IUAutoTimeSVD++: A Hybrid Temporal Recommender System Integrating Item and User Features Using a Contractive Autoencoder
Collaborative filtering (CF), a fundamental technique in personalized Recommender Systems, operates by leveraging user–item preference interactions. Matrix factorization remains one of the most prevalent CF-based methods. However, recent advancements in deep learning have spurred the development of...
Saved in:
| Published in: | Information (Basel) Vol. 15; no. 4; p. 204 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.04.2024
|
| Subjects: | |
| ISSN: | 2078-2489, 2078-2489 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Collaborative filtering (CF), a fundamental technique in personalized Recommender Systems, operates by leveraging user–item preference interactions. Matrix factorization remains one of the most prevalent CF-based methods. However, recent advancements in deep learning have spurred the development of hybrid models, which extend matrix factorization, particularly with autoencoders, to capture nonlinear item relationships. Despite these advancements, many proposed models often neglect dynamic changes in the rating process and overlook user features. This paper introduces IUAutoTimeSVD++, a novel hybrid model that builds upon autoTimeSVD++. By incorporating item–user features into the timeSVD++ framework, the proposed model aims to address the static nature and sparsity issues inherent in existing models. Our model utilizes a contractive autoencoder (CAE) to enhance the capacity to capture a robust and stable representation of user-specific and item-specific features, accommodating temporal variations in user preferences and leveraging item characteristics. Experimental results on two public datasets demonstrate IUAutoTimeSVD++’s superiority over baseline models, affirming its effectiveness in capturing and utilizing user and item features for temporally adaptive recommendations. |
|---|---|
| AbstractList | Collaborative filtering (CF), a fundamental technique in personalized Recommender Systems, operates by leveraging user–item preference interactions. Matrix factorization remains one of the most prevalent CF-based methods. However, recent advancements in deep learning have spurred the development of hybrid models, which extend matrix factorization, particularly with autoencoders, to capture nonlinear item relationships. Despite these advancements, many proposed models often neglect dynamic changes in the rating process and overlook user features. This paper introduces IUAutoTimeSVD++, a novel hybrid model that builds upon autoTimeSVD++. By incorporating item–user features into the timeSVD++ framework, the proposed model aims to address the static nature and sparsity issues inherent in existing models. Our model utilizes a contractive autoencoder (CAE) to enhance the capacity to capture a robust and stable representation of user-specific and item-specific features, accommodating temporal variations in user preferences and leveraging item characteristics. Experimental results on two public datasets demonstrate IUAutoTimeSVD++’s superiority over baseline models, affirming its effectiveness in capturing and utilizing user and item features for temporally adaptive recommendations. |
| Audience | Academic |
| Author | Allali, Hakim Azri, Abdelghani Haddi, Adil |
| Author_xml | – sequence: 1 givenname: Abdelghani orcidid: 0000-0003-3745-8309 surname: Azri fullname: Azri, Abdelghani – sequence: 2 givenname: Adil orcidid: 0009-0003-9458-6013 surname: Haddi fullname: Haddi, Adil – sequence: 3 givenname: Hakim orcidid: 0009-0008-5145-5984 surname: Allali fullname: Allali, Hakim |
| BookMark | eNptUU1vEzEUtFCRKKU3foAljiXFX7vr5RYFSleqhEQTrpY_3kaOsnawHUT-Pd4GoQphH2zPmxk_e16jixADIPSWklvOe_LBhzHShgjCiHiBLhnp5IIJ2V88279C1znvSB1dJ4Wkl-jXsFkeS1z7CR6_f7q5-YiX-P5kknd4DdMhJr3H38DGaYLgIOHHUy4w4SEU2CZdfNjiYQZ0cHiTK-EOdDkmyPU0FzVexVCStsX_BDxfBcHG6vQGvRz1PsP1n_UKbe4-r1f3i4evX4bV8mFhBWnLgkHHDYDmhAveAyPQGKd7baxuLchaEtKBGUXLGZPGdiMbqeCO9kCIYZxfoeHs66LeqUPyk04nFbVXT0BMW6VT8XYPioNpeKsb6HQjiCOGjpZK2QtnjW3BVK93Z69Dij-OkIvaxWMKtX3FiWh72tCurazbM2urq-kcy_z-Oh1M3tbQRl_xZdfzpiG87avg_VlgU8w5wfi3TUrUnK16nm2ls3_o1pcaxdM_-_3_Rb8BsZyqUQ |
| CitedBy_id | crossref_primary_10_1016_j_is_2025_102594 crossref_primary_10_1016_j_caeai_2025_100408 crossref_primary_10_2478_amns_2025_0116 |
| Cites_doi | 10.1109/ACCESS.2018.2880197 10.1145/2872518.2889405 10.1109/ACCESS.2021.3053291 10.1109/MC.2009.263 10.1145/3383313.3412488 10.1145/3077136.3080689 10.1007/978-1-4899-7637-6 10.1007/978-3-319-29659-3 10.1145/2959100.2959165 10.1145/3038912.3052569 10.1145/1345448.1345465 10.1109/ACCESS.2019.2900698 10.24963/ijcai.2023/260 10.1145/2020408.2020426 10.1145/3539618.3591665 10.1145/2827872 10.1145/3158369 10.3115/v1/W14-4012 10.1609/aaai.v30i1.9973 10.1162/neco.1997.9.8.1735 10.1561/1100000009 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U DOA |
| DOI | 10.3390/info15040204 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2078-2489 |
| ExternalDocumentID | oai_doaj_org_article_3eb536a5e7a540d0b1fc18894dcbc6eb A793550369 10_3390_info15040204 |
| GroupedDBID | .4I 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABUWG ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 MK~ ML~ MODMG M~E OK1 P2P P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC XH6 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c406t-2e73beea303439e20e5bda9abca6ce8bee48debf463228bc7f2f143d19e00b233 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001210240900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2078-2489 |
| IngestDate | Fri Oct 03 12:49:17 EDT 2025 Sat Jul 26 00:22:29 EDT 2025 Tue Nov 04 18:25:25 EST 2025 Tue Nov 18 21:25:19 EST 2025 Sat Nov 29 07:15:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-2e73beea303439e20e5bda9abca6ce8bee48debf463228bc7f2f143d19e00b233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3745-8309 0009-0008-5145-5984 0009-0003-9458-6013 |
| OpenAccessLink | https://www.proquest.com/docview/3046915176?pq-origsite=%requestingapplication% |
| PQID | 3046915176 |
| PQPubID | 2032384 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3eb536a5e7a540d0b1fc18894dcbc6eb proquest_journals_3046915176 gale_infotracacademiconefile_A793550369 crossref_primary_10_3390_info15040204 crossref_citationtrail_10_3390_info15040204 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Information (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Koren (ref_14) 2009; 42 Mu (ref_7) 2018; 6 ref_13 ref_12 Hochreiter (ref_26) 1997; 9 ref_18 ref_17 ref_16 ref_15 Zhang (ref_6) 2019; 52 Zhang (ref_10) 2021; 9 Hamlich (ref_11) 2022; Volume 1677 Bell (ref_3) 2007; 9 ref_25 ref_24 ref_22 ref_21 Li (ref_19) 2019; 7 ref_20 ref_1 ref_27 Harper (ref_23) 2015; 5 Ekstrand (ref_2) 2011; 4 ref_9 ref_8 ref_5 ref_4 |
| References_xml | – volume: 6 start-page: 69009 year: 2018 ident: ref_7 article-title: A Survey of Recommender Systems Based on Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2880197 – ident: ref_16 doi: 10.1145/2872518.2889405 – volume: 9 start-page: 17641 year: 2021 ident: ref_10 article-title: Integrating Stacked Sparse Auto-Encoder Into Matrix Factorization for Rating Prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3053291 – ident: ref_5 – volume: 42 start-page: 30 year: 2009 ident: ref_14 article-title: Matrix Factorization Techniques for Recommender Systems publication-title: Computer doi: 10.1109/MC.2009.263 – ident: ref_4 doi: 10.1145/3383313.3412488 – ident: ref_8 doi: 10.1145/3077136.3080689 – ident: ref_1 doi: 10.1007/978-1-4899-7637-6 – ident: ref_24 doi: 10.1007/978-3-319-29659-3 – ident: ref_9 doi: 10.1145/2959100.2959165 – ident: ref_18 – ident: ref_17 doi: 10.1145/3038912.3052569 – volume: 9 start-page: 75 year: 2007 ident: ref_3 article-title: Lessons from the Netflix Prize Challenge publication-title: SIGKDD Explor. Newsl. doi: 10.1145/1345448.1345465 – volume: 7 start-page: 56117 year: 2019 ident: ref_19 article-title: Deep Probabilistic Matrix Factorization Framework for Online Collaborative Filtering publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2900698 – ident: ref_21 doi: 10.24963/ijcai.2023/260 – ident: ref_27 doi: 10.1145/2020408.2020426 – volume: Volume 1677 start-page: 93 year: 2022 ident: ref_11 article-title: autoTimeSVD++: A Temporal Hybrid Recommender System Based on Contractive Autoencoder and Matrix Factorization publication-title: Proceedings of the Smart Applications and Data Analysis—4th International Conference, SADASC 2022 – ident: ref_12 – ident: ref_20 doi: 10.1145/3539618.3591665 – volume: 5 start-page: 1 year: 2015 ident: ref_23 article-title: The movielens datasets: History and context publication-title: Acm Trans. Interact. Intell. Syst. doi: 10.1145/2827872 – volume: 52 start-page: 1 year: 2019 ident: ref_6 article-title: Deep Learning Based Recommender System: A Survey and New Perspectives publication-title: ACM Comput. Surv. doi: 10.1145/3158369 – ident: ref_25 doi: 10.3115/v1/W14-4012 – ident: ref_13 – ident: ref_15 doi: 10.1609/aaai.v30i1.9973 – ident: ref_22 – volume: 9 start-page: 1735 year: 1997 ident: ref_26 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 4 start-page: 81 year: 2011 ident: ref_2 article-title: Collaborative Filtering Recommender Systems publication-title: Found. Trends Hum.-Comput. Interact. doi: 10.1561/1100000009 |
| SSID | ssj0000778481 |
| Score | 2.2959347 |
| Snippet | Collaborative filtering (CF), a fundamental technique in personalized Recommender Systems, operates by leveraging user–item preference interactions. Matrix... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 204 |
| SubjectTerms | Accuracy Collaboration collaborative filtering contractive autoencoder Deep learning Factorization feature extraction Graph representations Hybrid systems matrix factorization Motion pictures Movie reviews Neural networks Random variables recommendation Recommender systems Sparsity User behavior |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keNCD-MRqlT0oHkpokk2yu97qCwURQSu9hX0FhDYVbYv-e2c2scRD8eI1WTabmdmd-ZKZbwg5YYIzY5IEQI4EgMKUDKRlKuCptamKU8GMLxS-5w8PYjiUj41WX5gTVtEDV4LrMadTlqnUcQXBhQ11VJhICJlYo03mNJ6-IZcNMOXPYM6RJ77KdGeA63uoLwh-EC4lv3yQp-pfdiB7L3OzSTbq8JD2q2VtkRVXbpP1BmngDvm8G_Rn0wnWbjy9XHW757RPb7-w8Io-VzxTI4qgcjz2XeJoxUlO72peCJiD4vd5qkpLB2CAFKPAGaBu6tMHqKLIWOWLp-aO4qOQ6xJm2iWDm-vny9ug7p8QGHDT0yB2nGnnFHgpCDtcHLpUWyWVNiozTsCtRFiniySDXS204UVcQPhkI-nCUMeM7ZFWOSndPqERVyoDX8dFphMhtY5t6Hiio7AwBjBmm3R_JJqbmlwce1yMcgAZKP-8Kf82OV2MfqtINZaMu0DlLMYgFba_AAaS1waS_2UgbXKGqvUTo_BUXXcAL4bUV3mfI8U8OHLZJp0f7ef1Tv7I8c-xhLCIZwf_sZpDshZDWFTl_nRIa_o-c0dk1cynrx_vx96IvwEJMfiq priority: 102 providerName: Directory of Open Access Journals |
| Title | IUAutoTimeSVD++: A Hybrid Temporal Recommender System Integrating Item and User Features Using a Contractive Autoencoder |
| URI | https://www.proquest.com/docview/3046915176 https://doaj.org/article/3eb536a5e7a540d0b1fc18894dcbc6eb |
| Volume | 15 |
| WOSCitedRecordID | wos001210240900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: P5Z dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: K7- dateStart: 20100301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: PIMPY dateStart: 20100301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BywEOvBGBEu0BxCGyantt7y4XlEKqRtAoggYVLta-jCq1SZtHBRd-OzPrTSiHcuGyB-9o_ZjxvHbnG4CXXApubVFgkKMwQOFaJcpxnYjSuVLnpeQ2FAp_FKORPD5W45hwW8RjlWudGBS1m1nKke_SDp5C8ySqt-cXCXWNot3V2ELjJmwTSgK1bhiX3zY5llQIQotvz7tzjO53iWtIR0FT8ZclCoD916nlYGv27_3vU96Hu9HLZP1WLB7ADT99CHeuYA8-gh_DSX-1nFEJyOcv73u9N6zPDn5S_RY7auGqThnFpmdnodkca6HN2TDCS-AajNL8TE8dm6AcM3ImVxi8s3AKgWlGwFehBuvSM7oVQWbiSo9hsj84eneQxDYMiUVrv0xyL7jxXqOxQ-_F56kvjdNKG6sr6yVOFdJ50xQVKgdprGjyBr0wlymfpibn_AlsTWdT_xRYJrSu0GQKWZlCKmNyl3pRmCxtrMVQtQO9NUtqGzHKqVXGaY2xCjGwvsrADrzaUJ-32BzX0O0Rdzc0hKgdLszm3-v4g9bcm5JXuvRCoxPrUpM1NpNSFc4aW3nTgdckG2Fh-ng6li_gixGCVt0XhFSP_oDqwM5aNuqoEBb1H8F49u_p53A7R7-pPRy0A1vL-cq_gFv2cnmymHdhe28wGn_qhtQBjh9EguPhr0E3SD7Oj4eH46-_AW7eC_U |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk48EYsFPCBisMqahInsY2E0EKpdtVlhcQu6i31K6hSu9vuo9A_xW9kxkmWcii3HrjGliMnn-fhmfkG4DWXglubZejkKHRQuFaRclxHIncu12kuuQ2FwkMxGsmDA_VlA361tTCUVtnKxCCo3czSHfkORfAUqidRvD89i6hrFEVX2xYaNSz2_cUPdNkW7wa7-H-303Tv0_hjP2q6CkQWldcySr3gxnuNshuVsU9jnxunlTZWF9ZLHMqk86bKCsS6NFZUaYVGhUuUj2OT0gUoivwbGe2SgsAiWt_pxEIQO32dX8-5incIJWhykZOW_aX5QoOAq9RA0G179_63r3If7jZWNOvVsH8AG376EO5c4lZ8BD8Hk95qOaMSl6_fdrvdt6zH-hdUn8bGNR3XMSPf--QkNNNjNXU7GzT0GbgGozAG01PHJnhOGRnLq7lfsJBlwTQjYq9QY3buGb2KKEFxpccwuZatP4HN6WzqnwJLhNYFmgRCFiaTypjUxV5kJokra9EV70C3hUBpGw52agVyXKIvRoApLwOmA9vr2ac198gV8z4QmtZziDE8PJjNv5eNACq5NzkvdO6FRiPdxSapbCKlypw1tvCmA28Ii2Fh-ni6Kc_AjRFDWNkTxMSP9o7qwFaLxbIReIvyDxCf_Xv4Fdzqjz8Py-FgtP8cbqdoI9aJUFuwuZyv_Au4ac-XR4v5y3C2GBxeN2x_A5k0ZRc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBSE48EYsFPCBisMq2iROYhsJoYVl1VWr1Up0UcUl-BWE1O6WfRT61_h1zDjJUg7l1gPX2HJi5_M87JlvAF5yKbi1WYZOjkIHhWsVKcd1JHLncp3mktuQKHwgxmN5dKQmW_CrzYWhsMpWJgZB7eaWzsh7dIOnUD2Jolc1YRGTwfDt6feIKkjRTWtbTqOGyL4__4Hu2_LNaID_ejdNhx8O3-9FTYWByKIiW0WpF9x4r1GOo2L2aexz47TSxurCeolNmXTeVFmBuJfGiiqt0MBwifJxbFI6DEXxf03gp1E44ST_vDnfiYUgpvo61p5zFfcIMWh-kcOW_aUFQ7GAy1RC0HPDO__zCt2F2411zfr1drgHW352H25d4Fx8AD9H0_56NafUl4-fBt3ua9Zne-eUt8YOa5quY0Y--clJKLLHakp3NmpoNXAMRtcbTM8cm-L-ZWRErxd-yUL0BdOMCL9C7tmZZ_QqogrFkR7C9Eqm_gi2Z_OZfwwsEVoXaCoIWZhMKmNSF3uRmSSurEUXvQPdFg6lbbjZqUTIcYk-GoGnvAieDuxuep_WnCSX9HtHyNr0ISbx8GC--Fo2gqnk3uS80LkXGo13F5uksomUKnPW2MKbDrwiXIaBafF0k7aBEyPmsLIviKEf7SDVgZ0Wl2UjCJflH1A--XfzC7iBaC0PRuP9p3AzRdOxjo_age3VYu2fwXV7tvq2XDwP24zBl6tG7W_zy247 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IUAutoTimeSVD%2B%2B%3A+A+Hybrid+Temporal+Recommender+System+Integrating+Item+and+User+Features+Using+a+Contractive+Autoencoder&rft.jtitle=Information+%28Basel%29&rft.au=Abdelghani+Azri&rft.au=Haddi%2C+Adil&rft.au=Allali%2C+Hakim&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=2078-2489&rft.volume=15&rft.issue=4&rft.spage=204&rft_id=info:doi/10.3390%2Finfo15040204&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon |