IUAutoTimeSVD++: A Hybrid Temporal Recommender System Integrating Item and User Features Using a Contractive Autoencoder

Collaborative filtering (CF), a fundamental technique in personalized Recommender Systems, operates by leveraging user–item preference interactions. Matrix factorization remains one of the most prevalent CF-based methods. However, recent advancements in deep learning have spurred the development of...

Full description

Saved in:
Bibliographic Details
Published in:Information (Basel) Vol. 15; no. 4; p. 204
Main Authors: Azri, Abdelghani, Haddi, Adil, Allali, Hakim
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.04.2024
Subjects:
ISSN:2078-2489, 2078-2489
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Collaborative filtering (CF), a fundamental technique in personalized Recommender Systems, operates by leveraging user–item preference interactions. Matrix factorization remains one of the most prevalent CF-based methods. However, recent advancements in deep learning have spurred the development of hybrid models, which extend matrix factorization, particularly with autoencoders, to capture nonlinear item relationships. Despite these advancements, many proposed models often neglect dynamic changes in the rating process and overlook user features. This paper introduces IUAutoTimeSVD++, a novel hybrid model that builds upon autoTimeSVD++. By incorporating item–user features into the timeSVD++ framework, the proposed model aims to address the static nature and sparsity issues inherent in existing models. Our model utilizes a contractive autoencoder (CAE) to enhance the capacity to capture a robust and stable representation of user-specific and item-specific features, accommodating temporal variations in user preferences and leveraging item characteristics. Experimental results on two public datasets demonstrate IUAutoTimeSVD++’s superiority over baseline models, affirming its effectiveness in capturing and utilizing user and item features for temporally adaptive recommendations.
AbstractList Collaborative filtering (CF), a fundamental technique in personalized Recommender Systems, operates by leveraging user–item preference interactions. Matrix factorization remains one of the most prevalent CF-based methods. However, recent advancements in deep learning have spurred the development of hybrid models, which extend matrix factorization, particularly with autoencoders, to capture nonlinear item relationships. Despite these advancements, many proposed models often neglect dynamic changes in the rating process and overlook user features. This paper introduces IUAutoTimeSVD++, a novel hybrid model that builds upon autoTimeSVD++. By incorporating item–user features into the timeSVD++ framework, the proposed model aims to address the static nature and sparsity issues inherent in existing models. Our model utilizes a contractive autoencoder (CAE) to enhance the capacity to capture a robust and stable representation of user-specific and item-specific features, accommodating temporal variations in user preferences and leveraging item characteristics. Experimental results on two public datasets demonstrate IUAutoTimeSVD++’s superiority over baseline models, affirming its effectiveness in capturing and utilizing user and item features for temporally adaptive recommendations.
Audience Academic
Author Allali, Hakim
Azri, Abdelghani
Haddi, Adil
Author_xml – sequence: 1
  givenname: Abdelghani
  orcidid: 0000-0003-3745-8309
  surname: Azri
  fullname: Azri, Abdelghani
– sequence: 2
  givenname: Adil
  orcidid: 0009-0003-9458-6013
  surname: Haddi
  fullname: Haddi, Adil
– sequence: 3
  givenname: Hakim
  orcidid: 0009-0008-5145-5984
  surname: Allali
  fullname: Allali, Hakim
BookMark eNptUU1vEzEUtFCRKKU3foAljiXFX7vr5RYFSleqhEQTrpY_3kaOsnawHUT-Pd4GoQphH2zPmxk_e16jixADIPSWklvOe_LBhzHShgjCiHiBLhnp5IIJ2V88279C1znvSB1dJ4Wkl-jXsFkeS1z7CR6_f7q5-YiX-P5kknd4DdMhJr3H38DGaYLgIOHHUy4w4SEU2CZdfNjiYQZ0cHiTK-EOdDkmyPU0FzVexVCStsX_BDxfBcHG6vQGvRz1PsP1n_UKbe4-r1f3i4evX4bV8mFhBWnLgkHHDYDmhAveAyPQGKd7baxuLchaEtKBGUXLGZPGdiMbqeCO9kCIYZxfoeHs66LeqUPyk04nFbVXT0BMW6VT8XYPioNpeKsb6HQjiCOGjpZK2QtnjW3BVK93Z69Dij-OkIvaxWMKtX3FiWh72tCurazbM2urq-kcy_z-Oh1M3tbQRl_xZdfzpiG87avg_VlgU8w5wfi3TUrUnK16nm2ls3_o1pcaxdM_-_3_Rb8BsZyqUQ
CitedBy_id crossref_primary_10_1016_j_is_2025_102594
crossref_primary_10_1016_j_caeai_2025_100408
crossref_primary_10_2478_amns_2025_0116
Cites_doi 10.1109/ACCESS.2018.2880197
10.1145/2872518.2889405
10.1109/ACCESS.2021.3053291
10.1109/MC.2009.263
10.1145/3383313.3412488
10.1145/3077136.3080689
10.1007/978-1-4899-7637-6
10.1007/978-3-319-29659-3
10.1145/2959100.2959165
10.1145/3038912.3052569
10.1145/1345448.1345465
10.1109/ACCESS.2019.2900698
10.24963/ijcai.2023/260
10.1145/2020408.2020426
10.1145/3539618.3591665
10.1145/2827872
10.1145/3158369
10.3115/v1/W14-4012
10.1609/aaai.v30i1.9973
10.1162/neco.1997.9.8.1735
10.1561/1100000009
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOA
DOI 10.3390/info15040204
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2078-2489
ExternalDocumentID oai_doaj_org_article_3eb536a5e7a540d0b1fc18894dcbc6eb
A793550369
10_3390_info15040204
GroupedDBID .4I
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
MK~
ML~
MODMG
M~E
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
XH6
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c406t-2e73beea303439e20e5bda9abca6ce8bee48debf463228bc7f2f143d19e00b233
IEDL.DBID P5Z
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001210240900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2078-2489
IngestDate Fri Oct 03 12:49:17 EDT 2025
Sat Jul 26 00:22:29 EDT 2025
Tue Nov 04 18:25:25 EST 2025
Tue Nov 18 21:25:19 EST 2025
Sat Nov 29 07:15:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-2e73beea303439e20e5bda9abca6ce8bee48debf463228bc7f2f143d19e00b233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3745-8309
0009-0008-5145-5984
0009-0003-9458-6013
OpenAccessLink https://www.proquest.com/docview/3046915176?pq-origsite=%requestingapplication%
PQID 3046915176
PQPubID 2032384
ParticipantIDs doaj_primary_oai_doaj_org_article_3eb536a5e7a540d0b1fc18894dcbc6eb
proquest_journals_3046915176
gale_infotracacademiconefile_A793550369
crossref_primary_10_3390_info15040204
crossref_citationtrail_10_3390_info15040204
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Information (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Koren (ref_14) 2009; 42
Mu (ref_7) 2018; 6
ref_13
ref_12
Hochreiter (ref_26) 1997; 9
ref_18
ref_17
ref_16
ref_15
Zhang (ref_6) 2019; 52
Zhang (ref_10) 2021; 9
Hamlich (ref_11) 2022; Volume 1677
Bell (ref_3) 2007; 9
ref_25
ref_24
ref_22
ref_21
Li (ref_19) 2019; 7
ref_20
ref_1
ref_27
Harper (ref_23) 2015; 5
Ekstrand (ref_2) 2011; 4
ref_9
ref_8
ref_5
ref_4
References_xml – volume: 6
  start-page: 69009
  year: 2018
  ident: ref_7
  article-title: A Survey of Recommender Systems Based on Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2880197
– ident: ref_16
  doi: 10.1145/2872518.2889405
– volume: 9
  start-page: 17641
  year: 2021
  ident: ref_10
  article-title: Integrating Stacked Sparse Auto-Encoder Into Matrix Factorization for Rating Prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3053291
– ident: ref_5
– volume: 42
  start-page: 30
  year: 2009
  ident: ref_14
  article-title: Matrix Factorization Techniques for Recommender Systems
  publication-title: Computer
  doi: 10.1109/MC.2009.263
– ident: ref_4
  doi: 10.1145/3383313.3412488
– ident: ref_8
  doi: 10.1145/3077136.3080689
– ident: ref_1
  doi: 10.1007/978-1-4899-7637-6
– ident: ref_24
  doi: 10.1007/978-3-319-29659-3
– ident: ref_9
  doi: 10.1145/2959100.2959165
– ident: ref_18
– ident: ref_17
  doi: 10.1145/3038912.3052569
– volume: 9
  start-page: 75
  year: 2007
  ident: ref_3
  article-title: Lessons from the Netflix Prize Challenge
  publication-title: SIGKDD Explor. Newsl.
  doi: 10.1145/1345448.1345465
– volume: 7
  start-page: 56117
  year: 2019
  ident: ref_19
  article-title: Deep Probabilistic Matrix Factorization Framework for Online Collaborative Filtering
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2900698
– ident: ref_21
  doi: 10.24963/ijcai.2023/260
– ident: ref_27
  doi: 10.1145/2020408.2020426
– volume: Volume 1677
  start-page: 93
  year: 2022
  ident: ref_11
  article-title: autoTimeSVD++: A Temporal Hybrid Recommender System Based on Contractive Autoencoder and Matrix Factorization
  publication-title: Proceedings of the Smart Applications and Data Analysis—4th International Conference, SADASC 2022
– ident: ref_12
– ident: ref_20
  doi: 10.1145/3539618.3591665
– volume: 5
  start-page: 1
  year: 2015
  ident: ref_23
  article-title: The movielens datasets: History and context
  publication-title: Acm Trans. Interact. Intell. Syst.
  doi: 10.1145/2827872
– volume: 52
  start-page: 1
  year: 2019
  ident: ref_6
  article-title: Deep Learning Based Recommender System: A Survey and New Perspectives
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3158369
– ident: ref_25
  doi: 10.3115/v1/W14-4012
– ident: ref_13
– ident: ref_15
  doi: 10.1609/aaai.v30i1.9973
– ident: ref_22
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_26
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 4
  start-page: 81
  year: 2011
  ident: ref_2
  article-title: Collaborative Filtering Recommender Systems
  publication-title: Found. Trends Hum.-Comput. Interact.
  doi: 10.1561/1100000009
SSID ssj0000778481
Score 2.2959347
Snippet Collaborative filtering (CF), a fundamental technique in personalized Recommender Systems, operates by leveraging user–item preference interactions. Matrix...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 204
SubjectTerms Accuracy
Collaboration
collaborative filtering
contractive autoencoder
Deep learning
Factorization
feature extraction
Graph representations
Hybrid systems
matrix factorization
Motion pictures
Movie reviews
Neural networks
Random variables
recommendation
Recommender systems
Sparsity
User behavior
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keNCD-MRqlT0oHkpokk2yu97qCwURQSu9hX0FhDYVbYv-e2c2scRD8eI1WTabmdmd-ZKZbwg5YYIzY5IEQI4EgMKUDKRlKuCptamKU8GMLxS-5w8PYjiUj41WX5gTVtEDV4LrMadTlqnUcQXBhQ11VJhICJlYo03mNJ6-IZcNMOXPYM6RJ77KdGeA63uoLwh-EC4lv3yQp-pfdiB7L3OzSTbq8JD2q2VtkRVXbpP1BmngDvm8G_Rn0wnWbjy9XHW757RPb7-w8Io-VzxTI4qgcjz2XeJoxUlO72peCJiD4vd5qkpLB2CAFKPAGaBu6tMHqKLIWOWLp-aO4qOQ6xJm2iWDm-vny9ug7p8QGHDT0yB2nGnnFHgpCDtcHLpUWyWVNiozTsCtRFiniySDXS204UVcQPhkI-nCUMeM7ZFWOSndPqERVyoDX8dFphMhtY5t6Hiio7AwBjBmm3R_JJqbmlwce1yMcgAZKP-8Kf82OV2MfqtINZaMu0DlLMYgFba_AAaS1waS_2UgbXKGqvUTo_BUXXcAL4bUV3mfI8U8OHLZJp0f7ef1Tv7I8c-xhLCIZwf_sZpDshZDWFTl_nRIa_o-c0dk1cynrx_vx96IvwEJMfiq
  priority: 102
  providerName: Directory of Open Access Journals
Title IUAutoTimeSVD++: A Hybrid Temporal Recommender System Integrating Item and User Features Using a Contractive Autoencoder
URI https://www.proquest.com/docview/3046915176
https://doaj.org/article/3eb536a5e7a540d0b1fc18894dcbc6eb
Volume 15
WOSCitedRecordID wos001210240900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: P5Z
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: K7-
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: PIMPY
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BywEOvBGBEu0BxCGyantt7y4XlEKqRtAoggYVLta-jCq1SZtHBRd-OzPrTSiHcuGyB-9o_ZjxvHbnG4CXXApubVFgkKMwQOFaJcpxnYjSuVLnpeQ2FAp_FKORPD5W45hwW8RjlWudGBS1m1nKke_SDp5C8ySqt-cXCXWNot3V2ELjJmwTSgK1bhiX3zY5llQIQotvz7tzjO53iWtIR0FT8ZclCoD916nlYGv27_3vU96Hu9HLZP1WLB7ADT99CHeuYA8-gh_DSX-1nFEJyOcv73u9N6zPDn5S_RY7auGqThnFpmdnodkca6HN2TDCS-AajNL8TE8dm6AcM3ImVxi8s3AKgWlGwFehBuvSM7oVQWbiSo9hsj84eneQxDYMiUVrv0xyL7jxXqOxQ-_F56kvjdNKG6sr6yVOFdJ50xQVKgdprGjyBr0wlymfpibn_AlsTWdT_xRYJrSu0GQKWZlCKmNyl3pRmCxtrMVQtQO9NUtqGzHKqVXGaY2xCjGwvsrADrzaUJ-32BzX0O0Rdzc0hKgdLszm3-v4g9bcm5JXuvRCoxPrUpM1NpNSFc4aW3nTgdckG2Fh-ng6li_gixGCVt0XhFSP_oDqwM5aNuqoEBb1H8F49u_p53A7R7-pPRy0A1vL-cq_gFv2cnmymHdhe28wGn_qhtQBjh9EguPhr0E3SD7Oj4eH46-_AW7eC_U
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk48EYsFPCBisMqahInsY2E0EKpdtVlhcQu6i31K6hSu9vuo9A_xW9kxkmWcii3HrjGliMnn-fhmfkG4DWXglubZejkKHRQuFaRclxHIncu12kuuQ2FwkMxGsmDA_VlA361tTCUVtnKxCCo3czSHfkORfAUqidRvD89i6hrFEVX2xYaNSz2_cUPdNkW7wa7-H-303Tv0_hjP2q6CkQWldcySr3gxnuNshuVsU9jnxunlTZWF9ZLHMqk86bKCsS6NFZUaYVGhUuUj2OT0gUoivwbGe2SgsAiWt_pxEIQO32dX8-5incIJWhykZOW_aX5QoOAq9RA0G179_63r3If7jZWNOvVsH8AG376EO5c4lZ8BD8Hk95qOaMSl6_fdrvdt6zH-hdUn8bGNR3XMSPf--QkNNNjNXU7GzT0GbgGozAG01PHJnhOGRnLq7lfsJBlwTQjYq9QY3buGb2KKEFxpccwuZatP4HN6WzqnwJLhNYFmgRCFiaTypjUxV5kJokra9EV70C3hUBpGw52agVyXKIvRoApLwOmA9vr2ac198gV8z4QmtZziDE8PJjNv5eNACq5NzkvdO6FRiPdxSapbCKlypw1tvCmA28Ii2Fh-ni6Kc_AjRFDWNkTxMSP9o7qwFaLxbIReIvyDxCf_Xv4Fdzqjz8Py-FgtP8cbqdoI9aJUFuwuZyv_Au4ac-XR4v5y3C2GBxeN2x_A5k0ZRc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBSE48EYsFPCBisMq2iROYhsJoYVl1VWr1Up0UcUl-BWE1O6WfRT61_h1zDjJUg7l1gPX2HJi5_M87JlvAF5yKbi1WYZOjkIHhWsVKcd1JHLncp3mktuQKHwgxmN5dKQmW_CrzYWhsMpWJgZB7eaWzsh7dIOnUD2Jolc1YRGTwfDt6feIKkjRTWtbTqOGyL4__4Hu2_LNaID_ejdNhx8O3-9FTYWByKIiW0WpF9x4r1GOo2L2aexz47TSxurCeolNmXTeVFmBuJfGiiqt0MBwifJxbFI6DEXxf03gp1E44ST_vDnfiYUgpvo61p5zFfcIMWh-kcOW_aUFQ7GAy1RC0HPDO__zCt2F2411zfr1drgHW352H25d4Fx8AD9H0_56NafUl4-fBt3ua9Zne-eUt8YOa5quY0Y--clJKLLHakp3NmpoNXAMRtcbTM8cm-L-ZWRErxd-yUL0BdOMCL9C7tmZZ_QqogrFkR7C9Eqm_gi2Z_OZfwwsEVoXaCoIWZhMKmNSF3uRmSSurEUXvQPdFg6lbbjZqUTIcYk-GoGnvAieDuxuep_WnCSX9HtHyNr0ISbx8GC--Fo2gqnk3uS80LkXGo13F5uksomUKnPW2MKbDrwiXIaBafF0k7aBEyPmsLIviKEf7SDVgZ0Wl2UjCJflH1A--XfzC7iBaC0PRuP9p3AzRdOxjo_age3VYu2fwXV7tvq2XDwP24zBl6tG7W_zy247
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IUAutoTimeSVD%2B%2B%3A+A+Hybrid+Temporal+Recommender+System+Integrating+Item+and+User+Features+Using+a+Contractive+Autoencoder&rft.jtitle=Information+%28Basel%29&rft.au=Abdelghani+Azri&rft.au=Haddi%2C+Adil&rft.au=Allali%2C+Hakim&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=2078-2489&rft.volume=15&rft.issue=4&rft.spage=204&rft_id=info:doi/10.3390%2Finfo15040204&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon