Joint Sparse Representation for Robust Multimodal Biometrics Recognition

Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently rece...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 36; no. 1; pp. 113 - 126
Main Authors: Shekhar, Sumit, Patel, Vishal M., Nasrabadi, Nasser M., Chellappa, Rama
Format: Journal Article
Language:English
Published: Los Alamitos, CA IEEE 01.01.2014
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method, which represents the test data by a sparse linear combination of training data, while constraining the observations from different modalities of the test subject to share their sparse representations. Thus, we simultaneously take into account correlations as well as coupling information among biometric modalities. A multimodal quality measure is also proposed to weigh each modality as it gets fused. Furthermore, we also kernelize the algorithm to handle nonlinearity in data. The optimization problem is solved using an efficient alternative direction method. Various experiments show that the proposed method compares favorably with competing fusion-based methods.
AbstractList Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method, which represents the test data by a sparse linear combination of training data, while constraining the observations from different modalities of the test subject to share their sparse representations. Thus, we simultaneously take into account correlations as well as coupling information among biometric modalities. A multimodal quality measure is also proposed to weigh each modality as it gets fused. Furthermore, we also kernelize the algorithm to handle nonlinearity in data. The optimization problem is solved using an efficient alternative direction method. Various experiments show that the proposed method compares favorably with competing fusion-based methods.
Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method, which represents the test data by a sparse linear combination of training data, while constraining the observations from different modalities of the test subject to share their sparse representations. Thus, we simultaneously take into account correlations as well as coupling information among biometric modalities. A multimodal quality measure is also proposed to weigh each modality as it gets fused. Furthermore, we also kernelize the algorithm to handle nonlinearity in data. The optimization problem is solved using an efficient alternative direction method. Various experiments show that the proposed method compares favorably with competing fusion-based methods.Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method, which represents the test data by a sparse linear combination of training data, while constraining the observations from different modalities of the test subject to share their sparse representations. Thus, we simultaneously take into account correlations as well as coupling information among biometric modalities. A multimodal quality measure is also proposed to weigh each modality as it gets fused. Furthermore, we also kernelize the algorithm to handle nonlinearity in data. The optimization problem is solved using an efficient alternative direction method. Various experiments show that the proposed method compares favorably with competing fusion-based methods.
Author Nasrabadi, Nasser M.
Shekhar, Sumit
Patel, Vishal M.
Chellappa, Rama
Author_xml – sequence: 1
  givenname: Sumit
  surname: Shekhar
  fullname: Shekhar, Sumit
  email: sshekha@umiacs.umd.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA
– sequence: 2
  givenname: Vishal M.
  surname: Patel
  fullname: Patel, Vishal M.
  email: pvishalm@umiacs.umd.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA
– sequence: 3
  givenname: Nasser M.
  surname: Nasrabadi
  fullname: Nasrabadi, Nasser M.
  email: nasser.m.nasrabadi@us.army.mil
  organization: U.S. Army Res. Lab., Adelphi, MD, USA
– sequence: 4
  givenname: Rama
  surname: Chellappa
  fullname: Chellappa, Rama
  email: rama@umiacs.umd.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28402843$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24231870$$D View this record in MEDLINE/PubMed
BookMark eNqN0c9rFDEUB_AgFbutXr0IMiCCl1nze5JjLWorLUqt55DJvkjKTLImmYP_vVl3q1AQPISQ8Pk-eO-doKOYIiD0nOA1IVi_vf1ydn25ppiwdXs-QitKJO411fQIrTCRtFeKqmN0UsodxoQLzJ6gY8opI2rAK3TxKYVYu69bmwt0N7DNUCBWW0OKnU-5u0njUmp3vUw1zGljp-5dSDPUHFxp3qXvMezwU_TY26nAs8N9ir59eH97ftFfff54eX521TuOZe2pU5uBDVyLAdyoyChHJjX3bpDUe8BqHJkWG688Jl54MRLgxGKluJLKac5O0Zt93W1OPxYo1cyhOJgmGyEtxRA-CME1ZvI_qNBEaM1Uo68e0Lu05NgaaUpSrSWloqmXB7WMM2zMNofZ5p_mfpwNvD4AW5ydfLbRhfLXKY7bYc3xvXM5lZLBGxf2M6_ZhskQbHbbNb-3a3bbbV-6xdYPYveV_xl4sQ8EAPiDpaAaD5z9AroBrIs
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TASE_2016_2549552
crossref_primary_10_1109_TGRS_2018_2865102
crossref_primary_10_1016_j_patcog_2017_10_001
crossref_primary_10_1109_LSP_2019_2913022
crossref_primary_10_1109_TUFFC_2019_2915096
crossref_primary_10_1109_JBHI_2020_3010946
crossref_primary_10_1007_s11042_019_7618_0
crossref_primary_10_1049_iet_cvi_2014_0084
crossref_primary_10_1109_TNNLS_2019_2900077
crossref_primary_10_1016_j_ins_2017_09_011
crossref_primary_10_1007_s11859_014_1020_6
crossref_primary_10_1109_TIFS_2020_3006384
crossref_primary_10_1016_j_eswa_2018_08_036
crossref_primary_10_1016_j_neucom_2016_10_048
crossref_primary_10_1145_3351243
crossref_primary_10_1109_TNNLS_2020_3028503
crossref_primary_10_1109_TII_2020_2971643
crossref_primary_10_1016_j_jneumeth_2015_07_006
crossref_primary_10_1007_s13042_017_0782_5
crossref_primary_10_1007_s11063_016_9545_7
crossref_primary_10_1016_j_conengprac_2018_11_017
crossref_primary_10_1016_j_patcog_2016_02_010
crossref_primary_10_1007_s11042_024_19690_y
crossref_primary_10_1016_j_inffus_2017_12_003
crossref_primary_10_1109_ACCESS_2019_2919351
crossref_primary_10_1109_TPAMI_2017_2780094
crossref_primary_10_1109_TIE_2016_2520905
crossref_primary_10_1109_TIFS_2019_2901823
crossref_primary_10_3233_JIFS_192101
crossref_primary_10_1007_s10489_019_01579_1
crossref_primary_10_1109_ACCESS_2020_3042501
crossref_primary_10_1109_TNNLS_2021_3070467
crossref_primary_10_1109_TNNLS_2018_2828699
crossref_primary_10_1007_s10489_022_03697_9
crossref_primary_10_1109_TCDS_2023_3314155
crossref_primary_10_1007_s11265_015_1023_3
crossref_primary_10_1080_13682199_2015_1104067
crossref_primary_10_1097_MAO_0000000000001897
crossref_primary_10_1038_s41598_018_20556_1
crossref_primary_10_1109_ACCESS_2019_2948937
crossref_primary_10_1109_TIE_2018_2801809
crossref_primary_10_1016_j_patcog_2016_10_004
crossref_primary_10_1016_j_neunet_2016_01_008
crossref_primary_10_1016_j_patcog_2015_08_012
crossref_primary_10_1016_j_patcog_2024_110355
crossref_primary_10_1080_01431161_2018_1479786
crossref_primary_10_1109_ACCESS_2020_3014188
crossref_primary_10_1016_j_jpdc_2017_06_007
crossref_primary_10_1371_journal_pone_0236089
crossref_primary_10_1109_TIFS_2021_3074315
crossref_primary_10_1109_TMM_2015_2477058
crossref_primary_10_1109_TIM_2019_2962562
crossref_primary_10_1016_j_engappai_2017_06_011
crossref_primary_10_1016_j_jvcir_2017_03_014
crossref_primary_10_1109_ACCESS_2020_2999115
crossref_primary_10_1016_j_sigpro_2023_109097
crossref_primary_10_1109_TIFS_2014_2346703
crossref_primary_10_1109_ACCESS_2017_2708838
crossref_primary_10_1109_TSP_2016_2548990
crossref_primary_10_1093_comjnl_bxv113
crossref_primary_10_1007_s11432_016_0158_2
crossref_primary_10_1364_AO_54_000707
crossref_primary_10_1016_j_knosys_2021_107159
crossref_primary_10_1109_TGRS_2016_2514481
crossref_primary_10_1007_s41060_018_0115_0
crossref_primary_10_1007_s10489_014_0566_5
crossref_primary_10_1016_j_patrec_2016_10_012
crossref_primary_10_1016_j_comcom_2020_11_013
crossref_primary_10_1109_TCYB_2020_3021712
crossref_primary_10_1109_TNNLS_2015_2396937
crossref_primary_10_1007_s10586_018_2649_2
crossref_primary_10_1016_j_cmpb_2023_107773
crossref_primary_10_1109_LGRS_2016_2517095
crossref_primary_10_1109_TIFS_2016_2569061
crossref_primary_10_1109_ACCESS_2020_3041154
crossref_primary_10_1109_TCYB_2018_2881474
crossref_primary_10_1007_s00138_018_0959_2
crossref_primary_10_1109_JSTSP_2015_2419593
crossref_primary_10_3390_s24113665
crossref_primary_10_1016_j_ifacol_2020_12_2578
crossref_primary_10_1109_ACCESS_2018_2791578
crossref_primary_10_3390_s19225051
crossref_primary_10_1109_LSP_2015_2413946
crossref_primary_10_1002_cpe_5764
crossref_primary_10_1007_s11063_023_11358_2
crossref_primary_10_1109_ACCESS_2022_3185137
crossref_primary_10_1109_TMM_2021_3132166
crossref_primary_10_1007_s40998_017_0017_5
crossref_primary_10_1016_j_conengprac_2022_105113
crossref_primary_10_1109_TIP_2016_2615288
crossref_primary_10_1016_j_patcog_2021_108376
crossref_primary_10_1016_j_neucom_2018_10_007
crossref_primary_10_1016_j_patcog_2022_109100
crossref_primary_10_1109_LGRS_2015_2402971
crossref_primary_10_3390_computers10100129
crossref_primary_10_1109_TMM_2024_3521720
crossref_primary_10_1016_j_patrec_2019_10_015
crossref_primary_10_1109_TIM_2016_2514779
crossref_primary_10_1016_j_neucom_2017_11_043
crossref_primary_10_3389_fninf_2018_00066
crossref_primary_10_1016_j_patrec_2017_12_009
crossref_primary_10_1109_TPAMI_2017_2693987
crossref_primary_10_3390_electronics10020217
crossref_primary_10_1016_j_inffus_2016_05_003
crossref_primary_10_1007_s00500_020_04700_6
crossref_primary_10_1007_s11042_019_08211_x
crossref_primary_10_1016_j_image_2018_03_005
crossref_primary_10_1016_j_neucom_2019_01_029
crossref_primary_10_1007_s10766_017_0550_x
crossref_primary_10_1016_j_patcog_2021_108402
crossref_primary_10_1016_j_patrec_2016_08_017
crossref_primary_10_1016_j_procs_2016_07_371
crossref_primary_10_1109_TIM_2016_2618978
crossref_primary_10_1109_TMM_2015_2510509
crossref_primary_10_1007_s11042_022_11993_2
crossref_primary_10_1016_j_neucom_2015_07_114
crossref_primary_10_1145_3015463
crossref_primary_10_1080_1448837X_2022_2129147
crossref_primary_10_1109_JSEN_2022_3177931
crossref_primary_10_1109_TIP_2015_2496275
crossref_primary_10_1016_j_knosys_2016_01_021
crossref_primary_10_1007_s11280_016_0405_1
crossref_primary_10_1016_j_inffus_2015_06_007
crossref_primary_10_1145_3161410
crossref_primary_10_1109_TMM_2016_2594142
crossref_primary_10_3390_s17122764
crossref_primary_10_1007_s11042_015_3058_7
crossref_primary_10_1109_TPAMI_2019_2893953
crossref_primary_10_1016_j_patcog_2020_107704
crossref_primary_10_1109_JSTSP_2018_2875385
crossref_primary_10_1016_j_sigpro_2020_107466
crossref_primary_10_1016_j_jvcir_2018_12_003
crossref_primary_10_1007_s11425_016_9092_7
crossref_primary_10_1109_TGRS_2017_2691607
crossref_primary_10_1109_TIP_2015_2481325
crossref_primary_10_1109_LGRS_2020_2970079
crossref_primary_10_1186_s13636_018_0132_x
crossref_primary_10_3390_s22062356
crossref_primary_10_1007_s11042_024_19258_w
crossref_primary_10_1016_j_inffus_2017_05_002
crossref_primary_10_1016_j_jksuci_2020_08_009
crossref_primary_10_1109_ACCESS_2021_3133482
crossref_primary_10_1007_s11771_017_3648_9
crossref_primary_10_1007_s11042_024_18509_0
crossref_primary_10_1109_TIP_2016_2567077
crossref_primary_10_1137_19M1253873
crossref_primary_10_1117_1_JEI_32_5_053014
crossref_primary_10_1007_s10044_022_01110_2
crossref_primary_10_1177_0301006619826495
crossref_primary_10_1109_TCYB_2019_2903205
crossref_primary_10_1109_TIP_2017_2721838
crossref_primary_10_1109_TIP_2018_2878958
Cites_doi 10.1111/j.1467-9868.2005.00532.x
10.1109/JPROC.2010.2044470
10.1109/TPAMI.2011.34
10.1109/CVPR.2010.5539989
10.1137/060657704
10.1109/TIP.2010.2076294
10.1109/BTAS.2007.4401919
10.1109/CVPRW.2008.4563108
10.1111/j.1467-9868.2007.00627.x
10.1109/TIFS.2012.2189205
10.1109/TPAMI.2007.70796
10.1109/TPAMI.2005.127
10.1023/A:1009715923555
10.1109/83.841531
10.1109/JPROC.2006.884093
10.1007/978-3-642-15880-3_27
10.1109/ICARCV.2010.5707955
10.1109/CVPR.2009.5206657
10.1007/978-3-540-72927-3_8
10.1145/1970392.1970395
10.1109/CVPR.2011.5995664
10.1109/ACPR.2011.6166711
10.1109/CVPR.2010.5539967
10.1007/978-1-4419-7011-4
10.1109/ICCV.2011.6126528
10.1145/1143844.1143903
10.1109/TCSVT.2003.818350
10.1109/TPAMI.2011.112
10.1145/1390156.1390279
10.1109/ICCV.2011.6126286
10.1111/j.2517-6161.1996.tb02080.x
10.1109/IJCB.2011.6117594
10.1117/12.606093
10.1137/090777761
10.1109/TIFS.2010.2096810
10.1109/TPAMI.2008.79
10.1109/AUTOID.2005.48
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TPAMI.2013.109
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
MEDLINE - Academic
Technology Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 126
ExternalDocumentID 3143251031
24231870
28402843
10_1109_TPAMI_2013_109
6529074
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
AAYOK
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c406t-2c8d7374957ecb81b6b3694fc762ffe08bb395df8f01f5f5b1e41a0884868c943
IEDL.DBID RIE
ISICitedReferencesCount 217
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327965100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sat Sep 27 16:57:20 EDT 2025
Sat Sep 27 23:06:49 EDT 2025
Sun Oct 05 00:18:07 EDT 2025
Mon Jul 21 05:41:38 EDT 2025
Wed Apr 02 07:35:46 EDT 2025
Tue Nov 18 22:17:20 EST 2025
Sat Nov 29 05:15:55 EST 2025
Tue Aug 26 16:49:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Biometrics
Modeling
Dimension reduction
feature fusion
Information source
User interface
Multiplicity
Quality control
Selection criterion
Data fusion
Sparse representation
Multimodal interface
Computer security
Multimodal biometrics
Mathematical programming
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-2c8d7374957ecb81b6b3694fc762ffe08bb395df8f01f5f5b1e41a0884868c943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 24231870
PQID 1462996225
PQPubID 85458
PageCount 14
ParticipantIDs proquest_journals_1462996225
pascalfrancis_primary_28402843
ieee_primary_6529074
pubmed_primary_24231870
crossref_primary_10_1109_TPAMI_2013_109
crossref_citationtrail_10_1109_TPAMI_2013_109
proquest_miscellaneous_1475549036
proquest_miscellaneous_1459159938
PublicationCentury 2000
PublicationDate 2014-Jan.
2014-1-00
2014
2014-Jan
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-Jan.
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2014
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References farquhar (ref11) 2006
ref13
ref12
ref15
ref14
moorhouse (ref38) 2009
ref53
ref52
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
shekhar (ref29) 2012
ref47
ref41
ref44
ref49
ref9
ref3
zhou (ref6) 2006; 4
ref5
nguyen (ref30) 2011
zhang (ref26) 2011
masek (ref42) 2003
chikkerur (ref43) 2004
ref34
ref37
ref33
ref32
ross (ref2) 2004
klausner (ref4) 2007
ref39
crihalmeanu (ref35) 2007
rakotomamonjy (ref48) 2008; 9
martnez (ref36) 1998
li (ref40) 2012
ross (ref7) 2005; 5779
ref24
ref23
ref25
ref20
ref22
ref21
ross (ref1) 2006
ref28
ref27
alpaydn (ref8) 2011; 12
tibshirani (ref31) 1996; 58
References_xml – ident: ref24
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: ref21
  doi: 10.1109/JPROC.2010.2044470
– ident: ref17
  doi: 10.1109/TPAMI.2011.34
– ident: ref20
  doi: 10.1109/CVPR.2010.5539989
– ident: ref52
  doi: 10.1137/060657704
– ident: ref34
  doi: 10.1109/TIP.2010.2076294
– year: 2006
  ident: ref1
  publication-title: Handbook of Multi- biometrics
– ident: ref5
  doi: 10.1109/BTAS.2007.4401919
– year: 2006
  ident: ref11
  article-title: Two View Learning: SVM-2k, Theory and Practice
  publication-title: Proc Advances in Neural Information Processing Systems
– ident: ref41
  doi: 10.1109/CVPRW.2008.4563108
– ident: ref25
  doi: 10.1111/j.1467-9868.2007.00627.x
– start-page: 595
  year: 2011
  ident: ref26
  article-title: MultiObservation Visual Recognition via Joint Dynamic Sparse Representation
  publication-title: Proc IEEE Int'l Conf Computer Vision
– ident: ref19
  doi: 10.1109/TIFS.2012.2189205
– ident: ref50
  doi: 10.1109/TPAMI.2007.70796
– ident: ref46
  doi: 10.1109/TPAMI.2005.127
– ident: ref47
  doi: 10.1023/A:1009715923555
– start-page: 344
  year: 2004
  ident: ref43
  article-title: A Systematic Approach for Feature Extraction in Fingerprint Images
  publication-title: Proc lni'l Conf Bioinformatics and Its Applications
– start-page: 1221
  year: 2004
  ident: ref2
  article-title: Multimodal Biometrics: An Overview
  publication-title: Proc European Signal Processing Conf
– ident: ref44
  doi: 10.1109/83.841531
– ident: ref39
  doi: 10.1109/JPROC.2006.884093
– year: 2012
  ident: ref29
  article-title: Joint Sparsity-Based Robust Multimodal Biometrics Recognition
  publication-title: Proc ECCV Workshop Information Fusion in Computer Vision for Concept Recognition
– ident: ref12
  doi: 10.1007/978-3-642-15880-3_27
– ident: ref15
  doi: 10.1109/ICARCV.2010.5707955
– year: 2012
  ident: ref40
  publication-title: Advanced Topics in Biometrics
– ident: ref18
  doi: 10.1109/CVPR.2009.5206657
– ident: ref9
  doi: 10.1007/978-3-540-72927-3_8
– year: 1998
  ident: ref36
  article-title: The AR Face Database
– ident: ref32
  doi: 10.1145/1970392.1970395
– ident: ref23
  doi: 10.1109/CVPR.2011.5995664
– ident: ref14
  doi: 10.1109/ACPR.2011.6166711
– ident: ref27
  doi: 10.1109/CVPR.2010.5539967
– ident: ref53
  doi: 10.1007/978-1-4419-7011-4
– ident: ref28
  doi: 10.1109/ICCV.2011.6126528
– ident: ref13
  doi: 10.1145/1143844.1143903
– ident: ref45
  doi: 10.1109/TCSVT.2003.818350
– volume: 9
  start-page: 2491
  year: 2008
  ident: ref48
  article-title: SimpleMKL
  publication-title: J Machine Learning Research
– start-page: 67
  year: 2007
  ident: ref4
  article-title: Vehicle Classification on Multi-Sensor Smart Cameras Using Feature- and Decision-Fusion
  publication-title: Proceedings of the IEEE Conference on Distributed Smart Cameras
– start-page: 1
  year: 2011
  ident: ref30
  article-title: Robust MultiSensor Classification via Joint Sparse Representation
  publication-title: Proc Int l Conf Information Fusion
– ident: ref22
  doi: 10.1109/TPAMI.2011.112
– ident: ref10
  doi: 10.1145/1390156.1390279
– year: 2007
  ident: ref35
  article-title: A Protocol for Multibiometric Data Acquisition, Storage and Dissemination
– year: 2003
  ident: ref42
  article-title: MATLAB Source Code for Biometric Identification System Based on Iris Patterns
– ident: ref51
  doi: 10.1109/ICCV.2011.6126286
– volume: 58
  start-page: 267
  year: 1996
  ident: ref31
  article-title: Regression Shrinkage and Selection via the Lasso
  publication-title: J Royal Statistical Soc Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 4
  start-page: 529
  year: 2006
  ident: ref6
  article-title: Feature Fusion of Face and Gait for Human Recognition at a Distance in Video
  publication-title: Proc Ini'l Conf Pattern Recognition
– volume: 12
  start-page: 2211
  year: 2011
  ident: ref8
  article-title: Multiple Kernel Learning Algorithms
  publication-title: J Machine Learning Research
– ident: ref3
  doi: 10.1109/IJCB.2011.6117594
– volume: 5779
  start-page: 196
  year: 2005
  ident: ref7
  article-title: Feature Level Fusion of Hand and Face Biometrics
  publication-title: Proc SPIE
  doi: 10.1117/12.606093
– ident: ref33
  doi: 10.1137/090777761
– ident: ref37
  doi: 10.1109/TIFS.2010.2096810
– start-page: 1
  year: 2009
  ident: ref38
  article-title: The Nose on Your Face MayNot Be So Plain: Using the Nose as a Biometric
  publication-title: International Conf on Crime Detection and Prevention
– ident: ref16
  doi: 10.1109/TPAMI.2008.79
– ident: ref49
  doi: 10.1109/AUTOID.2005.48
SSID ssj0014503
Score 2.5661783
Snippet Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 113
SubjectTerms Algorithms
Applied sciences
Biometric Identification - methods
Biometrics
Biometrics (access control)
Classification algorithms
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Databases, Factual
Dermatoglyphics - classification
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Face - anatomy & histology
feature fusion
Humans
Information, signal and communications theory
Iris - anatomy & histology
Joints
Kernel
Memory and file management (including protection and security)
Memory organisation. Data processing
Multimodal biometrics
Optimization
Robustness
Signal and communications theory
Signal, noise
Software
Sparse matrices
sparse representation
Telecommunications and information theory
Title Joint Sparse Representation for Robust Multimodal Biometrics Recognition
URI https://ieeexplore.ieee.org/document/6529074
https://www.ncbi.nlm.nih.gov/pubmed/24231870
https://www.proquest.com/docview/1462996225
https://www.proquest.com/docview/1459159938
https://www.proquest.com/docview/1475549036
Volume 36
WOSCitedRecordID wos000327965100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6S0EN7aNqkD7fJokKhl7qxV7IlHdOQkBYawjaFvRlL1kAgtUPsze_PSNa6KTSF3AwasDyj0XzjeQF81AalqLVIS-nmqUDyUzRykZK1dmikzrDEMGxCnp2p5VKfb8DnqRbGOReSz9wX_xhi-U1nV_5X2UFZzL0vtwmbUsqxVmuKGIgiTEEmBEMaTm5EbNCYZ_rg4vzwxzefxcV98yTf_pcwRK78fOJ7tigMV_GpkXVP3MFxrMXDuDPYn5Ptx-38BTyPOJMdjgfjJWy4dge21zMcWFTpHXh2ryHhLpx-7y7bgf28JnfXsUXIko3FSS0jeMsWnVn1Awtlu7-7ht7w1dfv-zb_PVusk5G69hX8Ojm-ODpN46yF1JJJH9K5VY3kktwl6awhLFsaXmqBli5LRJcpY7guGlSY5VhgYXIn8pquKKFKZbXgr2Gr7Vr3FliDuXFlhjlHbyKlrovMchL9XGHTNHUC6ZrrlY2NyP08jKsqOCSZroLAKi8wHyBP4NNEfz224HiQctezfqKKXE9g9pdQp3UyzQSvBE9gby3lKqpw730iMtUl3XcJfJiWSfl8RKVuXbfyNIUmPKi5-h-NJMimCSkk8GY8QX82EA_iu39v_D08pU8T4x-fPdgablZuH57Y2-Gyv5mRFizVLGjBHW2CAhY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFawPVls_orWuIPhibJLdZHcfq1iu2h7lPKFvIdnsQsEmpcn59zuz2YsVrOBbYAeymdnZ-U3mC-Ctrp0UlRZxIW0WC4d-inZcxGitraulTlzh_LAJOZ-r83N9tgHvp1oYa61PPrMf6NHH8pvOrOhX2UGRZ-TL3YG7uRBZOlZrTTEDkfs5yIhhUMfRkQgtGtNEHyzPDk-PKY-LU_skagCMKCJVNKH4hjXy41UoObLqkT9uHGxxO_L0Fuho-__2_ggeBqTJDsej8Rg2bLsD2-spDiwo9Q48uNGScBdmX7qLdmDfrtDhtWzh82RDeVLLEOCyRVev-oH5wt3LrsE3fKQKfmr037PFOh2pa5_A96PPy0-zOExbiA0a9SHOjGokl-gwSWtqRLNFzQstnMHr0jmbqLrmOm-ccknqcpfXqRVphZeUUIUyWvCnsNl2rX0OrHFpbYvEpdyRkZS6yhPDUfiZck3TVBHEa66XJrQip4kYP0rvkiS69AIrSWAUIo_g3UR_NTbhuJVyl1g_UQWuR7D_h1CndTTOCLAEj2BvLeUyKHFPXhEa6wJvvAjeTMuofhRTqVrbrYgm14gINVf_opEI2jRihQiejSfo9wbCQXzx942_hvuz5elJeXI8__oStvAzxfj_Zw82h-uVfQX3zM_hor_e97rwC-RKBHU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Sparse+Representation+for+Robust+Multimodal+Biometrics+Recognition&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=SHEKHAR%2C+Sumit&rft.au=PATEL%2C+Vishal+M&rft.au=NASRABADI%2C+Nasser+M&rft.au=CHELLAPPA%2C+Rama&rft.date=2014&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=36&rft.issue=1&rft.spage=113&rft.epage=126&rft_id=info:doi/10.1109%2FTPAMI.2013.109&rft.externalDBID=n%2Fa&rft.externalDocID=28402843
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon