Enhancing Multi-Objective Optimization: A Decomposition-Based Approach Using the Whale Optimization Algorithm

Optimization techniques aim to identify optimal solutions for a given problem. In single-objective optimization, the best solution corresponds to the one that maximizes or minimizes the objective function. However, when dealing with multi-objective optimization, particularly when the objectives are...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) Vol. 13; no. 5; p. 767
Main Authors: Ramos-Frutos, Jorge, Casas-Ordaz, Angel, Zapotecas-Martínez, Saúl, Oliva, Diego, Valdivia-González, Arturo, García-Nájera, Abel, Pérez-Cisneros, Marco
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.03.2025
Subjects:
ISSN:2227-7390, 2227-7390
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Optimization techniques aim to identify optimal solutions for a given problem. In single-objective optimization, the best solution corresponds to the one that maximizes or minimizes the objective function. However, when dealing with multi-objective optimization, particularly when the objectives are conflicting, identifying the best solution becomes significantly more complex. In such cases, exact or analytical methods are often impractical, leading to the widespread use of heuristic and metaheuristic approaches to identify optimal or near-optimal solutions. Recent advancements have led to the development of various nature-inspired metaheuristics designed to address these challenges. Among these, the Whale Optimization Algorithm (WOA) has garnered significant attention. An adapted version of the WOA has been proposed to handle multi-objective optimization problems. This work extends the WOA to tackle multi-objective optimization by incorporating a decomposition-based approach with a cooperative mechanism to approximate Pareto-optimal solutions. The multi-objective problem is decomposed into a series of scalarized subproblems, each with a well-defined neighborhood relationship. Comparative experiments with seven state-of-the-art bio-inspired optimization methods demonstrate that the proposed decomposition-based multi-objective WOA consistently outperforms its counterparts in both real-world applications and widely used benchmark test problems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math13050767