volume: 113
  start-page: 498
  year: 2016
  ident: ref_9
  article-title: Influence of recycled aggregates on properties of self-consolidating concretes
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.03.079
– volume: 4
  start-page: 1542
  year: 2018
  ident: ref_109
  article-title: Compressive strength prediction of self-compacting concrete incorporating silica fume using artificial intelligence methods
  publication-title: Civ. Eng. J.
  doi: 10.28991/cej-0309193
– ident: ref_57
  doi: 10.3390/buildings10060113
– volume: 21
  start-page: 33
  year: 2019
  ident: ref_91
  article-title: Effect of recycled coarse aggregate and manufactured sand in self compacting concrete
  publication-title: Aust. J. Struct. Eng.
  doi: 10.1080/13287982.2019.1636519
– ident: ref_101
  doi: 10.3390/en13071735
– volume: 161
  start-page: 104930
  year: 2020
  ident: ref_78
  article-title: Utilization of waste concrete recycling materials in self-compacting concrete
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2020.104930
– volume: 251
  start-page: 118980
  year: 2020
  ident: ref_14
  article-title: A step towards durable, ductile and sustainable concrete: Simultaneous incorporation of recycled aggregates, glass fiber and fly ash
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118980
– volume: 33
  start-page: 771
  year: 2011
  ident: ref_32
  article-title: Effect of mineral admixtures on properties of self-compacting concrete
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2011.04.005
– volume: 31
  start-page: 101361
  year: 2021
  ident: ref_55
  article-title: Optimum recycled concrete aggregate and micro-silica content in self-compacting concrete: Rheological, mechanical and microstructural properties
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101361
– volume: 228
  start-page: 116819
  year: 2019
  ident: ref_59
  article-title: Flow behavior, microstructure, strength and shrinkage properties of self-compacting concrete incorporating recycled fine aggregate
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.116819
– volume: 31
  start-page: 622
  year: 2022
  ident: ref_29
  article-title: Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2009.06.005
– volume: 182
  start-page: 309
  year: 2018
  ident: ref_67
  article-title: The influence of recycled aggregates from precast elements on the mechanical properties of structural self-compacting concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.06.132
– volume: 8
  start-page: 151
  year: 2021
  ident: ref_25
  article-title: Effect of Incorporation of Rice Husk Ash Instead of Cement on the Performance of Steel Fibers Reinforced Concrete
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2021.665625
– volume: 160
  start-page: 207
  year: 2016
  ident: ref_84
  article-title: Self-compacting Concrete, Protecting Steel Reinforcement under Cyclic Load: Evaluation of Fatigue Crack Behavior
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2016.08.882
– ident: ref_102
– volume: 40
  start-page: 334
  year: 2009
  ident: ref_105
  article-title: Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2008.05.005
– volume: 1
  start-page: 5
  year: 2003
  ident: ref_5
  article-title: Self-Compacting Concrete
  publication-title: J. Adv. Concr. Technol.
  doi: 10.3151/jact.1.5
– ident: ref_112
  doi: 10.3390/ma15020647
– volume: 9
  start-page: 210
  year: 2020
  ident: ref_19
  article-title: Eco-friendly high-strength concrete engineered by micro crumb rubber from recycled tires and plastics for railway components
  publication-title: Adv. Civ. Eng. Mater.
  doi: 10.1520/ACEM20180058
– volume: 12
  start-page: 282
  year: 2017
  ident: ref_79
  article-title: Self-compacting concrete using recycled asphalt pavement and recycled concrete aggregate
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2017.06.007
– ident: ref_13
  doi: 10.3390/app11136028
– volume: 22
  start-page: 114
  year: 2022
  ident: ref_16
  article-title: To determine the performance of metakaolin-based fiber-reinforced geopolymer concrete with recycled aggregates
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1007/s43452-022-00436-2
– volume: 1
  start-page: e01046
  year: 2022
  ident: ref_15
  article-title: To predict the compressive strength of self -compacting concrete with recycled aggregates utilizing ensemble machine learning models
  publication-title: Case Stud. Constr. Mater.
– volume: 4
  start-page: 415
  year: 1992
  ident: ref_44
  article-title: Bayesian Interpolation
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.3.415
– volume: 200
  start-page: 570
  year: 2019
  ident: ref_52
  article-title: Investigating the effects of steel slag powder on the properties of self-compacting concrete with recycled aggregates
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.12.150
– volume: 22
  start-page: 2942
  year: 2018
  ident: ref_21
  article-title: The Effects of Electro-Chemical Chloride Extraction on the Migration of Ions and the Corrosion State of Embedded Steel in Reinforced Concrete
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-017-2022-7
– volume: 51
  start-page: 113
  year: 2014
  ident: ref_54
  article-title: Permeability properties of self-compacting concrete with coarse recycled aggregates
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.10.061
– volume: 43
  start-page: 503
  year: 2018
  ident: ref_62
  article-title: The Effect of Recycled Concrete Aggregates and Metakaolin on the Mechanical Properties of Self-Compacting Concrete Containing Nanoparticles
  publication-title: Iran. J. Sci. Technol. Trans. Civ. Eng.
– volume: 24
  start-page: 23
  year: 2002
  ident: ref_2
  article-title: Greening of the concrete industry for sustainable development
  publication-title: Concr. Int.
– volume: 11
  start-page: 431
  year: 1963
  ident: ref_38
  article-title: An Algorithm for Least-Squares Estimation of Nonlinear Parameters
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0111030
– volume: 35
  start-page: 785
  year: 2012
  ident: ref_49
  article-title: Recycled glass as a partial replacement for fine aggregate in self compacting concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.04.117
– volume: 45
  start-page: 103406
  year: 2022
  ident: ref_110
  article-title: Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2021.103406
SSID ssj0000331829
Score 2.4565697
Snippet A considerable amount of discarded building materials are produced each year worldwide, resulting in ecosystem degradation. Self-compacting concrete (SCC) has...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5232
SubjectTerms Accuracy
Aggregates
Algorithms
Artificial intelligence
Artificial neural networks
Back propagation
Back propagation networks
Brain
Building materials
Compressive strength
Concrete aggregates
Construction materials
Correlation coefficients
Deep learning
Machine learning
Mathematical functions
Neural networks
Recycled materials
Regularization
Self-compacting concrete
Sensitivity analysis
Variables
Title A Study on the Prediction of Compressive Strength of Self-Compacting Recycled Aggregate Concrete Utilizing Novel Computational Approaches
URI https://www.ncbi.nlm.nih.gov/pubmed/35955167
https://www.proquest.com/docview/2700740209
https://www.proquest.com/docview/2702188206
https://pubmed.ncbi.nlm.nih.gov/PMC9370039
Volume 15
WOSCitedRecordID wos000839291900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: KB.
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoy4EeypumlMoILhxMHSeb2Ce0Ra1AwCoCipZT5NhOu9I2aXfTlco_4F8zk3jTLiAu3PKYKJZmbH_z8DeEvEyUAdRqLMOuDixWmjNprGNGWp3wMrVhe77i28d0NJLjscp8wG3uyyqXa2K7UNvaYIx8HxOkKTo76s35BcOuUZhd9S001sgGMpWBnW8cHI6yz32UhUdgs0J1vKQR-Pf7Zxq3cHC_xOpO9Ae8_L1K8sa2c3T3fwd8j2x5wEmHnYXcJ7dc9YBs3qAhfEh-DimWE17RuqKAB2k2w-wNaozWJcUVoy2WXTiKOezqpDnF51_ctGTtcmKwdJoCAL2CP1g6PAEfHqNz8GkFoBQujpvJdPIDpUb1wk1p10vCxyHp0POau_kjcnx0-PXtO-ZbNDADSKBholSm0OCUpRqZJk2ccGmiWBc25EVpUhsbldjEGaUHkRGlTLgtrLS2MMWAaxE9JutVXbltQrlUpZbWJQOhY1GGUlnBnQQPxloemjAgr5bqyo3nL8c2GtMc_BhUbX6t2oC86GXPO9aOv0rtLjWX-5k7z6_VFpDn_WuYc5hI0ZWrL1sZQEbIfB-QJ52R9L_Bg86DMEkDkq6YTy-AfN6rb6rJacvrDUgRj0rv_HtYT8kdgUcweMqE3CXrzezSPSO3zaKZzGd7ZC0dyz0_DeDuw8FruMvef8q-_wJjGBhZ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKRJw4P0wFFgEHDisul479u4BoQioGjWNItGicnLXu-s0UrBLkgaFf8Cf4Tey41cbQNx64BbFEzmyv539ZmfmG4CXkdSOtWpDcaoDDaViVGhjqRZGRSyLjV_2V3waxMOhODqSow342fTCYFll4xNLR20KjWfk25ggjTHYkW9Pv1KcGoXZ1WaERgWLPbv65kK2-Zv-e_d-X3G-8-Hg3S6tpwpQ7TavBeWZ1KlycUSsUBxRhxETOghVanyWZjo2oZaRiayWqhtonomImdQIY1KddplCoQPn8jdDBHsHNkf9_dHn9lSHBW6NcFnpoAaBZNtfFFIGF-7x9Z3vDzr7e1XmhW1u5-b_9oBuwY2aUJNetQJuw4bN78D1CzKLd-FHj2C55IoUOXF8l4xmmJ1CRJIiI-gRy2LgpSWYo8_HixP8_qOdZrR0lxpLw4kj2Ct3B0N64_HM4umj-2nuSLf7cLiYTCff0WpYLO2UVLMy6nNW0qt12-38HhxeyrO4D528yO1DIEzITAljoy5XIc98IQ1nVrgIzRjma9-D1w08El3rs-OYkGni4jSEUnIOJQ9etLanlSrJX622GqQktWeaJ-cw8eB5e9n5FEwUqdwWZ6WNY36o7O_BgwqU7W2wkbvrR7EH8RpcWwPUK1-_kk9OSt1yx4SxFfzRv__WM7i6e7A_SAb94d5juMax3YTFlIst6CxmZ_YJXNHLxWQ-e1ovPgLHlw3nXzBCdNw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VKUJw4PsjUGARcOBgZb127N0DQhElImqJIkFRObnr3XUaKdglcYPCP-Av8euYsZ20AcStB25RPJEj--3sm52ZNwDPI2WQtRrr0VQHL1Sae9JY5xlpdcSz2PpVf8Wn_Xg4lIeHarQFP1e9MFRWufKJlaO2haEz8g4lSGMKdlQna8oiRrv91ydfPZogRZnW1TiNGiJ7bvkNw7f5q8EuvusXQvTffnzzzmsmDHgGN7LSE5kyqcaYItYklGjCiEsThDq1Pk8zE9vQqMhGzijdDYzIZMRtaqW1qUm7XJPoAbr_baTkoWjB9mjwfvR5fcLDA1wvQtWaqEGgeOeLJvqAoZ_Y3AX_oLa_V2ie2_L61__nh3UDrjVEm_XqlXETtlx-C66ek1-8DT96jMool6zIGfJgNppR1oqQyoqMkaesioQXjlHuPh-Xx_T9BzfNvMqNGioZZ0i8l3gHy3rj8czRqST-NEcyjh8Oysl08p2shsXCTVk9Q6M5f2W9Rs_dze_AwYU8i7vQyovc3QfGpcq0tC7qCh2KzJfKCu4kRm7Wct_4bXi5gkpiGt12Gh8yTTB-I1glZ7Bqw7O17UmtVvJXq50VapLGY82TM8i04en6MvoaSiDp3BWnlQ0yQlL8b8O9GqDr21CDd9eP4jbEG9BdG5CO-eaVfHJc6ZkjQ6YW8Qf__ltP4DJiONkfDPcewhVBXSg89oTcgVY5O3WP4JJZlJP57HGzDhkcXTSafwHven2c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Study+on+the+Prediction+of+Compressive+Strength+of+Self-Compacting+Recycled+Aggregate+Concrete+Utilizing+Novel+Computational+Approaches&rft.jtitle=Materials&rft.au=de-Prado-Gil%2C+Jes%C3%BAs&rft.au=Palencia%2C+Covadonga&rft.au=Jagadesh%2C+P.&rft.au=Mart%C3%ADnez-Garc%C3%ADa%2C+Rebeca&rft.date=2022-07-28&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=15&rft.issue=15&rft.spage=5232&rft_id=info:doi/10.3390%2Fma15155232&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ma15155232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon