A Study on the Prediction of Compressive Strength of Self-Compacting Recycled Aggregate Concrete Utilizing Novel Computational Approaches
A considerable amount of discarded building materials are produced each year worldwide, resulting in ecosystem degradation. Self-compacting concrete (SCC) has 60–70% coarse and fine particles in its composition, so replacing this material with another waste material, such as recycled aggregate (RA),...
Uloženo v:
| Vydáno v: | Materials Ročník 15; číslo 15; s. 5232 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
28.07.2022
MDPI |
| Témata: | |
| ISSN: | 1996-1944, 1996-1944 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A considerable amount of discarded building materials are produced each year worldwide, resulting in ecosystem degradation. Self-compacting concrete (SCC) has 60–70% coarse and fine particles in its composition, so replacing this material with another waste material, such as recycled aggregate (RA), reduces the cost of SCC. This study compares novel Artificial Neural Network algorithm techniques—Levenberg–Marquardt (LM), Bayesian regularization (BR), and Scaled Conjugate Gradient Backpropagation (SCGB)—to estimate the 28-day compressive strength (f’c) of SCC with RA. A total of 515 samples were collected from various published papers, randomly splitting into training, validation, and testing with percentages of 70, 10 and 20. Two statistical indicators, correlation coefficient (R) and mean squared error (MSE), were used to assess the models; the greater the R and lower the MSE, the more accurate the algorithm. The findings demonstrate the higher accuracy of the three models. The best result is achieved by BR (R = 0.91 and MSE = 43.755), while the accuracy of LM is nearly the same (R = 0.90 and MSE = 48.14). LM processes the network in a much shorter time than BR. As a result, LM and BR are the best models in forecasting the 28 days f’c of SCC having RA. The sensitivity analysis showed that cement (28.39%) and water (23.47%) are the most critical variables for predicting the 28-day compressive strength of SCC with RA, while coarse aggregate contributes the least (9.23%). |
|---|---|
| AbstractList | A considerable amount of discarded building materials are produced each year worldwide, resulting in ecosystem degradation. Self-compacting concrete (SCC) has 60–70% coarse and fine particles in its composition, so replacing this material with another waste material, such as recycled aggregate (RA), reduces the cost of SCC. This study compares novel Artificial Neural Network algorithm techniques—Levenberg–Marquardt (LM), Bayesian regularization (BR), and Scaled Conjugate Gradient Backpropagation (SCGB)—to estimate the 28-day compressive strength (f’c) of SCC with RA. A total of 515 samples were collected from various published papers, randomly splitting into training, validation, and testing with percentages of 70, 10 and 20. Two statistical indicators, correlation coefficient (R) and mean squared error (MSE), were used to assess the models; the greater the R and lower the MSE, the more accurate the algorithm. The findings demonstrate the higher accuracy of the three models. The best result is achieved by BR (R = 0.91 and MSE = 43.755), while the accuracy of LM is nearly the same (R = 0.90 and MSE = 48.14). LM processes the network in a much shorter time than BR. As a result, LM and BR are the best models in forecasting the 28 days f’c of SCC having RA. The sensitivity analysis showed that cement (28.39%) and water (23.47%) are the most critical variables for predicting the 28-day compressive strength of SCC with RA, while coarse aggregate contributes the least (9.23%). A considerable amount of discarded building materials are produced each year worldwide, resulting in ecosystem degradation. Self-compacting concrete (SCC) has 60-70% coarse and fine particles in its composition, so replacing this material with another waste material, such as recycled aggregate (RA), reduces the cost of SCC. This study compares novel Artificial Neural Network algorithm techniques-Levenberg-Marquardt (LM), Bayesian regularization (BR), and Scaled Conjugate Gradient Backpropagation (SCGB)-to estimate the 28-day compressive strength (f'c) of SCC with RA. A total of 515 samples were collected from various published papers, randomly splitting into training, validation, and testing with percentages of 70, 10 and 20. Two statistical indicators, correlation coefficient (R) and mean squared error (MSE), were used to assess the models; the greater the R and lower the MSE, the more accurate the algorithm. The findings demonstrate the higher accuracy of the three models. The best result is achieved by BR (R = 0.91 and MSE = 43.755), while the accuracy of LM is nearly the same (R = 0.90 and MSE = 48.14). LM processes the network in a much shorter time than BR. As a result, LM and BR are the best models in forecasting the 28 days f'c of SCC having RA. The sensitivity analysis showed that cement (28.39%) and water (23.47%) are the most critical variables for predicting the 28-day compressive strength of SCC with RA, while coarse aggregate contributes the least (9.23%).A considerable amount of discarded building materials are produced each year worldwide, resulting in ecosystem degradation. Self-compacting concrete (SCC) has 60-70% coarse and fine particles in its composition, so replacing this material with another waste material, such as recycled aggregate (RA), reduces the cost of SCC. This study compares novel Artificial Neural Network algorithm techniques-Levenberg-Marquardt (LM), Bayesian regularization (BR), and Scaled Conjugate Gradient Backpropagation (SCGB)-to estimate the 28-day compressive strength (f'c) of SCC with RA. A total of 515 samples were collected from various published papers, randomly splitting into training, validation, and testing with percentages of 70, 10 and 20. Two statistical indicators, correlation coefficient (R) and mean squared error (MSE), were used to assess the models; the greater the R and lower the MSE, the more accurate the algorithm. The findings demonstrate the higher accuracy of the three models. The best result is achieved by BR (R = 0.91 and MSE = 43.755), while the accuracy of LM is nearly the same (R = 0.90 and MSE = 48.14). LM processes the network in a much shorter time than BR. As a result, LM and BR are the best models in forecasting the 28 days f'c of SCC having RA. The sensitivity analysis showed that cement (28.39%) and water (23.47%) are the most critical variables for predicting the 28-day compressive strength of SCC with RA, while coarse aggregate contributes the least (9.23%). |
| Author | de-Prado-Gil, Jesús Palencia, Covadonga Jagadesh, P. Martínez-García, Rebeca |
| AuthorAffiliation | 3 Department of Mining Technology, Topography, and Structures, Campus de Vegazana s/n, University of León, 24071 León, Spain; rmartg@unileon.es 2 Department of Civil Engineering, Coimbatore Institute of Technology, Coimbatore 638056, Tamil Nadu, India; jaga.86@gmail.com 1 Department of Applied Physics, Campus de Vegazana s/n, University of León, 24071 León, Spain; c.palencia@unileon.es |
| AuthorAffiliation_xml | – name: 3 Department of Mining Technology, Topography, and Structures, Campus de Vegazana s/n, University of León, 24071 León, Spain; rmartg@unileon.es – name: 1 Department of Applied Physics, Campus de Vegazana s/n, University of León, 24071 León, Spain; c.palencia@unileon.es – name: 2 Department of Civil Engineering, Coimbatore Institute of Technology, Coimbatore 638056, Tamil Nadu, India; jaga.86@gmail.com |
| Author_xml | – sequence: 1 givenname: Jesús surname: de-Prado-Gil fullname: de-Prado-Gil, Jesús – sequence: 2 givenname: Covadonga orcidid: 0000-0002-4895-2946 surname: Palencia fullname: Palencia, Covadonga – sequence: 3 givenname: P. orcidid: 0000-0002-9803-748X surname: Jagadesh fullname: Jagadesh, P. – sequence: 4 givenname: Rebeca orcidid: 0000-0002-8974-5759 surname: Martínez-García fullname: Martínez-García, Rebeca |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35955167$$D View this record in MEDLINE/PubMed |
| BookMark | eNptks1u1DAQxy3UipbSCw-AInGpkFL8kTjxBWm14kuqCqL0HDn2JOvKiYPtrLS8AW-N021LqfDFY89v_p4Zzwt0MLoREHpF8DljAr8bJClJWVJGn6FjIgTPiSiKg0f2EToN4QanxRipqXiOjlgpypLw6hj9XmVXcda7zI1Z3ED2zYM2Kpp0dF22dsPkIQSzhYR5GPu4We6vwHb54pQJHfvsO6idsqCzVd976GWEFDoqD8m4jsaaXwt16bZgbzXnKJcnpM1W0-SdVBsIL9FhJ22A07v9BF1__PBj_Tm_-Prpy3p1kasC85jTTqhWkqKoJKk4VwXHtWKFbDXBbacqXSjBNQclZMkU7WqOdatrrVvVllhSdoLe73WnuR1AKxijl7aZvBmk3zVOmuZfz2g2Te-2jWBVaqFIAmd3At79nCHEZjBBgbVyBDeHhlaYkrqmmCf0zRP0xs0-1X1L4arAFC-Crx9n9JDK_S8l4O0eUN6F4KF7QAhulilo_k5BgvETWJl9u1M1xv4v5A9zLrbH |
| CitedBy_id | crossref_primary_10_1007_s41024_024_00440_4 crossref_primary_10_1007_s42107_024_01195_6 crossref_primary_10_1016_j_jreng_2024_12_002 crossref_primary_10_1016_j_heliyon_2024_e25858 crossref_primary_10_1016_j_jobe_2023_107279 crossref_primary_10_1016_j_rineng_2025_105537 crossref_primary_10_1515_rams_2024_0043 crossref_primary_10_1016_j_cscm_2024_e03084 crossref_primary_10_1007_s41939_024_00480_w crossref_primary_10_1007_s42107_023_00726_x crossref_primary_10_1080_13287982_2025_2471714 crossref_primary_10_1371_journal_pone_0303101 crossref_primary_10_3390_ma15196669 crossref_primary_10_1007_s41939_025_00811_5 crossref_primary_10_1016_j_conbuildmat_2023_132464 crossref_primary_10_3390_pr13072130 crossref_primary_10_1016_j_jobe_2023_107006 crossref_primary_10_1108_EC_02_2025_0124 crossref_primary_10_3390_app122110864 crossref_primary_10_1016_j_jobe_2023_107836 crossref_primary_10_1016_j_cscm_2023_e02557 |
| Cites_doi | 10.1016/j.conbuildmat.2013.05.065 10.1016/j.conbuildmat.2020.120671 10.1016/j.matpr.2020.11.896 10.3390/rs14092055 10.1016/j.jobe.2016.11.013 10.1007/s11709-013-0224-8 10.3390/ma14164488 10.1016/j.cemconcomp.2008.12.002 10.1007/s12633-020-00635-7 10.1016/j.conbuildmat.2017.07.087 10.1016/j.neunet.2014.09.003 10.1016/j.jclepro.2019.117707 10.1016/j.diamond.2022.108883 10.1002/rnc.727 10.1016/j.jclepro.2014.06.019 10.1021/ci990061k 10.1016/j.buildenv.2006.07.003 10.1016/j.conbuildmat.2016.07.057 10.1016/j.conbuildmat.2010.11.108 10.2298/FUACE170125005G 10.1007/s40999-016-0062-x 10.1162/neco.1992.4.3.448 10.1080/08927020008022374 10.1016/j.conbuildmat.2015.03.079 10.4028/www.scientific.net/AMR.639-640.399 10.3390/ma14143889 10.1155/2016/2761294 10.1016/j.conbuildmat.2014.01.098 10.1016/j.conbuildmat.2019.117115 10.1016/j.jobe.2022.104610 10.1016/j.conbuildmat.2009.12.029 10.3390/recycling6020023 10.1016/j.cemconcomp.2011.04.002 10.1002/fes3.109 10.1007/s11709-020-0618-3 10.3390/infrastructures6020017 10.1016/j.matdes.2013.07.100 10.3390/ma13040868 10.3389/fmats.2021.771423 10.1016/j.jclepro.2018.02.074 10.1090/qam/10666 10.1007/s42452-019-1012-4 10.1016/j.conbuildmat.2020.119323 10.1016/j.conbuildmat.2015.08.036 10.1016/j.jmrt.2020.04.038 10.1061/(ASCE)MT.1943-5533.0002566 10.1016/j.conbuildmat.2008.03.006 10.4186/ej.2017.21.7.233 10.1016/S0893-6080(05)80056-5 10.3390/ma12071120 10.3390/app112211077 10.1016/j.jobe.2020.101483 10.1109/YAC.2016.7804882 10.1007/s40030-014-0051-5 10.4028/www.scientific.net/AMM.638-640.1494 10.1007/s42107-020-00242-2 10.3390/ma14195762 10.1155/2015/849126 10.1007/s12649-020-01045-x 10.1016/j.jclepro.2020.123180 10.1016/j.ijsbe.2016.09.003 10.21203/rs.3.rs-381936/v1 10.1016/j.eswa.2006.10.030 10.3846/jcem.2021.14117 10.1038/s41598-021-92228-6 10.3390/su13020824 10.1016/j.conbuildmat.2017.09.129 10.1016/j.conbuildmat.2019.117054 10.1016/j.conbuildmat.2014.04.090 10.1021/ci025626i 10.1016/j.conbuildmat.2016.03.079 10.28991/cej-0309193 10.3390/buildings10060113 10.1080/13287982.2019.1636519 10.3390/en13071735 10.1016/j.resconrec.2020.104930 10.1016/j.conbuildmat.2020.118980 10.1016/j.cemconcomp.2011.04.005 10.1016/j.jobe.2020.101361 10.1016/j.conbuildmat.2019.116819 10.1016/j.cemconcomp.2009.06.005 10.1016/j.conbuildmat.2018.06.132 10.3389/fmats.2021.665625 10.1016/j.proeng.2016.08.882 10.1016/j.advengsoft.2008.05.005 10.3151/jact.1.5 10.3390/ma15020647 10.1520/ACEM20180058 10.1016/j.jobe.2017.06.007 10.3390/app11136028 10.1007/s43452-022-00436-2 10.1162/neco.1992.4.3.415 10.1016/j.conbuildmat.2018.12.150 10.1007/s12205-017-2022-7 10.1016/j.conbuildmat.2013.10.061 10.1137/0111030 10.1016/j.conbuildmat.2012.04.117 10.1016/j.jobe.2021.103406 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.3390/ma15155232 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1944 |
| ExternalDocumentID | PMC9370039 35955167 10_3390_ma15155232 |
| Genre | Journal Article |
| GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM TR2 TUS NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c406t-2f9cba1447a1766c4608c34abd10bfc7d4c96d6ec9a53c2f860dbd8ddbcb50a23 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000839291900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1944 |
| IngestDate | Tue Nov 04 01:43:39 EST 2025 Sun Nov 09 10:05:49 EST 2025 Fri Jul 25 11:57:26 EDT 2025 Mon Jul 21 06:04:28 EDT 2025 Tue Nov 18 21:29:02 EST 2025 Sat Nov 29 07:15:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | compressive strength artificial neural network self-compacting concrete recycled aggregates Bayesian regularization Levenberg–Marquardt Scaled Conjugate Gradient Backpropagation |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-2f9cba1447a1766c4608c34abd10bfc7d4c96d6ec9a53c2f860dbd8ddbcb50a23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9803-748X 0000-0002-4895-2946 0000-0002-8974-5759 |
| OpenAccessLink | https://www.proquest.com/docview/2700740209?pq-origsite=%requestingapplication% |
| PMID | 35955167 |
| PQID | 2700740209 |
| PQPubID | 2032366 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9370039 proquest_miscellaneous_2702188206 proquest_journals_2700740209 pubmed_primary_35955167 crossref_primary_10_3390_ma15155232 crossref_citationtrail_10_3390_ma15155232 |
| PublicationCentury | 2000 |
| PublicationDate | 20220728 |
| PublicationDateYYYYMMDD | 2022-07-28 |
| PublicationDate_xml | – month: 7 year: 2022 text: 20220728 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Materials |
| PublicationTitleAlternate | Materials (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Hagan (ref_46) 2002; 12 Khademi (ref_104) 2016; 5 ref_13 Behera (ref_59) 2019; 228 ref_10 Kou (ref_29) 2022; 31 Zaid (ref_3) 2022; 124 ref_95 (ref_48) 1993; 6 Schmidhuber (ref_36) 2015; 61 Bilim (ref_105) 2009; 40 Adesina (ref_22) 2019; 1 Aslani (ref_51) 2018; 182 Salesa (ref_64) 2017; 153 Tuyan (ref_86) 2014; 53 Babajanzadeh (ref_109) 2018; 4 Skaf (ref_60) 2020; 263 Wang (ref_90) 2020; 277 ref_24 Li (ref_87) 2019; 236 Singh (ref_74) 2019; 9 Uysal (ref_106) 2011; 25 Zaid (ref_4) 2022; 16 (ref_88) 2014; 84 ref_28 Zaid (ref_23) 2021; 23 Althoey (ref_18) 2022; 54 Padmini (ref_12) 2009; 23 Bahrami (ref_55) 2021; 31 Revathi (ref_58) 2013; 94 Algin (ref_71) 2014; 64 Daungwilailuk (ref_20) 2017; 21 MacKay (ref_41) 1992; 4 ref_77 Zhou (ref_98) 2013; 639–640 Fiol (ref_67) 2018; 182 Yu (ref_92) 2014; 638–640 Nieto (ref_99) 2018; 31 Bidabadi (ref_61) 2020; 32 Erdal (ref_47) 2005; 12 ref_82 Chakkamalayath (ref_63) 2020; 21 Grdic (ref_30) 2010; 24 ref_89 Guo (ref_73) 2020; 231 Ali (ref_49) 2012; 35 Makul (ref_76) 2013; 47 (ref_45) 2000; 40 Ananthan (ref_85) 2017; 9 Yuan (ref_6) 2014; 4 Nguyen (ref_21) 2018; 22 Silva (ref_72) 2016; 124 Zaid (ref_16) 2022; 22 Zaid (ref_25) 2021; 8 ref_50 Babalola (ref_53) 2020; 9 Priano (ref_9) 2016; 113 Shi (ref_7) 2015; 84 Zaid (ref_27) 2021; 11 ref_57 Palencia (ref_15) 2022; 1 Mehta (ref_2) 2002; 24 Uysal (ref_32) 2011; 33 Fonseca (ref_31) 2011; 33 Hawkins (ref_43) 2003; 43 Sasanipour (ref_66) 2019; 228 Mahakavi (ref_91) 2019; 21 Levenberg (ref_37) 1944; 2 Berenjian (ref_62) 2018; 43 Marquardt (ref_38) 1963; 11 Lebret (ref_39) 1997; 18 Grdic (ref_70) 2018; 16 Surendar (ref_80) 2021; 44 Carvalho (ref_17) 2017; 6 Zaid (ref_11) 2021; 8 Kaewunruen (ref_19) 2020; 9 Nikbin (ref_8) 2014; 57 Park (ref_103) 2016; 28 Kou (ref_81) 2009; 31 (ref_83) 2018; 9 Okamura (ref_5) 2003; 1 Poongodi (ref_56) 2021; 13 Duan (ref_65) 2020; 254 ref_35 ref_34 Pan (ref_52) 2019; 200 ref_33 ref_111 Manzi (ref_93) 2017; 157 ref_113 ref_112 Mo (ref_97) 2021; 12 Sun (ref_78) 2020; 161 Kapoor (ref_75) 2016; 16 Hanbay (ref_107) 2008; 34 Sharifi (ref_69) 2013; 7 Ali (ref_14) 2020; 251 MacKay (ref_44) 1992; 4 Nepomuceno (ref_54) 2014; 51 Ali (ref_26) 2021; 16 Yu (ref_96) 2021; 27 ref_108 ref_100 ref_102 ref_40 ref_101 Yu (ref_94) 2020; 14 Gesoglu (ref_68) 2015; 98 Bilir (ref_1) 2007; 42 Winkler (ref_42) 2000; 24 Thienpont (ref_84) 2016; 160 Alaka (ref_110) 2022; 45 Khodair (ref_79) 2017; 12 |
| References_xml | – volume: 47 start-page: 701 year: 2013 ident: ref_76 article-title: Use of recycled alumina as fine aggregate replacement in self-compacting concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.05.065 – volume: 23 start-page: 1947 year: 2021 ident: ref_23 article-title: To evaluate the performance of waste marble powder and wheat straw ash in steel fiber reinforced concrete publication-title: Struct. Concr. – volume: 263 start-page: 120671 year: 2020 ident: ref_60 article-title: Effect of fine recycled concrete aggregate on the mechanical behavior of self-compacting concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120671 – volume: 44 start-page: 1723 year: 2021 ident: ref_80 article-title: Mechanical properties of concrete with recycled aggregate and M−sand publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.11.896 – ident: ref_40 doi: 10.3390/rs14092055 – volume: 9 start-page: 100 year: 2017 ident: ref_85 article-title: Experimental studies on utilization of coarse and finer fractions of recycled concrete aggregates in self compacting concrete mixes publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2016.11.013 – volume: 7 start-page: 419 year: 2013 ident: ref_69 article-title: Recycled glass replacement as fine aggregate in self-compacting concrete publication-title: Front. Struct. Civ. Eng. doi: 10.1007/s11709-013-0224-8 – volume: 9 start-page: 1672 year: 2018 ident: ref_83 article-title: Studies on Mechanical Properties of Ternary Blended Self-Compacting Concrete Using Different Percentages of Recycled Aggregate publication-title: Int. J. Civ. Eng. Technol. IJCIET – ident: ref_28 doi: 10.3390/ma14164488 – ident: ref_108 – volume: 31 start-page: 107 year: 2009 ident: ref_81 article-title: Properties of self-compacting concrete prepared with recycled glass aggregate publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2008.12.002 – volume: 13 start-page: 2727 year: 2021 ident: ref_56 article-title: Durability Properties of Self-compacting Concrete Made With Recycled Aggregate publication-title: Silicon doi: 10.1007/s12633-020-00635-7 – volume: 153 start-page: 364 year: 2017 ident: ref_64 article-title: Physico-mechanical properties of multi-recycled self-compacting concrete prepared with precast concrete rejects publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.07.087 – volume: 61 start-page: 85 year: 2015 ident: ref_36 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 236 start-page: 117707 year: 2019 ident: ref_87 article-title: Properties of self-compacting concrete (SCC) with recycled tire rubber aggregate: A comprehensive study publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.117707 – volume: 124 start-page: 108883 year: 2022 ident: ref_3 article-title: Experimental study on the properties improvement of hyB.R.id graphene oxide fiber-reinforced composite concrete publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2022.108883 – volume: 12 start-page: 959 year: 2002 ident: ref_46 article-title: An introduction to the use of neural networks in control systems publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.727 – volume: 84 start-page: 691 year: 2014 ident: ref_88 article-title: Use of waste marble and recycled aggregates in self-compacting concrete for environmental sustainability publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.06.019 – volume: 40 start-page: 403 year: 2000 ident: ref_45 article-title: Nonlinear multivariate regression outperforms several concisely designed neural networks on three QSPR data sets publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci990061k – volume: 42 start-page: 2651 year: 2007 ident: ref_1 article-title: Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate publication-title: Build. Environ. doi: 10.1016/j.buildenv.2006.07.003 – volume: 124 start-page: 639 year: 2016 ident: ref_72 article-title: Properties of self-compacting concrete on fresh and hardened with residue of masonry and recycled concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.07.057 – volume: 25 start-page: 4105 year: 2011 ident: ref_106 article-title: Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2010.11.108 – volume: 16 start-page: 57 year: 2018 ident: ref_70 article-title: Potential of usage of self-compacting concrete with addition of recycled CRT glass for production of precast concrete elements publication-title: Facta Univ. Ser. Archit. Civ. Eng doi: 10.2298/FUACE170125005G – volume: 16 start-page: 47 year: 2016 ident: ref_75 article-title: Water Permeation Properties of Self Compacting Concrete Made with Coarse and Fine Recycled Concrete Aggregates publication-title: Int. J. Civ. Eng. doi: 10.1007/s40999-016-0062-x – volume: 4 start-page: 448 year: 1992 ident: ref_41 article-title: A Practical Bayesian Framework for Backpropagation Networks publication-title: Neural Comput. doi: 10.1162/neco.1992.4.3.448 – volume: 24 start-page: 243 year: 2000 ident: ref_42 article-title: Robust QSAR Models from Novel Descriptors and Bayesian Regularised Neural Networks publication-title: Mol. Simul. doi: 10.1080/08927020008022374 – volume: 84 start-page: 387 year: 2015 ident: ref_7 article-title: A review on mixture design methods for self-compacting concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.03.079 – volume: 28 start-page: 123 year: 2016 ident: ref_103 article-title: Chapter7—Artificial neural networks: Multilayer perceptron for ecological modeling publication-title: Dev. Environ. Model. – volume: 639–640 start-page: 399 year: 2013 ident: ref_98 article-title: Research on Self-Compacting Concrete Made with Recycled Aggregate publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.639-640.399 – ident: ref_33 doi: 10.3390/ma14143889 – ident: ref_82 doi: 10.1155/2016/2761294 – volume: 57 start-page: 69 year: 2014 ident: ref_8 article-title: A comprehensive investigation into the effect of water to cement ratio and powder content on mechanical properties of self-compacting concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.01.098 – volume: 231 start-page: 117115 year: 2020 ident: ref_73 article-title: Mechanical and durability properties of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag and silica fume publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117115 – volume: 54 start-page: 104610 year: 2022 ident: ref_18 article-title: Impact of sulfate activation of rice husk ash on the performance of high strength steel fiber reinforced recycled aggregate concrete publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2022.104610 – volume: 24 start-page: 1129 year: 2010 ident: ref_30 article-title: Properties of self-compacting concrete prepared with coarse recycled concrete aggregate publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2009.12.029 – volume: 18 start-page: 1035 year: 1997 ident: ref_39 article-title: Robust solutions to least-squares problems with uncertain data publication-title: Soc. Ind. Appl. Math. – volume: 16 start-page: e00831 year: 2021 ident: ref_26 article-title: Mechanical performance, water and chloride permeability of hybrid steel-polypropylene fiber-reinforced recycled aggregate concrete publication-title: Case Stud. Constr. Mater. – ident: ref_77 doi: 10.3390/recycling6020023 – volume: 33 start-page: 637 year: 2011 ident: ref_31 article-title: The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2011.04.002 – volume: 6 start-page: 61 year: 2017 ident: ref_17 article-title: Mining industry and sustainable development: Time for change publication-title: Food Energy Secur. doi: 10.1002/fes3.109 – volume: 14 start-page: 760 year: 2020 ident: ref_94 article-title: Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected to eccentric compression publication-title: Front. Struct. Civ. Eng. doi: 10.1007/s11709-020-0618-3 – volume: 4 start-page: 1 year: 2014 ident: ref_6 article-title: Degree of hydration-based creep modeling of concrete with blended binders: From concept to real applications publication-title: J. Sustain. Cem. Based Mater. – ident: ref_10 doi: 10.3390/infrastructures6020017 – volume: 53 start-page: 983 year: 2014 ident: ref_86 article-title: Freeze–thaw resistance, mechanical and transport properties of self-consolidating concrete incorporating coarse recycled concrete aggregate publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.07.100 – ident: ref_95 doi: 10.3390/ma13040868 – volume: 8 start-page: 481 year: 2021 ident: ref_11 article-title: Experimental Study on Mechanical Performance of Recycled Fine Aggregate Concrete Reinforced with Discarded Carbon Fibers publication-title: Front. Mater. doi: 10.3389/fmats.2021.771423 – volume: 182 start-page: 553 year: 2018 ident: ref_51 article-title: Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.02.074 – ident: ref_89 – volume: 2 start-page: 164 year: 1944 ident: ref_37 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Q. Appl. Math. doi: 10.1090/qam/10666 – volume: 1 start-page: 962 year: 2019 ident: ref_22 article-title: Overview of trends in the application of waste materials in self-compacting concrete production publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-1012-4 – volume: 9 start-page: 165 year: 2019 ident: ref_74 article-title: Incorporating recycled aggregates in self-compacting concrete: A review publication-title: J. Sustain. Cem. Based Mater. – volume: 254 start-page: 119323 year: 2020 ident: ref_65 article-title: Combined use of recycled powder and recycled coarse aggregate derived from construction and demolition waste in self-compacting concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.119323 – volume: 98 start-page: 334 year: 2015 ident: ref_68 article-title: Failure characteristics of self-compacting concretes made with recycled aggregates publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.08.036 – volume: 9 start-page: 6521 year: 2020 ident: ref_53 article-title: Mechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2020.04.038 – volume: 31 start-page: 04018376 year: 2018 ident: ref_99 article-title: Properties of Self-Compacting Concrete Prepared with Coarse Recycled Concrete Aggregates and Different Water: Cement Ratios publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0002566 – volume: 23 start-page: 829 year: 2009 ident: ref_12 article-title: Influence of parent concrete on the properties of recycled aggregate concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2008.03.006 – volume: 21 start-page: 233 year: 2017 ident: ref_20 article-title: Evaluating damaged concrete depth in reinforced concrete structures under different fire exposure times by means of NDT and DT techniques publication-title: Eng. J. doi: 10.4186/ej.2017.21.7.233 – volume: 6 start-page: 525 year: 1993 ident: ref_48 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80056-5 – volume: 12 start-page: 432 year: 2005 ident: ref_47 article-title: Comparison of three back-propagation training algorithms for two case studies publication-title: Indian J. Eng. Mater. Sci. – ident: ref_50 doi: 10.3390/ma12071120 – volume: 16 start-page: e00939 year: 2022 ident: ref_4 article-title: Characteristics of high-performance steel fiber reinforced recycled aggregate concrete utilizing mineral filler publication-title: Case Stud. Constr. Mater. – ident: ref_111 doi: 10.3390/app112211077 – volume: 32 start-page: 101483 year: 2020 ident: ref_61 article-title: Optimum mix design of recycled concrete based on the fresh and hardened properties of concrete publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101483 – ident: ref_35 doi: 10.1109/YAC.2016.7804882 – volume: 94 start-page: 179 year: 2013 ident: ref_58 article-title: Investigations on Fresh and Hardened Properties of Recycled Aggregate Self Compacting Concrete publication-title: J. Inst. Eng. Ser. A doi: 10.1007/s40030-014-0051-5 – volume: 638–640 start-page: 1494 year: 2014 ident: ref_92 article-title: Study on Properties of Self-Compacting Concrete Prepared with Coarse Recycled Concrete Aggregate publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.638-640.1494 – volume: 21 start-page: 815 year: 2020 ident: ref_63 article-title: Performance evaluation of self-compacting concrete containing volcanic ash and recycled coarse aggregates publication-title: Asian J. Civ. Eng. doi: 10.1007/s42107-020-00242-2 – ident: ref_113 doi: 10.3390/ma14195762 – ident: ref_34 doi: 10.1155/2015/849126 – volume: 12 start-page: 1133 year: 2021 ident: ref_97 article-title: Examining the Influence of Recycled Concrete Aggregate on the Hardened Properties of Self-compacting Concrete publication-title: Waste Biomass Valorization doi: 10.1007/s12649-020-01045-x – volume: 277 start-page: 123180 year: 2020 ident: ref_90 article-title: Fresh and mechanical performance and freeze-thaw durability of steel fiber-reinforced rubber self-compacting concrete (SRSCC) publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123180 – volume: 5 start-page: 355 year: 2016 ident: ref_104 article-title: Predicting strength of recycled aggregate concrete using artificial neural network, adaptive neuro-fuzzy inference system and multiple linear regression publication-title: Int. J. Sustain. Built Environ. doi: 10.1016/j.ijsbe.2016.09.003 – ident: ref_100 doi: 10.21203/rs.3.rs-381936/v1 – volume: 34 start-page: 1038 year: 2008 ident: ref_107 article-title: Prediction of wastewater treatment plant performance based on wavelet packet decomposition and neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.10.030 – volume: 27 start-page: 188 year: 2021 ident: ref_96 article-title: Mechanical performance of recycled aggregate self-consolidating concrete column publication-title: J. Civ. Eng. Manag. doi: 10.3846/jcem.2021.14117 – volume: 11 start-page: 12822 year: 2021 ident: ref_27 article-title: A step towards sustainable glass fiber reinforced concrete utilizing silica fume and waste coconut shell aggregate publication-title: Sci. Rep. doi: 10.1038/s41598-021-92228-6 – ident: ref_24 doi: 10.3390/su13020824 – volume: 157 start-page: 582 year: 2017 ident: ref_93 article-title: Self-compacting concrete with recycled concrete aggregate: Study of the long-term properties publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.09.129 – volume: 228 start-page: 117054 year: 2019 ident: ref_66 article-title: Effect of specimen shape, silica fume, and curing age on durability properties of self-compacting concrete incorporating coarse recycled concrete aggregates publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117054 – volume: 64 start-page: 172 year: 2014 ident: ref_71 article-title: Effect of surface treatment methods on the properties of self-compacting concrete with recycled aggregates publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.04.090 – volume: 43 start-page: 579 year: 2003 ident: ref_43 article-title: Assessing Model Fit by Cross-Validation publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci025626i – volume: 113 start-page: 498 year: 2016 ident: ref_9 article-title: Influence of recycled aggregates on properties of self-consolidating concretes publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.03.079 – volume: 4 start-page: 1542 year: 2018 ident: ref_109 article-title: Compressive strength prediction of self-compacting concrete incorporating silica fume using artificial intelligence methods publication-title: Civ. Eng. J. doi: 10.28991/cej-0309193 – ident: ref_57 doi: 10.3390/buildings10060113 – volume: 21 start-page: 33 year: 2019 ident: ref_91 article-title: Effect of recycled coarse aggregate and manufactured sand in self compacting concrete publication-title: Aust. J. Struct. Eng. doi: 10.1080/13287982.2019.1636519 – ident: ref_101 doi: 10.3390/en13071735 – volume: 161 start-page: 104930 year: 2020 ident: ref_78 article-title: Utilization of waste concrete recycling materials in self-compacting concrete publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2020.104930 – volume: 251 start-page: 118980 year: 2020 ident: ref_14 article-title: A step towards durable, ductile and sustainable concrete: Simultaneous incorporation of recycled aggregates, glass fiber and fly ash publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118980 – volume: 33 start-page: 771 year: 2011 ident: ref_32 article-title: Effect of mineral admixtures on properties of self-compacting concrete publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2011.04.005 – volume: 31 start-page: 101361 year: 2021 ident: ref_55 article-title: Optimum recycled concrete aggregate and micro-silica content in self-compacting concrete: Rheological, mechanical and microstructural properties publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101361 – volume: 228 start-page: 116819 year: 2019 ident: ref_59 article-title: Flow behavior, microstructure, strength and shrinkage properties of self-compacting concrete incorporating recycled fine aggregate publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.116819 – volume: 31 start-page: 622 year: 2022 ident: ref_29 article-title: Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2009.06.005 – volume: 182 start-page: 309 year: 2018 ident: ref_67 article-title: The influence of recycled aggregates from precast elements on the mechanical properties of structural self-compacting concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.06.132 – volume: 8 start-page: 151 year: 2021 ident: ref_25 article-title: Effect of Incorporation of Rice Husk Ash Instead of Cement on the Performance of Steel Fibers Reinforced Concrete publication-title: Front. Mater. doi: 10.3389/fmats.2021.665625 – volume: 160 start-page: 207 year: 2016 ident: ref_84 article-title: Self-compacting Concrete, Protecting Steel Reinforcement under Cyclic Load: Evaluation of Fatigue Crack Behavior publication-title: Procedia Eng. doi: 10.1016/j.proeng.2016.08.882 – ident: ref_102 – volume: 40 start-page: 334 year: 2009 ident: ref_105 article-title: Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2008.05.005 – volume: 1 start-page: 5 year: 2003 ident: ref_5 article-title: Self-Compacting Concrete publication-title: J. Adv. Concr. Technol. doi: 10.3151/jact.1.5 – ident: ref_112 doi: 10.3390/ma15020647 – volume: 9 start-page: 210 year: 2020 ident: ref_19 article-title: Eco-friendly high-strength concrete engineered by micro crumb rubber from recycled tires and plastics for railway components publication-title: Adv. Civ. Eng. Mater. doi: 10.1520/ACEM20180058 – volume: 12 start-page: 282 year: 2017 ident: ref_79 article-title: Self-compacting concrete using recycled asphalt pavement and recycled concrete aggregate publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2017.06.007 – ident: ref_13 doi: 10.3390/app11136028 – volume: 22 start-page: 114 year: 2022 ident: ref_16 article-title: To determine the performance of metakaolin-based fiber-reinforced geopolymer concrete with recycled aggregates publication-title: Arch. Civ. Mech. Eng. doi: 10.1007/s43452-022-00436-2 – volume: 1 start-page: e01046 year: 2022 ident: ref_15 article-title: To predict the compressive strength of self -compacting concrete with recycled aggregates utilizing ensemble machine learning models publication-title: Case Stud. Constr. Mater. – volume: 4 start-page: 415 year: 1992 ident: ref_44 article-title: Bayesian Interpolation publication-title: Neural Comput. doi: 10.1162/neco.1992.4.3.415 – volume: 200 start-page: 570 year: 2019 ident: ref_52 article-title: Investigating the effects of steel slag powder on the properties of self-compacting concrete with recycled aggregates publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.12.150 – volume: 22 start-page: 2942 year: 2018 ident: ref_21 article-title: The Effects of Electro-Chemical Chloride Extraction on the Migration of Ions and the Corrosion State of Embedded Steel in Reinforced Concrete publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-017-2022-7 – volume: 51 start-page: 113 year: 2014 ident: ref_54 article-title: Permeability properties of self-compacting concrete with coarse recycled aggregates publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.10.061 – volume: 43 start-page: 503 year: 2018 ident: ref_62 article-title: The Effect of Recycled Concrete Aggregates and Metakaolin on the Mechanical Properties of Self-Compacting Concrete Containing Nanoparticles publication-title: Iran. J. Sci. Technol. Trans. Civ. Eng. – volume: 24 start-page: 23 year: 2002 ident: ref_2 article-title: Greening of the concrete industry for sustainable development publication-title: Concr. Int. – volume: 11 start-page: 431 year: 1963 ident: ref_38 article-title: An Algorithm for Least-Squares Estimation of Nonlinear Parameters publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0111030 – volume: 35 start-page: 785 year: 2012 ident: ref_49 article-title: Recycled glass as a partial replacement for fine aggregate in self compacting concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.04.117 – volume: 45 start-page: 103406 year: 2022 ident: ref_110 article-title: Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2021.103406 |
| SSID | ssj0000331829 |
| Score | 2.4565697 |
| Snippet | A considerable amount of discarded building materials are produced each year worldwide, resulting in ecosystem degradation. Self-compacting concrete (SCC) has... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 5232 |
| SubjectTerms | Accuracy Aggregates Algorithms Artificial intelligence Artificial neural networks Back propagation Back propagation networks Brain Building materials Compressive strength Concrete aggregates Construction materials Correlation coefficients Deep learning Machine learning Mathematical functions Neural networks Recycled materials Regularization Self-compacting concrete Sensitivity analysis Variables |
| Title | A Study on the Prediction of Compressive Strength of Self-Compacting Recycled Aggregate Concrete Utilizing Novel Computational Approaches |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35955167 https://www.proquest.com/docview/2700740209 https://www.proquest.com/docview/2702188206 https://pubmed.ncbi.nlm.nih.gov/PMC9370039 |
| Volume | 15 |
| WOSCitedRecordID | wos000839291900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: KB. dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: PIMPY dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcKG9CS2UEFw6heThOcqq2qBUIsYqASssp8ivtSktSdtOVyj_gX3cm8aZdQFy4xfHkIc14PC9_A_A6FVpWORc-F4nxeSZy1INZ7EvUfZZTFzgVdM0m0vE4m0zywgXcFq6scqUTO0VtGk0x8n1KkKbk7OQH5z986hpF2VXXQmMDtgipDOV86_BoXHweoixBjDIb5T0uaYz-_f53SVs4ul_R-k70h3n5e5XkjW3nePt_f_g-3HMGJxv1EvIAbtn6Idy9AUP4CH6NGJUTXrKmZmgPsmJO2RviGGsqRhqjK5ZdWkY57Pq0PaP7X-ys8jt1oql0mqEBeolfMGx0ij48Refw0RqNUrw4aaez6U-iGjdLO2N9LwkXh2Qjh2tuF4_h5Pjo67v3vmvR4Gu0BFo_qnKtJDplqSSkSc1FkOmYS2XCQFU6NVznwgirc5nEOqoyERhlMmOUVkkgo_gJbNZNbZ8Bk5HuwOR0KCQPZaU4QTXiiyNlklBqD96s2FVqh19ObTRmJfoxxNrymrUevBpoz3vUjr9S7a44V7qVuyiv2ebBy2Ea1xwlUmRtm4uOBi0jQr734GkvJMNn6KBzEorUg3RNfAYCwvNen6mnZx2uN1qKdFT6-b9_awfuRHQEI0j9KNuFzXZ-YV_Abb1sp4v5Hmykk2zPLQMcfTx8i6Piw6fi2xV9uxeW |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VKRJw4PvDUGARcOBg1V6v1_YBoQioGrWNItFK5WTWu-s0UrBL4gaFf8Cf4TcyYztuA4hbD9yieBJb67dvZ3Zm3wC8jKRWeSKkK2RoXBHLBHkwDlyF3GcFdYHLvLrZRDQcxsfHyWgDfq7OwlBZ5YoTa6I2paY98m1KkEYU7CRvT7-61DWKsqurFhoNLPbs8huGbPM3g_f4fl9xvvPh8N2u23YVcDUuXpXL80RnCuOISJE4ohbSi3UgVGZ8L8t1ZIROpJFWJyoMNM9j6ZnMxMZkOgs9RUIHSPmbgsDeg83R4GD0qdvV8QKcIzxpdFCDIPG2vyhyGTDc4-sr3x_u7O9VmReWuZ2b_9sA3YIbrUPN-s0MuA0btrgD1y_ILN6FH31G5ZJLVhYM_V02mlF2ihDJypwRI9bFwAvLKEdfjKsT-v6jneZuTZeaSsMZOthLvINh_fF4Zmn3EX9aoNONH46qyXTynayG5cJOWdMro91nZf1Wt93O78HRpYzFfegVZWEfAlNc12J52pdK-CrPBElR4h_zzIS-0g68XsEj1a0-O7UJmaYYpxGU0nMoOfCisz1tVEn-arW1QkraMtM8PYeJA8-7y8gplChShS3Pahv0_EjZ34EHDSi729BB7tCXkQPRGlw7A9IrX79STE5q3XL0hOko-KN_P9YzuLp7eLCf7g-Ge4_hGqfjJl7k8ngLetXszD6BK3pRTeazp-3kY_D5suH8C0QldBk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKUJw4A01FFgEHDhYcdbr1wGhiBIRFSJLUKmc3PXuOo0U7DZxg8I_4C_x65jxqw0gbj1wi-JJbK2__XZmZ_YbgBeBr2QWCd8WvqdtEfoR8mDo2hK5zwjqApc6VbOJYDIJDw-jeAt-tmdhqKyy5cSKqHWhaI-8TwnSgIKdqJ81ZRHx3ujNyalNHaQo09q206ghsm_W3zB8W74e7-G7fsn56N3nt-_tpsOArXAhK22eRSqVGFMEkoQSlfCdULlCpnrgpJkKtFCRr32jIum5imeh7-hUh1qnKvUcSaIHSP_b6JIL3oPtePwx_tLt8Dguzhce1Zqorhs5_a-S3AcM_fjmKviHa_t7heaFJW90838erFtwo3G02bCeGbdhy-R34PoF-cW78GPIqIxyzYqcoR_M4gVlrQiprMgYMWVVJLwyjHL3-bQ8pu8_mXlmVzSqqGScoeO9xjtoNpxOF4Z2JfGnOTrj-OGgnM1n38lqUqzMnNU9NJr9VzZs9NzN8h4cXMpY3IdeXuRmB5jkqhLRUwNfioHMUkESlfjHPNXeQCoLXrVQSVSj207tQ-YJxm8Eq-QcVhY872xParWSv1rttqhJGsZaJueQseBZdxm5hhJIMjfFWWWDHiEp_lvwoAZodxs64O0N_MCCYAO6nQHpmG9eyWfHlZ45esh0RPzhvx_rKVxFDCcfxpP9R3CN0ykUJ7B5uAu9cnFmHsMVtSpny8WTZh4yOLpsNP8C72h82Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Study+on+the+Prediction+of+Compressive+Strength+of+Self-Compacting+Recycled+Aggregate+Concrete+Utilizing+Novel+Computational+Approaches&rft.jtitle=Materials&rft.au=de-Prado-Gil%2C+Jes%C3%BAs&rft.au=Palencia%2C+Covadonga&rft.au=Jagadesh%2C+P.&rft.au=Mart%C3%ADnez-Garc%C3%ADa%2C+Rebeca&rft.date=2022-07-28&rft.pub=MDPI&rft.eissn=1996-1944&rft.volume=15&rft.issue=15&rft_id=info:doi/10.3390%2Fma15155232&rft_id=info%3Apmid%2F35955167&rft.externalDocID=PMC9370039 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |