New Knowledge-based Genetic Algorithm for Excavator Boom Structural Optimization

Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is prop...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chinese journal of mechanical engineering Ročník 27; číslo 2; s. 392 - 401
Hlavní autoři: Hua, Haiyan, Lin, Shuwen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Beijing Chinese Mechanical Engineering Society 01.03.2014
Springer Nature B.V
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
Vydání:English ed.
Témata:
ISSN:1000-9345, 2192-8258
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the conflgurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, arc taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.
AbstractList Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.
Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multilevel knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.
Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the conflgurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, arc taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.
Author HUA Haiyan LIN Shuwen
AuthorAffiliation School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
AuthorAffiliation_xml – name: School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
Author_xml – sequence: 1
  givenname: Haiyan
  surname: Hua
  fullname: Hua, Haiyan
  organization: School of Mechanical Engineering and Automation, Fuzhou University
– sequence: 2
  givenname: Shuwen
  surname: Lin
  fullname: Lin, Shuwen
  email: lsw@fzu.edu.cn
  organization: School of Mechanical Engineering and Automation, Fuzhou University
BookMark eNp9kUlv2zAQhYkiBeqkvfeoopfmIJeLKIvH1HDTJUuB5k6Q1EihIZEOSdVuf33pOEiAHHLhMnjfvIeZY3TkvAOE3hM8ZwKTz8sfl6s5xaSaY5or9BWaUSJo2VDeHKEZwRiXglX8DTqOcZ1_NSHNDP26gm3x0_ntAG0PpVYR2uIcHCRrirOh98Gm27HofChWO6P-qJRfX7wfi98pTCZNQQ3F9SbZ0f5TyXr3Fr3u1BDh3cN9gm6-rm6W38qL6_Pvy7OL0lS4TiVlbQONAOCm46puseGswwC6M1oQRZUyVatVpxeaARGtalvNdcMVp63GwE7Q6aHtVrlOuV6u_RRcNpTrXW92WsJ-FjgfIms_HbSb4O8miEmONhoYBuXAT1GSmhPWLKqmytKPz6SPfSnlglFWC5xV-KAywccYoJObYEcV_kqC5X4bcr8NuU8gMc0VmpH6GWJsuh9YCsoOL4HkAMbs4XoIT4leYD48mN16199l7DFg1Qi8qMSC_QeUgqx6
CitedBy_id crossref_primary_10_1088_1757_899X_269_1_012048
crossref_primary_10_1007_s12008_025_02287_6
crossref_primary_10_1016_j_compag_2020_105278
crossref_primary_10_1109_TMECH_2019_2903140
crossref_primary_10_1016_j_autcon_2022_104486
Cites_doi 10.3901/CJME.2011.01.042
10.1007/11572961_43
10.3901/CJME.2008.06.018
10.4028/www.scientific.net/AMR.479-481.1851
10.1016/j.compstruc.2007.11.006
10.1016/j.eswa.2011.12.012
10.3901/JME.2002.01.051
10.1016/j.eswa.2010.09.002
10.3901/CJME.2010.05.537
10.1109/TEVC.2003.817236
10.3901/JME.2010.16.136
10.1016/j.procs.2010.04.152
10.3901/CJME.2010.04.484
10.3901/CJME.2012.02.255
ContentType Journal Article
Copyright Chinese Mechanical Engineering Society and Springer-Verlag Berlin Heidelberg 2014
Chinese Journal of Mechanical Engineering is a copyright of Springer, (2014). All Rights Reserved.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Chinese Mechanical Engineering Society and Springer-Verlag Berlin Heidelberg 2014
– notice: Chinese Journal of Mechanical Engineering is a copyright of Springer, (2014). All Rights Reserved.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3901/CJME.2014.02.392
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate New Knowledge-based Genetic Algorithm for Excavator Boom Structural Optimization
EISSN 2192-8258
Edition English ed.
EndPage 401
ExternalDocumentID jxgcxb_e201402019
10_3901_CJME_2014_02_392
48907497
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: (Grant 51175086)
GroupedDBID -03
-0C
-SC
-S~
06D
0R~
0VY
29B
29~
2B.
2C0
2RA
30V
4.4
5VR
8FE
8FG
92H
92I
92L
92M
96X
9D9
9DC
AAIAL
AAJKR
AAKKN
AARHV
AARTL
AAWCG
AAYIU
AAYQN
AAYTO
AAYZJ
AAZMS
ABFTD
ABJCF
ABJOX
ABTHY
ABTMW
ACACY
ACCUX
ACGFS
ACKNC
ADBBV
ADHIR
ADINQ
AEBTG
AEGNC
AEJHL
AENEX
AEOHA
AEPYU
AETCA
AFGXO
AFKRA
AFLOW
AFNRJ
AFUIB
AFWTZ
AFZKB
AGAYW
AGQMX
AGWZB
AGYKE
AHAVH
AHBXF
AHBYD
AHKAY
AHSBF
AIIXL
AJBLW
AJRNO
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ANMIH
AUKKA
BAPOH
BCNDV
BENPR
BGLVJ
BGNMA
C24
C6C
CAJUS
CCEZO
CCPQU
CEKLB
CHBEP
CQIGP
CS3
CW9
DU5
EBS
EJD
ESBYG
FA0
FIGPU
FRRFC
FYJPI
GGRSB
GQ6
GQ7
GROUPED_DOAJ
HCIFZ
HF~
HMJXF
HRMNR
HZ~
I0C
JBSCW
JUIAU
KOV
L6V
M4Y
M7S
NU0
O9-
OK1
PIMPY
PROAC
PTHSS
Q--
Q-2
R-C
RLLFE
RSV
RT3
SCL
SDH
SEG
SHX
SNX
SOJ
T8S
TCJ
TGT
U1F
U1G
U2A
U5C
U5M
UG4
VC2
W48
W92
~A9
~M1
~WA
AAXDM
ABEEZ
ACULB
ADMLS
AFBBN
CAJEC
AALRI
AAXUO
AAYXX
ABFSG
ACSTC
AEZWR
AFFHD
AFHIU
AHWEU
AIXLP
CITATION
FDB
PHGZM
PHGZT
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
PUEGO
4A8
93N
PMFND
PSX
ID FETCH-LOGICAL-c406t-23d8e89ee5cf5a6d0c53f0eebfcb91a2aac4dbafb7b3e19daddb5b85a52db0e3
IEDL.DBID M7S
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332496900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1000-9345
IngestDate Thu May 29 04:10:07 EDT 2025
Fri Sep 05 12:34:35 EDT 2025
Wed Oct 08 14:30:43 EDT 2025
Sat Nov 29 02:57:43 EST 2025
Tue Nov 18 22:37:19 EST 2025
Fri Feb 21 02:29:05 EST 2025
Wed Feb 14 10:37:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords dual evolution mechanism
domain culture
boom structural optimization
deep implicit knowledge
knowledge-based genetic strategies
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-23d8e89ee5cf5a6d0c53f0eebfcb91a2aac4dbafb7b3e19daddb5b85a52db0e3
Notes boom structural optimization, dual evolution mechanism, knowledge-based genetic strategies, deep implicit knowledge, domain culture
11-2737/TH
Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the conflgurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, arc taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2259323690?pq-origsite=%requestingapplication%
PQID 2259323690
PQPubID 4406321
PageCount 10
ParticipantIDs wanfang_journals_jxgcxb_e201402019
proquest_miscellaneous_1651387484
proquest_journals_2259323690
crossref_primary_10_3901_CJME_2014_02_392
crossref_citationtrail_10_3901_CJME_2014_02_392
springer_journals_10_3901_CJME_2014_02_392
chongqing_primary_48907497
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Chinese journal of mechanical engineering
PublicationTitleAbbrev Chin. J. Mech. Eng
PublicationTitleAlternate Chinese Journal of Mechanical Engineering
PublicationTitle_FL Chinese Journal of Mechanical Engineering
PublicationYear 2014
Publisher Chinese Mechanical Engineering Society
Springer Nature B.V
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
Publisher_xml – name: Chinese Mechanical Engineering Society
– name: Springer Nature B.V
– name: School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
References Wei, Li, Li (CR8) 2010; 46
(CR20) 1988
Wei, Zhao, Ju (CR3) 2011; 24
Ei-Hosseini, Hassanien, Abraham (CR15) 2008
Hua, Lin, Shen (CR17) 2012; 479–481
Togan, Daloglu (CR19) 2008; 86
Zhang, Wang (CR5) 2002; 38
Zhao, Wang, Zeng (CR7) 2012; 39
Wang (CR2) 2010; 23
Ren, San (CR9) 2007; 35
Wei, Fan, Xu (CR10) 2008; 21
Olcer (CR1) 2008; 32
Suresh, Mani, Omkar (CR4) 2005; 3740
Lai, Dai, Bai (CR14) 2012; 25
Zhou (CR6) 2003
Farmani, Wright (CR18) 2003; 7
Prakash, Chan, Deshmukh (CR13) 2011; 38
Wendt, Cortes, Margalef (CR12) 2010; 1
Zhao, Wang, Wang (CR11) 2010; 23
Wang, Li, Shi (CR16) 2010; 21
J Q Zhao (392_CR7) 2012; 39
H Hua (392_CR17) 2012; 479–481
W Wang (392_CR16) 2010; 21
Binggang Wang (392_CR2) 2010; 23
M Zhang (392_CR5) 2002; 38
R Farmani (392_CR18) 2003; 7
Y Zhao (392_CR11) 2010; 23
Tianjin Mechanical Engineering Research Institute. (392_CR20) 1988
S Suresh (392_CR4) 2005; 3740
K Wendt (392_CR12) 2010; 1
V Togan (392_CR19) 2008; 86
A L Olcer (392_CR1) 2008; 32
A Prakash (392_CR13) 2011; 38
X Wei (392_CR3) 2011; 24
M A Ei-Hosseini (392_CR15) 2008
Z Ren (392_CR9) 2007; 35
Y Lai (392_CR14) 2012; 25
L Wei (392_CR8) 2010; 46
T Wei (392_CR10) 2008; 21
Yonghua Zhou (392_CR6) 2003
References_xml – volume: 24
  start-page: 42
  issue: 1
  year: 2011
  end-page: 49
  ident: CR3
  article-title: Multi-objective optimization conceptual design of product structure based on variable length gene expression[J]
  publication-title: Chinese Journal of Mechanical Engineering
  doi: 10.3901/CJME.2011.01.042
– year: 1988
  ident: CR20
  publication-title: Hydraulic excavators-testing method of structure strength
– start-page: 448
  year: 2008
  end-page: 493
  ident: CR15
  article-title: Cultural-based genetic algorithm: design and real world applications[C]
  publication-title: , Kaohsiung, Nov. 26–28
– volume: 3740
  start-page: 529
  year: 2005
  end-page: 539
  ident: CR4
  article-title: A real coded genetic algorithm for data partitioning and scheduling in networks with arbitrary processor release time[J]
  publication-title: Advances in Computer Systems Architecture
  doi: 10.1007/11572961_43
– volume: 21
  start-page: 18
  issue: 6
  year: 2008
  end-page: 24
  ident: CR10
  article-title: Greedy non-dominated sorting in genetic algorithm-II for vehicle routing problem in distribution[J]
  publication-title: Chinese Journal of Mechanical Engineering
  doi: 10.3901/CJME.2008.06.018
– volume: 21
  start-page: 303
  issue: 3
  year: 2010
  end-page: 309
  ident: CR16
  article-title: An effective cultural genetic algorithm for job shop scheduling problem[J]
  publication-title: China Mechanical Engineering
– volume: 479–481
  start-page: 1851
  year: 2012
  end-page: 1856
  ident: CR17
  article-title: A new method of the constraints expression and handling for excavator boom structural optimization[C]
  publication-title: Advanced Materials Research
  doi: 10.4028/www.scientific.net/AMR.479-481.1851
– volume: 86
  start-page: 1204
  issue: 11–12
  year: 2008
  end-page: 1218
  ident: CR19
  article-title: An improved genetic algorithm with initial population strategy and self-adaptive member grouping[J]
  publication-title: Computers and Structures
  doi: 10.1016/j.compstruc.2007.11.006
– volume: 39
  start-page: 6041
  issue: 5
  year: 2012
  end-page: 6051
  ident: CR7
  article-title: An effective hybrid genetic algorithm with flexible allowance technique for constrained engineering design optimization[J]
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.12.012
– volume: 38
  start-page: 51
  issue: 1
  year: 2002
  end-page: 54
  ident: CR5
  article-title: Shape optimization using an adaptive crossover operator[J]
  publication-title: Chinese Journal of Mechanical Engineering
  doi: 10.3901/JME.2002.01.051
– year: 2003
  ident: CR6
  publication-title: Research on combination of crossover operators of real coded genetic algorithms[D]
– volume: 38
  start-page: 3161
  issue: 4
  year: 2011
  end-page: 3171
  ident: CR13
  article-title: FMS scheduling with knowledge based genetic algorithm approach[J]
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.09.002
– volume: 23
  start-page: 537
  issue: 5
  year: 2010
  end-page: 546
  ident: CR2
  article-title: Sequencing mixed-model production systems by modified multi-objective genetic algorithms[J]
  publication-title: Chinese Journal of Mechanical Engineering
  doi: 10.3901/CJME.2010.05.537
– volume: 7
  start-page: 445
  issue: 5
  year: 2003
  end-page: 455
  ident: CR18
  article-title: Self-adaptive fitness formulation for constrained optimization[J]
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.817236
– volume: 35
  start-page: 269
  issue: 2
  year: 2007
  end-page: 274
  ident: CR9
  article-title: Improvement of real-valued genetic algorithm and performance study[J]
  publication-title: Acta Electronica Sinica
– volume: 32
  start-page: 86
  issue: 1
  year: 2008
  end-page: 97
  ident: CR1
  article-title: A hybrid approach for multi-objective combinatorial optimization problems in ship design and shipping[J]
  publication-title: Computers and Operations Research
– volume: 46
  start-page: 136
  issue: 16
  year: 2010
  end-page: 141
  ident: CR8
  article-title: Optimization of tandem cold rolling schedule based on improved adaptive genetic algorithm[J]
  publication-title: Journal of Mechanical Engineering
  doi: 10.3901/JME.2010.16.136
– volume: 1
  start-page: 1 367
  issue: 1
  year: 2010
  end-page: 1 375
  ident: CR12
  article-title: Knowledge-guided genetic algorithm for input parameter optimisation in environmental modelling[J]
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2010.04.152
– volume: 23
  start-page: 484
  issue: 4
  year: 2010
  end-page: 495
  ident: CR11
  article-title: New hybrid parallel algorithm for variable-sized batch splitting scheduling with alternative machines in job shops[J]
  publication-title: Chinese Journal of Mechanical Engineering
  doi: 10.3901/CJME.2010.04.484
– volume: 25
  start-page: 255
  issue: 2
  year: 2012
  end-page: 261
  ident: CR14
  article-title: Discrete variable structural optimization based on multidirectional fuzzy genetic algorithm[J]
  publication-title: Chinese Journal of Mechanical Engineering
  doi: 10.3901/CJME.2012.02.255
– volume: 23
  start-page: 484
  issue: 4
  year: 2010
  ident: 392_CR11
  publication-title: Chinese Journal of Mechanical Engineering
  doi: 10.3901/CJME.2010.04.484
– volume: 23
  start-page: 537
  issue: 5
  year: 2010
  ident: 392_CR2
  publication-title: Chinese Journal of Mechanical Engineering
  doi: 10.3901/CJME.2010.05.537
– volume: 24
  start-page: 42
  issue: 1
  year: 2011
  ident: 392_CR3
  publication-title: Chinese Journal of Mechanical Engineering
  doi: 10.3901/CJME.2011.01.042
– volume: 86
  start-page: 1204
  issue: 11–12
  year: 2008
  ident: 392_CR19
  publication-title: Computers and Structures
  doi: 10.1016/j.compstruc.2007.11.006
– volume: 21
  start-page: 303
  issue: 3
  year: 2010
  ident: 392_CR16
  publication-title: China Mechanical Engineering
– volume: 21
  start-page: 18
  issue: 6
  year: 2008
  ident: 392_CR10
  publication-title: Chinese Journal of Mechanical Engineering
  doi: 10.3901/CJME.2008.06.018
– volume: 7
  start-page: 445
  issue: 5
  year: 2003
  ident: 392_CR18
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.817236
– start-page: 448
  volume-title: Eighth International Conference on Intelligent Systems Design and Applications, Kaohsiung, Nov. 26–28
  year: 2008
  ident: 392_CR15
– volume-title: Hydraulic excavators-testing method of structure strength
  year: 1988
  ident: 392_CR20
– volume: 46
  start-page: 136
  issue: 16
  year: 2010
  ident: 392_CR8
  publication-title: Journal of Mechanical Engineering
  doi: 10.3901/JME.2010.16.136
– volume: 25
  start-page: 255
  issue: 2
  year: 2012
  ident: 392_CR14
  publication-title: Chinese Journal of Mechanical Engineering
  doi: 10.3901/CJME.2012.02.255
– volume-title: Research on combination of crossover operators of real coded genetic algorithms[D]
  year: 2003
  ident: 392_CR6
– volume: 3740
  start-page: 529
  year: 2005
  ident: 392_CR4
  publication-title: Advances in Computer Systems Architecture
  doi: 10.1007/11572961_43
– volume: 38
  start-page: 3161
  issue: 4
  year: 2011
  ident: 392_CR13
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.09.002
– volume: 1
  start-page: 1 367
  issue: 1
  year: 2010
  ident: 392_CR12
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2010.04.152
– volume: 38
  start-page: 51
  issue: 1
  year: 2002
  ident: 392_CR5
  publication-title: Chinese Journal of Mechanical Engineering
  doi: 10.3901/JME.2002.01.051
– volume: 32
  start-page: 86
  issue: 1
  year: 2008
  ident: 392_CR1
  publication-title: Computers and Operations Research
– volume: 39
  start-page: 6041
  issue: 5
  year: 2012
  ident: 392_CR7
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.12.012
– volume: 35
  start-page: 269
  issue: 2
  year: 2007
  ident: 392_CR9
  publication-title: Acta Electronica Sinica
– volume: 479–481
  start-page: 1851
  year: 2012
  ident: 392_CR17
  publication-title: Advanced Materials Research
  doi: 10.4028/www.scientific.net/AMR.479-481.1851
SSID ssj0006118
Score 1.9676018
Snippet Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 392
SubjectTerms Boom
Crossovers
Electrical Machines and Networks
Electronics and Microelectronics
Engineering
Engineering Thermodynamics
Evolution
Evolutionary algorithms
Excavators
Genetic algorithms
Heat and Mass Transfer
Instrumentation
Knowledge
Knowledge base
Knowledge bases (artificial intelligence)
Machines
Manufacturing
Mechanical Engineering
Operators
Optimization
Power Electronics
Processes
Search algorithms
Searching
Theoretical and Applied Mechanics
优化问题
动臂结构
实数编码遗传算法
工艺知识
挖掘机
测试算法
结构优化
进化机制
Title New Knowledge-based Genetic Algorithm for Excavator Boom Structural Optimization
URI http://lib.cqvip.com/qk/85891X/201402/48907497.html
https://link.springer.com/article/10.3901/CJME.2014.02.392
https://www.proquest.com/docview/2259323690
https://www.proquest.com/docview/1651387484
https://d.wanfangdata.com.cn/periodical/jxgcxb-e201402019
Volume 27
WOSCitedRecordID wos000332496900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2192-8258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006118
  issn: 1000-9345
  databaseCode: M7S
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2192-8258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006118
  issn: 1000-9345
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2192-8258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006118
  issn: 1000-9345
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BiwQceCNSSmUQF5CiteMka59QW20FSF1F0EM5WbbjLK262ZZdqv35zOS15VAuHJNMnMc3nofHMwPwfszLKtc2jzXXSZxWQaIc5CourbK5shmqVNs0mxhPp-r0VBfdgtuy21bZy8RGUJcLT2vkI-Q7NDUkOnOfLq9i6hpF0dWuhcZd2KYqCaLZuvd9kMS5EG0qHOexlmnWhinJyx8dfj2e0MaulCp2SgqE3kdxU8-uUGH8raI2ducQKm0SfOrK1rMbuujo8f9-xRN41FmhbL9lm6dwJ9TP4OGN2oTPoUDxx4YVt5i0XcmQ2yjpkdmLGY66-jlnaPOysPb2mpx3hib7nLUlaamcB1ugQJp3mZ4v4ORocnL4Oe7aL8QetfwqTmSpgtIhZL7KbF5yn8mKh-Aq77SwibU-LZ2t3NjJIHSJktJlTmUIcOl4kC9hq17U4RUw4awku8-nSZUGdPC858GnGhW0sIrrCHaGn28u2yobJlXkt-txBKMeDeO7uuXUPuPCoP9CWBrC0hCWhid4Jongw3BHP9rttLs9UKabvUuzQSmCt8NlnHcUTLF1WPxeGpFnQiqqxBrBx54xNkPc_rx3HetsaM_XM792JhAZWu9C7_z7pV7DAyJtd8LtwhaiGt7APX-9Olv-2oPtg8m0-LbXTAU8Kr4cFz_-ALPfEaw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgtT2wLsipYBBcAApWidOsvYBIVRatbRdVWIPvVm242yLutm2u5TlR_Efmclry6HceuCadZxk_fmbl2cG4G2f50WmTBYqruIwKbxAHuQyzI00mTQpilRTNZvoDwby-FgdLcHvNheGjlW2nFgRdT5x5CPvIe5Q1RBozH06vwipaxRFV9sWGjUs9v2vn2iyTT_ufcH1fRfHO9vDrd2w6SoQOhReszAWufRSeZ-6IjVZzl0qCu69LZxVkYmNcUluTWH7VvhI5UgANrUyxffOLfcCp70Dd1GLiFV1UvBbR_xZFNWZd5yHSiRpHRUlp0Jv6-vhNp0jS6hAqKC46wqyWzm6QPn0t0RcqLldZLbKJyoLU46uib6dB__Zn_YQ7jc6Nvtcb4pHsOTLx7B2rfLiEzhCcmedPzEkWZ4z3EuU0snM2Qg_YnYyZqjRMz935opcEwwNkjGrC-5SsRI2QbodN3msT2F4G1-0DsvlpPTPgEXWCNJqXRIXiUfz1TnuXaJQ_YiM5CqAjW6t9XldQ0QnkrwSqh9Ar1187Zqq7NQc5EyjdUbQ0QQdTdDRPMYrcQDvuzva2W4eu9niQjfcNNULUATwuvsZWYVCRab0kx9THWVpJCTVmQ3gQ4vDxRQ3P-9Ng9TF2O_zkZtb7WkY2iaR2vj3S72Cld3h4YE-2BvsP4dVuq0-87cJy7jC_gXcc1ez0-nly2r3MdC3DNw_cJFxcg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+knowledge-based+genetic+algorithm+for+excavator+boom+structural+optimization&rft.jtitle=Chinese+journal+of+mechanical+engineering&rft.au=Hua%2C+Haiyan&rft.au=Lin%2C+Shuwen&rft.date=2014-03-01&rft.issn=1000-9345&rft.eissn=2192-8258&rft.volume=27&rft.issue=2&rft.spage=392&rft.epage=401&rft_id=info:doi/10.3901%2FCJME.2014.02.392&rft.externalDBID=n%2Fa&rft.externalDocID=10_3901_CJME_2014_02_392
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85891X%2F85891X.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjxgcxb-e%2Fjxgcxb-e.jpg