Joint Sparse Representation for Robust Multimodal Biometrics Recognition
Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently rece...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence Jg. 36; H. 1; S. 113 - 126 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Los Alamitos, CA
IEEE
01.01.2014
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method, which represents the test data by a sparse linear combination of training data, while constraining the observations from different modalities of the test subject to share their sparse representations. Thus, we simultaneously take into account correlations as well as coupling information among biometric modalities. A multimodal quality measure is also proposed to weigh each modality as it gets fused. Furthermore, we also kernelize the algorithm to handle nonlinearity in data. The optimization problem is solved using an efficient alternative direction method. Various experiments show that the proposed method compares favorably with competing fusion-based methods. |
|---|---|
| AbstractList | Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method, which represents the test data by a sparse linear combination of training data, while constraining the observations from different modalities of the test subject to share their sparse representations. Thus, we simultaneously take into account correlations as well as coupling information among biometric modalities. A multimodal quality measure is also proposed to weigh each modality as it gets fused. Furthermore, we also kernelize the algorithm to handle nonlinearity in data. The optimization problem is solved using an efficient alternative direction method. Various experiments show that the proposed method compares favorably with competing fusion-based methods. Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method, which represents the test data by a sparse linear combination of training data, while constraining the observations from different modalities of the test subject to share their sparse representations. Thus, we simultaneously take into account correlations as well as coupling information among biometric modalities. A multimodal quality measure is also proposed to weigh each modality as it gets fused. Furthermore, we also kernelize the algorithm to handle nonlinearity in data. The optimization problem is solved using an efficient alternative direction method. Various experiments show that the proposed method compares favorably with competing fusion-based methods.Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method, which represents the test data by a sparse linear combination of training data, while constraining the observations from different modalities of the test subject to share their sparse representations. Thus, we simultaneously take into account correlations as well as coupling information among biometric modalities. A multimodal quality measure is also proposed to weigh each modality as it gets fused. Furthermore, we also kernelize the algorithm to handle nonlinearity in data. The optimization problem is solved using an efficient alternative direction method. Various experiments show that the proposed method compares favorably with competing fusion-based methods. |
| Author | Nasrabadi, Nasser M. Shekhar, Sumit Patel, Vishal M. Chellappa, Rama |
| Author_xml | – sequence: 1 givenname: Sumit surname: Shekhar fullname: Shekhar, Sumit email: sshekha@umiacs.umd.edu organization: Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA – sequence: 2 givenname: Vishal M. surname: Patel fullname: Patel, Vishal M. email: pvishalm@umiacs.umd.edu organization: Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA – sequence: 3 givenname: Nasser M. surname: Nasrabadi fullname: Nasrabadi, Nasser M. email: nasser.m.nasrabadi@us.army.mil organization: U.S. Army Res. Lab., Adelphi, MD, USA – sequence: 4 givenname: Rama surname: Chellappa fullname: Chellappa, Rama email: rama@umiacs.umd.edu organization: Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28402843$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24231870$$D View this record in MEDLINE/PubMed |
| BookMark | eNqN0c9rFDEUB_AgFbutXr0IMiCCl1nze5JjLWorLUqt55DJvkjKTLImmYP_vVl3q1AQPISQ8Pk-eO-doKOYIiD0nOA1IVi_vf1ydn25ppiwdXs-QitKJO411fQIrTCRtFeKqmN0UsodxoQLzJ6gY8opI2rAK3TxKYVYu69bmwt0N7DNUCBWW0OKnU-5u0njUmp3vUw1zGljp-5dSDPUHFxp3qXvMezwU_TY26nAs8N9ir59eH97ftFfff54eX521TuOZe2pU5uBDVyLAdyoyChHJjX3bpDUe8BqHJkWG688Jl54MRLgxGKluJLKac5O0Zt93W1OPxYo1cyhOJgmGyEtxRA-CME1ZvI_qNBEaM1Uo68e0Lu05NgaaUpSrSWloqmXB7WMM2zMNofZ5p_mfpwNvD4AW5ydfLbRhfLXKY7bYc3xvXM5lZLBGxf2M6_ZhskQbHbbNb-3a3bbbV-6xdYPYveV_xl4sQ8EAPiDpaAaD5z9AroBrIs |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1109_TASE_2016_2549552 crossref_primary_10_1109_TGRS_2018_2865102 crossref_primary_10_1016_j_patcog_2017_10_001 crossref_primary_10_1109_LSP_2019_2913022 crossref_primary_10_1109_TUFFC_2019_2915096 crossref_primary_10_1109_JBHI_2020_3010946 crossref_primary_10_1007_s11042_019_7618_0 crossref_primary_10_1049_iet_cvi_2014_0084 crossref_primary_10_1109_TNNLS_2019_2900077 crossref_primary_10_1016_j_ins_2017_09_011 crossref_primary_10_1007_s11859_014_1020_6 crossref_primary_10_1109_TIFS_2020_3006384 crossref_primary_10_1016_j_eswa_2018_08_036 crossref_primary_10_1016_j_neucom_2016_10_048 crossref_primary_10_1145_3351243 crossref_primary_10_1109_TNNLS_2020_3028503 crossref_primary_10_1109_TII_2020_2971643 crossref_primary_10_1016_j_jneumeth_2015_07_006 crossref_primary_10_1007_s13042_017_0782_5 crossref_primary_10_1007_s11063_016_9545_7 crossref_primary_10_1016_j_conengprac_2018_11_017 crossref_primary_10_1016_j_patcog_2016_02_010 crossref_primary_10_1007_s11042_024_19690_y crossref_primary_10_1016_j_inffus_2017_12_003 crossref_primary_10_1109_ACCESS_2019_2919351 crossref_primary_10_1109_TPAMI_2017_2780094 crossref_primary_10_1109_TIE_2016_2520905 crossref_primary_10_1109_TIFS_2019_2901823 crossref_primary_10_3233_JIFS_192101 crossref_primary_10_1007_s10489_019_01579_1 crossref_primary_10_1109_ACCESS_2020_3042501 crossref_primary_10_1109_TNNLS_2021_3070467 crossref_primary_10_1109_TNNLS_2018_2828699 crossref_primary_10_1007_s10489_022_03697_9 crossref_primary_10_1109_TCDS_2023_3314155 crossref_primary_10_1007_s11265_015_1023_3 crossref_primary_10_1080_13682199_2015_1104067 crossref_primary_10_1097_MAO_0000000000001897 crossref_primary_10_1038_s41598_018_20556_1 crossref_primary_10_1109_ACCESS_2019_2948937 crossref_primary_10_1109_TIE_2018_2801809 crossref_primary_10_1016_j_patcog_2016_10_004 crossref_primary_10_1016_j_neunet_2016_01_008 crossref_primary_10_1016_j_patcog_2015_08_012 crossref_primary_10_1016_j_patcog_2024_110355 crossref_primary_10_1080_01431161_2018_1479786 crossref_primary_10_1109_ACCESS_2020_3014188 crossref_primary_10_1016_j_jpdc_2017_06_007 crossref_primary_10_1371_journal_pone_0236089 crossref_primary_10_1109_TIFS_2021_3074315 crossref_primary_10_1109_TMM_2015_2477058 crossref_primary_10_1109_TIM_2019_2962562 crossref_primary_10_1016_j_engappai_2017_06_011 crossref_primary_10_1016_j_jvcir_2017_03_014 crossref_primary_10_1109_ACCESS_2020_2999115 crossref_primary_10_1016_j_sigpro_2023_109097 crossref_primary_10_1109_TIFS_2014_2346703 crossref_primary_10_1109_ACCESS_2017_2708838 crossref_primary_10_1109_TSP_2016_2548990 crossref_primary_10_1093_comjnl_bxv113 crossref_primary_10_1007_s11432_016_0158_2 crossref_primary_10_1364_AO_54_000707 crossref_primary_10_1016_j_knosys_2021_107159 crossref_primary_10_1109_TGRS_2016_2514481 crossref_primary_10_1007_s41060_018_0115_0 crossref_primary_10_1007_s10489_014_0566_5 crossref_primary_10_1016_j_patrec_2016_10_012 crossref_primary_10_1016_j_comcom_2020_11_013 crossref_primary_10_1109_TCYB_2020_3021712 crossref_primary_10_1109_TNNLS_2015_2396937 crossref_primary_10_1007_s10586_018_2649_2 crossref_primary_10_1016_j_cmpb_2023_107773 crossref_primary_10_1109_LGRS_2016_2517095 crossref_primary_10_1109_TIFS_2016_2569061 crossref_primary_10_1109_ACCESS_2020_3041154 crossref_primary_10_1109_TCYB_2018_2881474 crossref_primary_10_1007_s00138_018_0959_2 crossref_primary_10_1109_JSTSP_2015_2419593 crossref_primary_10_3390_s24113665 crossref_primary_10_1016_j_ifacol_2020_12_2578 crossref_primary_10_1109_ACCESS_2018_2791578 crossref_primary_10_3390_s19225051 crossref_primary_10_1109_LSP_2015_2413946 crossref_primary_10_1002_cpe_5764 crossref_primary_10_1007_s11063_023_11358_2 crossref_primary_10_1109_ACCESS_2022_3185137 crossref_primary_10_1109_TMM_2021_3132166 crossref_primary_10_1007_s40998_017_0017_5 crossref_primary_10_1016_j_conengprac_2022_105113 crossref_primary_10_1109_TIP_2016_2615288 crossref_primary_10_1016_j_patcog_2021_108376 crossref_primary_10_1016_j_neucom_2018_10_007 crossref_primary_10_1016_j_patcog_2022_109100 crossref_primary_10_1109_LGRS_2015_2402971 crossref_primary_10_3390_computers10100129 crossref_primary_10_1109_TMM_2024_3521720 crossref_primary_10_1016_j_patrec_2019_10_015 crossref_primary_10_1109_TIM_2016_2514779 crossref_primary_10_1016_j_neucom_2017_11_043 crossref_primary_10_3389_fninf_2018_00066 crossref_primary_10_1016_j_patrec_2017_12_009 crossref_primary_10_1109_TPAMI_2017_2693987 crossref_primary_10_3390_electronics10020217 crossref_primary_10_1016_j_inffus_2016_05_003 crossref_primary_10_1007_s00500_020_04700_6 crossref_primary_10_1007_s11042_019_08211_x crossref_primary_10_1016_j_image_2018_03_005 crossref_primary_10_1016_j_neucom_2019_01_029 crossref_primary_10_1007_s10766_017_0550_x crossref_primary_10_1016_j_patcog_2021_108402 crossref_primary_10_1016_j_patrec_2016_08_017 crossref_primary_10_1016_j_procs_2016_07_371 crossref_primary_10_1109_TIM_2016_2618978 crossref_primary_10_1109_TMM_2015_2510509 crossref_primary_10_1007_s11042_022_11993_2 crossref_primary_10_1016_j_neucom_2015_07_114 crossref_primary_10_1145_3015463 crossref_primary_10_1080_1448837X_2022_2129147 crossref_primary_10_1109_JSEN_2022_3177931 crossref_primary_10_1109_TIP_2015_2496275 crossref_primary_10_1016_j_knosys_2016_01_021 crossref_primary_10_1007_s11280_016_0405_1 crossref_primary_10_1016_j_inffus_2015_06_007 crossref_primary_10_1145_3161410 crossref_primary_10_1109_TMM_2016_2594142 crossref_primary_10_3390_s17122764 crossref_primary_10_1007_s11042_015_3058_7 crossref_primary_10_1109_TPAMI_2019_2893953 crossref_primary_10_1016_j_patcog_2020_107704 crossref_primary_10_1109_JSTSP_2018_2875385 crossref_primary_10_1016_j_sigpro_2020_107466 crossref_primary_10_1016_j_jvcir_2018_12_003 crossref_primary_10_1007_s11425_016_9092_7 crossref_primary_10_1109_TGRS_2017_2691607 crossref_primary_10_1109_TIP_2015_2481325 crossref_primary_10_1109_LGRS_2020_2970079 crossref_primary_10_1186_s13636_018_0132_x crossref_primary_10_3390_s22062356 crossref_primary_10_1007_s11042_024_19258_w crossref_primary_10_1016_j_inffus_2017_05_002 crossref_primary_10_1016_j_jksuci_2020_08_009 crossref_primary_10_1109_ACCESS_2021_3133482 crossref_primary_10_1007_s11771_017_3648_9 crossref_primary_10_1007_s11042_024_18509_0 crossref_primary_10_1109_TIP_2016_2567077 crossref_primary_10_1137_19M1253873 crossref_primary_10_1117_1_JEI_32_5_053014 crossref_primary_10_1007_s10044_022_01110_2 crossref_primary_10_1177_0301006619826495 crossref_primary_10_1109_TCYB_2019_2903205 crossref_primary_10_1109_TIP_2017_2721838 crossref_primary_10_1109_TIP_2018_2878958 |
| Cites_doi | 10.1111/j.1467-9868.2005.00532.x 10.1109/JPROC.2010.2044470 10.1109/TPAMI.2011.34 10.1109/CVPR.2010.5539989 10.1137/060657704 10.1109/TIP.2010.2076294 10.1109/BTAS.2007.4401919 10.1109/CVPRW.2008.4563108 10.1111/j.1467-9868.2007.00627.x 10.1109/TIFS.2012.2189205 10.1109/TPAMI.2007.70796 10.1109/TPAMI.2005.127 10.1023/A:1009715923555 10.1109/83.841531 10.1109/JPROC.2006.884093 10.1007/978-3-642-15880-3_27 10.1109/ICARCV.2010.5707955 10.1109/CVPR.2009.5206657 10.1007/978-3-540-72927-3_8 10.1145/1970392.1970395 10.1109/CVPR.2011.5995664 10.1109/ACPR.2011.6166711 10.1109/CVPR.2010.5539967 10.1007/978-1-4419-7011-4 10.1109/ICCV.2011.6126528 10.1145/1143844.1143903 10.1109/TCSVT.2003.818350 10.1109/TPAMI.2011.112 10.1145/1390156.1390279 10.1109/ICCV.2011.6126286 10.1111/j.2517-6161.1996.tb02080.x 10.1109/IJCB.2011.6117594 10.1117/12.606093 10.1137/090777761 10.1109/TIFS.2010.2096810 10.1109/TPAMI.2008.79 10.1109/AUTOID.2005.48 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2014 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2014 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
| DOI | 10.1109/TPAMI.2013.109 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library (LUT) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database MEDLINE - Academic Technology Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 126 |
| ExternalDocumentID | 3143251031 24231870 28402843 10_1109_TPAMI_2013_109 6529074 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION AAYOK IQODW RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
| ID | FETCH-LOGICAL-c406t-2c8d7374957ecb81b6b3694fc762ffe08bb395df8f01f5f5b1e41a0884868c943 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 217 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327965100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sat Sep 27 16:57:20 EDT 2025 Sat Sep 27 23:06:49 EDT 2025 Sun Oct 05 00:18:07 EDT 2025 Mon Jul 21 05:41:38 EDT 2025 Wed Apr 02 07:35:46 EDT 2025 Tue Nov 18 22:17:20 EST 2025 Sat Nov 29 05:15:55 EST 2025 Tue Aug 26 16:49:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Biometrics Modeling Dimension reduction feature fusion Information source User interface Multiplicity Quality control Selection criterion Data fusion Sparse representation Multimodal interface Computer security Multimodal biometrics Mathematical programming |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-2c8d7374957ecb81b6b3694fc762ffe08bb395df8f01f5f5b1e41a0884868c943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PMID | 24231870 |
| PQID | 1462996225 |
| PQPubID | 85458 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_1462996225 pascalfrancis_primary_28402843 ieee_primary_6529074 pubmed_primary_24231870 crossref_primary_10_1109_TPAMI_2013_109 crossref_citationtrail_10_1109_TPAMI_2013_109 proquest_miscellaneous_1475549036 proquest_miscellaneous_1459159938 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-Jan. 2014-1-00 2014 2014-Jan 20140101 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – month: 01 year: 2014 text: 2014-Jan. |
| PublicationDecade | 2010 |
| PublicationPlace | Los Alamitos, CA |
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2014 |
| Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | farquhar (ref11) 2006 ref13 ref12 ref15 ref14 moorhouse (ref38) 2009 ref53 ref52 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 shekhar (ref29) 2012 ref47 ref41 ref44 ref49 ref9 ref3 zhou (ref6) 2006; 4 ref5 nguyen (ref30) 2011 zhang (ref26) 2011 masek (ref42) 2003 chikkerur (ref43) 2004 ref34 ref37 ref33 ref32 ross (ref2) 2004 klausner (ref4) 2007 ref39 crihalmeanu (ref35) 2007 rakotomamonjy (ref48) 2008; 9 martnez (ref36) 1998 li (ref40) 2012 ross (ref7) 2005; 5779 ref24 ref23 ref25 ref20 ref22 ref21 ross (ref1) 2006 ref28 ref27 alpaydn (ref8) 2011; 12 tibshirani (ref31) 1996; 58 |
| References_xml | – ident: ref24 doi: 10.1111/j.1467-9868.2005.00532.x – ident: ref21 doi: 10.1109/JPROC.2010.2044470 – ident: ref17 doi: 10.1109/TPAMI.2011.34 – ident: ref20 doi: 10.1109/CVPR.2010.5539989 – ident: ref52 doi: 10.1137/060657704 – ident: ref34 doi: 10.1109/TIP.2010.2076294 – year: 2006 ident: ref1 publication-title: Handbook of Multi- biometrics – ident: ref5 doi: 10.1109/BTAS.2007.4401919 – year: 2006 ident: ref11 article-title: Two View Learning: SVM-2k, Theory and Practice publication-title: Proc Advances in Neural Information Processing Systems – ident: ref41 doi: 10.1109/CVPRW.2008.4563108 – ident: ref25 doi: 10.1111/j.1467-9868.2007.00627.x – start-page: 595 year: 2011 ident: ref26 article-title: MultiObservation Visual Recognition via Joint Dynamic Sparse Representation publication-title: Proc IEEE Int'l Conf Computer Vision – ident: ref19 doi: 10.1109/TIFS.2012.2189205 – ident: ref50 doi: 10.1109/TPAMI.2007.70796 – ident: ref46 doi: 10.1109/TPAMI.2005.127 – ident: ref47 doi: 10.1023/A:1009715923555 – start-page: 344 year: 2004 ident: ref43 article-title: A Systematic Approach for Feature Extraction in Fingerprint Images publication-title: Proc lni'l Conf Bioinformatics and Its Applications – start-page: 1221 year: 2004 ident: ref2 article-title: Multimodal Biometrics: An Overview publication-title: Proc European Signal Processing Conf – ident: ref44 doi: 10.1109/83.841531 – ident: ref39 doi: 10.1109/JPROC.2006.884093 – year: 2012 ident: ref29 article-title: Joint Sparsity-Based Robust Multimodal Biometrics Recognition publication-title: Proc ECCV Workshop Information Fusion in Computer Vision for Concept Recognition – ident: ref12 doi: 10.1007/978-3-642-15880-3_27 – ident: ref15 doi: 10.1109/ICARCV.2010.5707955 – year: 2012 ident: ref40 publication-title: Advanced Topics in Biometrics – ident: ref18 doi: 10.1109/CVPR.2009.5206657 – ident: ref9 doi: 10.1007/978-3-540-72927-3_8 – year: 1998 ident: ref36 article-title: The AR Face Database – ident: ref32 doi: 10.1145/1970392.1970395 – ident: ref23 doi: 10.1109/CVPR.2011.5995664 – ident: ref14 doi: 10.1109/ACPR.2011.6166711 – ident: ref27 doi: 10.1109/CVPR.2010.5539967 – ident: ref53 doi: 10.1007/978-1-4419-7011-4 – ident: ref28 doi: 10.1109/ICCV.2011.6126528 – ident: ref13 doi: 10.1145/1143844.1143903 – ident: ref45 doi: 10.1109/TCSVT.2003.818350 – volume: 9 start-page: 2491 year: 2008 ident: ref48 article-title: SimpleMKL publication-title: J Machine Learning Research – start-page: 67 year: 2007 ident: ref4 article-title: Vehicle Classification on Multi-Sensor Smart Cameras Using Feature- and Decision-Fusion publication-title: Proceedings of the IEEE Conference on Distributed Smart Cameras – start-page: 1 year: 2011 ident: ref30 article-title: Robust MultiSensor Classification via Joint Sparse Representation publication-title: Proc Int l Conf Information Fusion – ident: ref22 doi: 10.1109/TPAMI.2011.112 – ident: ref10 doi: 10.1145/1390156.1390279 – year: 2007 ident: ref35 article-title: A Protocol for Multibiometric Data Acquisition, Storage and Dissemination – year: 2003 ident: ref42 article-title: MATLAB Source Code for Biometric Identification System Based on Iris Patterns – ident: ref51 doi: 10.1109/ICCV.2011.6126286 – volume: 58 start-page: 267 year: 1996 ident: ref31 article-title: Regression Shrinkage and Selection via the Lasso publication-title: J Royal Statistical Soc Series B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 4 start-page: 529 year: 2006 ident: ref6 article-title: Feature Fusion of Face and Gait for Human Recognition at a Distance in Video publication-title: Proc Ini'l Conf Pattern Recognition – volume: 12 start-page: 2211 year: 2011 ident: ref8 article-title: Multiple Kernel Learning Algorithms publication-title: J Machine Learning Research – ident: ref3 doi: 10.1109/IJCB.2011.6117594 – volume: 5779 start-page: 196 year: 2005 ident: ref7 article-title: Feature Level Fusion of Hand and Face Biometrics publication-title: Proc SPIE doi: 10.1117/12.606093 – ident: ref33 doi: 10.1137/090777761 – ident: ref37 doi: 10.1109/TIFS.2010.2096810 – start-page: 1 year: 2009 ident: ref38 article-title: The Nose on Your Face MayNot Be So Plain: Using the Nose as a Biometric publication-title: International Conf on Crime Detection and Prevention – ident: ref16 doi: 10.1109/TPAMI.2008.79 – ident: ref49 doi: 10.1109/AUTOID.2005.48 |
| SSID | ssj0014503 |
| Score | 2.5661783 |
| Snippet | Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 113 |
| SubjectTerms | Algorithms Applied sciences Biometric Identification - methods Biometrics Biometrics (access control) Classification algorithms Computer science; control theory; systems Computer systems and distributed systems. User interface Databases, Factual Dermatoglyphics - classification Detection, estimation, filtering, equalization, prediction Exact sciences and technology Face - anatomy & histology feature fusion Humans Information, signal and communications theory Iris - anatomy & histology Joints Kernel Memory and file management (including protection and security) Memory organisation. Data processing Multimodal biometrics Optimization Robustness Signal and communications theory Signal, noise Software Sparse matrices sparse representation Telecommunications and information theory |
| Title | Joint Sparse Representation for Robust Multimodal Biometrics Recognition |
| URI | https://ieeexplore.ieee.org/document/6529074 https://www.ncbi.nlm.nih.gov/pubmed/24231870 https://www.proquest.com/docview/1462996225 https://www.proquest.com/docview/1459159938 https://www.proquest.com/docview/1475549036 |
| Volume | 36 |
| WOSCitedRecordID | wos000327965100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB9U-tA-aKttjdpjC0Jfmnq5fOzuoy0VW6jIaeHeQnYzC4JNxOT8-53Z7EULWuhbYAey2d3Z-U3m4wdwaE2V11gxTaos4qzWGJOV0zFqnLkEKwIlypNNyLMztVjo8zX4PNbCIKJPPsMv_Ohj-XVrl_yr7KjIZ-zLrcO6lHKo1RojBlnuWZAJwZCGkxsRGjQmU310eX786wdncaXcPInb_xKGSBTzEz-yRZ5chVMjq45Wxw20Fs_jTm9_Trb-b-avYTPgTHE8HIw3sIbNNmytOBxEUOltePWoIeEOnP5sr5peXNyQu4ti7rNkQ3FSIwjeinlrll0vfNnun7amN3zl-n1u89-J-SoZqW3ewu-T75ffTuPAtRBbMul9PLOqlqkkd0miNYRlC5MWOnOWLkvncKqMSXVeO-WmictdbhLMkoquqEwVyuosfQcbTdvgLojEYuGUNtYxt3pdmEoSiqpqMnyO-79FEK9WvbShETnzYVyX3iGZ6tJvWMkbxgHyCD6N8jdDC45nJXd46UepsOoRTP7a1HGcTDPBqyyN4GC1y2VQ4Y59IppxQfddBB_HYVI-jqhUDbZLlsk14UGdqn_JSIJsmpBCBO-HE_QwgXAQ956e-D68pE_Lhj8-B7DR3y7xA7ywd_1VdzshLVioideCe_kvAfA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFawPVls_orWuIPhi7OWySXYfq1iu2h7lPKFvIbuZhYJNSpPz73dmsxcrWMG3wA5ks7uz85vMxw_grTVVVmPFNKlFHstaY0xWTseoceoSrAiUKE82Uczn6vxcn23A-7EWBhF98hl-4Ecfy69bu-JfZQd5NmVf7g7czaScJkO11hgzkJnnQSYMQzpOjkRo0ZhM9MHy7PD0mPO4Um6fxA2ACUUkihmKb1gjT6_CyZFVR-vjBmKL25Gnt0BH2_8390fwMCBNcTgcjcewgc0ObK9ZHERQ6h14cKMl4S7MvrQXTS--XZHDi2Lh82RDeVIjCOCKRWtWXS984e5lW9MbPnIFPzf678RinY7UNk_g-9Hn5adZHNgWYktGvY-nVtVFWpDDVKA1hGZzk-ZaOkvXpXM4UcakOqudcpPEZS4zCcqkoktKqlxZLdOnsNm0DT4HkVjMndLGOmZXr3NTFYSjqppMn-MOcBHE61UvbWhFzowYP0rvkkx06Tes5A3jEHkE70b5q6EJx62Su7z0o1RY9Qj2_9jUcZyMMwEsmUawt97lMihxx14RzTinGy-CN-MwqR_HVKoG2xXLZJoQoU7Vv2QKAm2asEIEz4YT9HsC4SC--PvEX8P92fL0pDw5nn99CVv0mXL4_7MHm_31Cl_BPfuzv-iu970u_AJv0ARP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Sparse+Representation+for+Robust+Multimodal+Biometrics+Recognition&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=SHEKHAR%2C+Sumit&rft.au=PATEL%2C+Vishal+M&rft.au=NASRABADI%2C+Nasser+M&rft.au=CHELLAPPA%2C+Rama&rft.date=2014&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=36&rft.issue=1&rft.spage=113&rft.epage=126&rft_id=info:doi/10.1109%2FTPAMI.2013.109&rft.externalDBID=n%2Fa&rft.externalDocID=28402843 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |