Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice

•Main PHM challenges in industry 4.0: physics, data and solution requirements.•Data challenges: missing of anomalies, labels and the continuously monitored data.•Advancing methods of detection, diagnostics and prognostics for data challenge.•Solution requirements challenge: interpretability, securit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Reliability engineering & system safety Ročník 218; s. 108119
Hlavní autor: Zio, Enrico
Médium: Journal Article
Jazyk:angličtina
Vydáno: Barking Elsevier Ltd 01.02.2022
Elsevier BV
Elsevier
Témata:
ISSN:0951-8320, 1879-0836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Main PHM challenges in industry 4.0: physics, data and solution requirements.•Data challenges: missing of anomalies, labels and the continuously monitored data.•Advancing methods of detection, diagnostics and prognostics for data challenge.•Solution requirements challenge: interpretability, security, uncertainty of models. We are performing the digital transition of industry, living the 4th industrial revolution, building a new World in which the digital, physical and human dimensions are interrelated in complex socio-cyber-physical systems. For the sustainability of these transformations, knowledge, information and data must be integrated within model-based and data-driven approaches of Prognostics and Health Management (PHM) for the assessment and prediction of structures, systems and components (SSCs) evolutions and process behaviors, so as to allow anticipating failures and avoiding accidents, thus, aiming at improved safe and reliable design, operation and maintenance. There is already a plethora of methods available for many potential applications and more are being developed: yet, there are still a number of critical problems which impede full deployment of PHM and its benefits in practice. In this respect, this paper does not aim at providing a survey of existing works for an introduction to PHM nor at providing new tools or methods for its further development; rather, it aims at pointing out main challenges and directions of advancements, for full deployment of condition-based and predictive maintenance in practice.
AbstractList •Main PHM challenges in industry 4.0: physics, data and solution requirements.•Data challenges: missing of anomalies, labels and the continuously monitored data.•Advancing methods of detection, diagnostics and prognostics for data challenge.•Solution requirements challenge: interpretability, security, uncertainty of models. We are performing the digital transition of industry, living the 4th industrial revolution, building a new World in which the digital, physical and human dimensions are interrelated in complex socio-cyber-physical systems. For the sustainability of these transformations, knowledge, information and data must be integrated within model-based and data-driven approaches of Prognostics and Health Management (PHM) for the assessment and prediction of structures, systems and components (SSCs) evolutions and process behaviors, so as to allow anticipating failures and avoiding accidents, thus, aiming at improved safe and reliable design, operation and maintenance. There is already a plethora of methods available for many potential applications and more are being developed: yet, there are still a number of critical problems which impede full deployment of PHM and its benefits in practice. In this respect, this paper does not aim at providing a survey of existing works for an introduction to PHM nor at providing new tools or methods for its further development; rather, it aims at pointing out main challenges and directions of advancements, for full deployment of condition-based and predictive maintenance in practice.
We are performing the digital transition of industry, living the 4th industrial revolution, building a new World in which the digital, physical and human dimensions are interrelated in complex socio-cyber-physical systems. For the sustainability of these transformations, knowledge, information and data must be integrated within model-based and data-driven approaches of Prognostics and Health Management (PHM) for the assessment and prediction of structures, systems and components (SSCs) evolutions and process behaviors, so as to allow anticipating failures and avoiding accidents, thus, aiming at improved safe and reliable design, operation and maintenance.There is already a plethora of methods available for many potential applications and more are being developed: yet, there are still a number of critical problems which impede full deployment of PHM and its benefits in practice. In this respect, this paper does not aim at providing a survey of existing works for an introduction to PHM nor at providing new tools or methods for its further development; rather, it aims at pointing out main challenges and directions of advancements, for full deployment of condition-based and predictive maintenance in practice.
ArticleNumber 108119
Author Zio, Enrico
Author_xml – sequence: 1
  givenname: Enrico
  surname: Zio
  fullname: Zio, Enrico
  email: enrico.zio@mines-paristech.fr, enrico.zio@polimi.it
  organization: MINES ParisTech, PSL Research University, CRC, Sophia Antipolis, France
BackLink https://minesparis-psl.hal.science/hal-03907690$$DView record in HAL
BookMark eNp9kcFOGzEURa2KSgTaH2BlqRuymPTZM-Oxq24QogQpqCxasbSM_SZxFOzUNiD-vjMZuumChWX56pynJ98TchRiQELOGCwYMPF1u0iY84IDZ0MgGVMfyIzJTlUga3FEZqBaVsmawzE5yXkLAI1quxnxdymuQ8zF20xNcHSJZlc29NYEs8ZHDIWe3y1v59_o_QYTUjOcFzyQL4fAxfF9HhAdLXFO15H6QMsGY3o9YPtk7DAdP5GPvdll_Px2n5LfP65-XS6r1c_rm8uLVWUbEKViPapeNaxvpFBoG1Fja11jgVkDUENrgbvuAdE-WAGmd67mvGulw0ZI7Nv6lMynuRuz0_vkH0161dF4vbxY6TGDWkEnFDyzgf0ysfsU_zxhLnobn1IY1tNccGhAQqsGSk6UTTHnhL22vpjiYyjJ-J1moMcS9FaPJeixBD2VMKj8P_XfRu9K3ycJh2969ph0th6DRecT2qJd9O_pfwFpi6CJ
CitedBy_id crossref_primary_10_1016_j_jmsy_2025_05_009
crossref_primary_10_1016_j_ress_2025_111177
crossref_primary_10_1109_TNS_2025_3585371
crossref_primary_10_1016_j_neucom_2025_130187
crossref_primary_10_1109_JSEN_2024_3468348
crossref_primary_10_1177_1748006X221107191
crossref_primary_10_1109_JSEN_2023_3326487
crossref_primary_10_1016_j_oceaneng_2023_115585
crossref_primary_10_1016_j_ress_2024_109926
crossref_primary_10_1080_09544828_2023_2177937
crossref_primary_10_1016_j_ress_2023_109528
crossref_primary_10_1016_j_measurement_2025_118796
crossref_primary_10_1016_j_ymssp_2025_112987
crossref_primary_10_1108_JQME_07_2023_0067
crossref_primary_10_3390_en17215413
crossref_primary_10_3390_electronics14122355
crossref_primary_10_1016_j_jsv_2024_118788
crossref_primary_10_1016_j_engappai_2025_112128
crossref_primary_10_1515_tjj_2022_0020
crossref_primary_10_1007_s10845_025_02609_1
crossref_primary_10_1016_j_cie_2022_108887
crossref_primary_10_1016_j_ress_2024_110134
crossref_primary_10_1007_s00170_024_14097_3
crossref_primary_10_1186_s40309_024_00244_2
crossref_primary_10_1016_j_eswa_2023_120517
crossref_primary_10_1016_j_aei_2025_103108
crossref_primary_10_1109_ACCESS_2024_3391823
crossref_primary_10_1016_j_ress_2022_108945
crossref_primary_10_1109_JSEN_2025_3556137
crossref_primary_10_1016_j_ress_2023_109897
crossref_primary_10_1016_j_compind_2023_103948
crossref_primary_10_1007_s40684_024_00646_4
crossref_primary_10_1016_j_ymssp_2024_112213
crossref_primary_10_1016_j_engappai_2025_110518
crossref_primary_10_1016_j_ymssp_2024_111489
crossref_primary_10_1109_TASE_2025_3549061
crossref_primary_10_1016_j_ress_2025_111199
crossref_primary_10_1016_j_ijhydene_2022_08_024
crossref_primary_10_1088_1361_6501_ac7eb1
crossref_primary_10_1016_j_ress_2024_110101
crossref_primary_10_1177_14759217251358539
crossref_primary_10_1016_j_eswa_2024_126109
crossref_primary_10_1016_j_eswa_2025_127835
crossref_primary_10_1016_j_ress_2024_110223
crossref_primary_10_1109_TIM_2024_3395323
crossref_primary_10_1007_s10845_023_02281_3
crossref_primary_10_1016_j_ress_2021_108219
crossref_primary_10_1109_JIOT_2024_3376706
crossref_primary_10_1109_JAS_2024_124290
crossref_primary_10_1016_j_aei_2024_103038
crossref_primary_10_1109_ACCESS_2024_3443138
crossref_primary_10_1002_qre_3713
crossref_primary_10_1016_j_eswa_2023_120959
crossref_primary_10_1016_j_asoc_2024_111594
crossref_primary_10_1016_j_ymssp_2023_110545
crossref_primary_10_1016_j_neucom_2024_129138
crossref_primary_10_1016_j_ress_2022_108499
crossref_primary_10_1016_j_cie_2025_110892
crossref_primary_10_1016_j_ress_2022_108379
crossref_primary_10_1016_j_energy_2022_125278
crossref_primary_10_1016_j_ress_2024_110224
crossref_primary_10_1016_j_ress_2023_109188
crossref_primary_10_1016_j_ress_2022_108496
crossref_primary_10_1016_j_ress_2023_109861
crossref_primary_10_1038_s41598_024_63990_0
crossref_primary_10_1016_j_compbiomed_2025_110566
crossref_primary_10_1016_j_ress_2024_110349
crossref_primary_10_3390_s25134164
crossref_primary_10_1016_j_inffus_2024_102462
crossref_primary_10_1017_aer_2023_84
crossref_primary_10_1088_1361_6501_ad0e9d
crossref_primary_10_3390_s24123732
crossref_primary_10_1016_j_inffus_2024_102223
crossref_primary_10_1016_j_ress_2025_110893
crossref_primary_10_1016_j_jmsy_2023_08_005
crossref_primary_10_1111_exsy_13689
crossref_primary_10_3390_make6030069
crossref_primary_10_1080_10438599_2024_2363889
crossref_primary_10_3390_aerospace11030217
crossref_primary_10_1016_j_aei_2025_103208
crossref_primary_10_1080_09544828_2024_2309861
crossref_primary_10_1007_s11227_024_06793_4
crossref_primary_10_1016_j_ifacol_2024_07_261
crossref_primary_10_1016_j_ymssp_2023_110796
crossref_primary_10_1016_j_ifacol_2023_10_1355
crossref_primary_10_1016_j_ress_2023_109511
crossref_primary_10_1017_aer_2025_28
crossref_primary_10_1016_j_compind_2024_104083
crossref_primary_10_1016_j_ress_2023_109872
crossref_primary_10_1016_j_ress_2024_110238
crossref_primary_10_1016_j_ress_2025_111502
crossref_primary_10_1109_JIOT_2024_3357750
crossref_primary_10_1016_j_tust_2025_106508
crossref_primary_10_3390_en15186599
crossref_primary_10_3390_mi16060689
crossref_primary_10_1109_JSYST_2022_3193200
crossref_primary_10_1088_1361_6501_ac7c5b
crossref_primary_10_1016_j_ress_2024_110285
crossref_primary_10_1109_JSEN_2024_3492019
crossref_primary_10_1080_17445302_2025_2523312
crossref_primary_10_1016_j_ymssp_2023_110804
crossref_primary_10_1016_j_apenergy_2024_123550
crossref_primary_10_1016_j_ress_2022_108993
crossref_primary_10_1016_j_ress_2024_109964
crossref_primary_10_1109_ACCESS_2025_3551772
crossref_primary_10_1016_j_jii_2025_100854
crossref_primary_10_1016_j_ress_2024_110721
crossref_primary_10_1016_j_ress_2022_109043
crossref_primary_10_1016_j_ress_2024_110296
crossref_primary_10_3390_en17225538
crossref_primary_10_1016_j_ress_2024_110055
crossref_primary_10_1088_1361_6501_ad0685
crossref_primary_10_1088_1361_6501_ade32f
crossref_primary_10_1088_1361_6501_ad4ab3
crossref_primary_10_1017_dce_2024_24
crossref_primary_10_1016_j_ress_2022_108865
crossref_primary_10_1109_TASE_2023_3321049
crossref_primary_10_5937_fme2503345W
crossref_primary_10_1088_1361_6501_ada4c7
crossref_primary_10_1016_j_ress_2022_108868
crossref_primary_10_1016_j_ress_2022_108989
crossref_primary_10_1016_j_ymssp_2023_110814
crossref_primary_10_1016_j_ymssp_2023_110935
crossref_primary_10_1016_j_ress_2024_109954
crossref_primary_10_1016_j_rineng_2025_107214
crossref_primary_10_1016_j_ress_2023_109695
crossref_primary_10_1016_j_knosys_2024_112775
crossref_primary_10_1002_nav_22201
crossref_primary_10_1016_j_ress_2023_109333
crossref_primary_10_1016_j_measurement_2024_116040
crossref_primary_10_1016_j_ymssp_2025_112431
crossref_primary_10_1016_j_ress_2023_109451
crossref_primary_10_1016_j_ymssp_2023_111101
crossref_primary_10_1109_ACCESS_2024_3377691
crossref_primary_10_1016_j_ymssp_2025_113089
crossref_primary_10_1016_j_ress_2024_110381
crossref_primary_10_3390_aerospace10040354
crossref_primary_10_1016_j_ress_2024_110382
crossref_primary_10_1109_JIOT_2024_3520235
crossref_primary_10_1016_j_jmsy_2023_05_023
crossref_primary_10_1016_j_ress_2025_111431
crossref_primary_10_1007_s10462_024_10820_4
crossref_primary_10_1016_j_cie_2024_110496
crossref_primary_10_1142_S0218539325500068
crossref_primary_10_1016_j_apm_2023_07_011
crossref_primary_10_1109_JSEN_2023_3298349
crossref_primary_10_3390_app14167256
crossref_primary_10_3390_s22187070
crossref_primary_10_1016_j_ress_2023_109307
crossref_primary_10_1016_j_ress_2023_109427
crossref_primary_10_1109_JSEN_2023_3257160
crossref_primary_10_1109_TR_2024_3362331
crossref_primary_10_1177_1748006X251361193
crossref_primary_10_1016_j_ress_2025_110905
crossref_primary_10_1007_s10845_024_02544_7
crossref_primary_10_1016_j_est_2024_114274
crossref_primary_10_1016_j_ress_2022_109022
crossref_primary_10_1016_j_ress_2023_109662
crossref_primary_10_1016_j_ress_2023_109782
crossref_primary_10_1016_j_ress_2023_109421
crossref_primary_10_1016_j_eswa_2023_122023
crossref_primary_10_1016_j_ress_2025_110902
crossref_primary_10_1016_j_ress_2023_109660
crossref_primary_10_1016_j_ymssp_2025_112683
crossref_primary_10_1109_JSEN_2023_3269030
crossref_primary_10_1016_j_ress_2024_110030
crossref_primary_10_1016_j_eswa_2024_124511
crossref_primary_10_1016_j_ress_2024_110273
crossref_primary_10_1016_j_ress_2024_110394
crossref_primary_10_1016_j_oceaneng_2023_114844
crossref_primary_10_1016_j_aei_2025_103361
crossref_primary_10_1016_j_ress_2024_110399
crossref_primary_10_1109_JSEN_2023_3335805
crossref_primary_10_1109_JSEN_2024_3479079
crossref_primary_10_1007_s10489_025_06705_w
crossref_primary_10_3390_electronics11152364
crossref_primary_10_1016_j_epsr_2025_111464
crossref_primary_10_1016_j_ymssp_2023_110359
crossref_primary_10_1109_JIOT_2024_3421365
crossref_primary_10_3390_bdcc9090232
crossref_primary_10_1016_j_engappai_2025_111940
crossref_primary_10_1016_j_ress_2022_108967
crossref_primary_10_1016_j_ymssp_2023_110472
crossref_primary_10_1016_j_ymssp_2024_111740
crossref_primary_10_1016_j_neucom_2025_129487
crossref_primary_10_1177_1748006X251348686
crossref_primary_10_1016_j_energy_2025_134899
crossref_primary_10_1155_2022_5344461
crossref_primary_10_1016_j_ress_2025_111210
crossref_primary_10_1016_j_procir_2025_02_171
crossref_primary_10_1007_s41471_024_00204_3
crossref_primary_10_1016_j_jmsy_2024_09_024
crossref_primary_10_1016_j_measurement_2024_115951
crossref_primary_10_1016_j_oceaneng_2024_116798
crossref_primary_10_1016_j_ymssp_2024_112192
crossref_primary_10_1109_JAS_2024_124791
crossref_primary_10_1016_j_cie_2024_110432
crossref_primary_10_1016_j_ress_2025_111454
crossref_primary_10_1016_j_est_2025_116002
crossref_primary_10_1115_1_4065483
crossref_primary_10_1016_j_istruc_2023_105518
crossref_primary_10_1109_ACCESS_2025_3580729
crossref_primary_10_3390_aerospace10080673
crossref_primary_10_1016_j_applthermaleng_2024_124476
crossref_primary_10_1016_j_knosys_2025_113013
crossref_primary_10_1016_j_rineng_2025_106671
crossref_primary_10_1016_j_enbuild_2025_115772
crossref_primary_10_1016_j_ress_2023_109247
crossref_primary_10_1016_j_ress_2022_108676
crossref_primary_10_1016_j_hspr_2023_08_003
crossref_primary_10_1016_j_ress_2023_109123
crossref_primary_10_1016_j_ress_2023_109244
crossref_primary_10_1016_j_ymssp_2025_112589
crossref_primary_10_1016_j_mfglet_2023_08_037
crossref_primary_10_1016_j_energy_2025_137253
crossref_primary_10_1016_j_ress_2024_110767
crossref_primary_10_1016_j_ress_2023_109360
crossref_primary_10_3390_aerospace11121027
crossref_primary_10_1016_j_eswa_2024_123563
crossref_primary_10_3390_app13063725
crossref_primary_10_1016_j_measurement_2025_116656
crossref_primary_10_3390_machines12120831
crossref_primary_10_1016_j_ress_2024_110650
crossref_primary_10_1109_JSEN_2024_3404072
crossref_primary_10_1016_j_measurement_2022_111588
crossref_primary_10_1109_ACCESS_2022_3216573
crossref_primary_10_1016_j_aei_2024_102922
crossref_primary_10_1016_j_engappai_2022_104733
crossref_primary_10_3390_s23063213
crossref_primary_10_1088_1361_6501_ad099b
crossref_primary_10_1088_3050_2454_adbc65
crossref_primary_10_1016_j_oceaneng_2024_117190
crossref_primary_10_1016_j_ress_2025_110919
crossref_primary_10_1016_j_jmsy_2024_05_021
crossref_primary_10_1016_j_ress_2022_108424
crossref_primary_10_1016_j_ress_2024_110653
crossref_primary_10_1016_j_ejor_2024_09_010
crossref_primary_10_1016_j_ress_2023_109130
crossref_primary_10_1016_j_ress_2023_109372
crossref_primary_10_1016_j_ress_2024_110657
crossref_primary_10_1016_j_psep_2024_02_051
crossref_primary_10_1016_j_ress_2024_110539
crossref_primary_10_1088_3050_2454_add5fa
crossref_primary_10_1109_TIM_2025_3601249
crossref_primary_10_1016_j_oceaneng_2022_112297
crossref_primary_10_1093_jcde_qwaf040
crossref_primary_10_3390_machines10110974
crossref_primary_10_1016_j_aei_2025_103275
crossref_primary_10_1016_j_energy_2024_131526
crossref_primary_10_1016_j_jpowsour_2024_235696
crossref_primary_10_1109_JIOT_2024_3387481
crossref_primary_10_1016_j_conengprac_2025_106427
crossref_primary_10_1007_s12541_025_01343_1
crossref_primary_10_1016_j_ress_2022_108898
crossref_primary_10_1016_j_ress_2024_110749
crossref_primary_10_3390_en15176294
crossref_primary_10_3390_en17123013
crossref_primary_10_1016_j_ress_2025_110828
crossref_primary_10_1016_j_psep_2025_107018
crossref_primary_10_1016_j_ress_2022_108412
crossref_primary_10_1016_j_engappai_2024_108212
crossref_primary_10_1088_1361_6501_ad78f5
crossref_primary_10_1016_j_heliyon_2022_e12111
crossref_primary_10_1016_j_ress_2022_108770
crossref_primary_10_1088_1361_6501_ada6eb
crossref_primary_10_1016_j_rser_2024_115281
crossref_primary_10_1088_3050_2454_adc580
crossref_primary_10_1016_j_ress_2023_109341
crossref_primary_10_1016_j_microrel_2024_115572
crossref_primary_10_1016_j_rineng_2025_105809
crossref_primary_10_1016_j_ress_2024_110195
crossref_primary_10_1016_j_ress_2025_111584
crossref_primary_10_1109_TR_2024_3356816
crossref_primary_10_1002_qre_3445
crossref_primary_10_1088_1361_6501_ad3b2c
crossref_primary_10_1016_j_pnucene_2024_105294
crossref_primary_10_1016_j_ress_2024_110751
crossref_primary_10_1109_TTE_2022_3199115
crossref_primary_10_3390_app14051996
crossref_primary_10_1109_TIM_2024_3470018
crossref_primary_10_1016_j_ress_2024_110190
crossref_primary_10_1109_TIM_2024_3413166
crossref_primary_10_3390_s23198124
crossref_primary_10_1016_j_ress_2022_108525
crossref_primary_10_1016_j_ress_2022_108648
crossref_primary_10_1109_JSEN_2023_3323476
crossref_primary_10_1016_j_ress_2022_108883
crossref_primary_10_1515_tjeng_2022_0020
crossref_primary_10_3390_electronics13245036
crossref_primary_10_1088_2631_8695_adbe26
crossref_primary_10_3390_su151813847
crossref_primary_10_1016_j_ress_2023_109235
crossref_primary_10_23919_JSEE_2024_000087
crossref_primary_10_1016_j_eswa_2023_122078
crossref_primary_10_1016_j_ress_2023_109592
crossref_primary_10_1016_j_ress_2023_109231
crossref_primary_10_1016_j_ins_2024_121603
crossref_primary_10_1088_3050_2454_adcef2
crossref_primary_10_3390_s25113571
crossref_primary_10_3390_eng6090210
crossref_primary_10_1016_j_ress_2024_110200
crossref_primary_10_1016_j_ress_2024_110442
crossref_primary_10_1016_j_aei_2024_102719
crossref_primary_10_1016_j_ress_2025_111135
crossref_primary_10_1109_JSEN_2025_3596121
crossref_primary_10_1016_j_eswa_2025_126807
crossref_primary_10_1016_j_aei_2023_101900
crossref_primary_10_3390_machines13080698
crossref_primary_10_1016_j_aei_2023_102316
crossref_primary_10_1109_ACCESS_2024_3424521
crossref_primary_10_1016_j_ress_2025_111371
crossref_primary_10_1016_j_rser_2025_116269
crossref_primary_10_1016_j_ress_2023_109846
crossref_primary_10_1016_j_jmsy_2025_06_015
crossref_primary_10_3390_s25010180
crossref_primary_10_1016_j_eswa_2023_121358
crossref_primary_10_1016_j_ress_2023_109602
crossref_primary_10_1016_j_ress_2023_109723
crossref_primary_10_1016_j_ins_2024_121650
crossref_primary_10_1016_j_asoc_2024_111726
crossref_primary_10_1177_14759217251368750
crossref_primary_10_1016_j_ress_2022_108473
crossref_primary_10_1016_j_knosys_2023_110345
crossref_primary_10_1016_j_ress_2022_108353
crossref_primary_10_1016_j_ress_2023_109289
crossref_primary_10_1016_j_ress_2023_109163
crossref_primary_10_1016_j_ress_2023_109162
crossref_primary_10_1108_MI_06_2024_0194
crossref_primary_10_1016_j_ress_2025_111485
crossref_primary_10_1109_TII_2024_3463705
crossref_primary_10_1007_s10489_024_05429_7
crossref_primary_10_1016_j_cja_2025_103550
crossref_primary_10_1186_s10033_024_01036_2
crossref_primary_10_1016_j_ijhydene_2022_04_048
crossref_primary_10_1016_j_ress_2022_108900
crossref_primary_10_1016_j_jestch_2023_101409
crossref_primary_10_1088_1361_6501_ad2d50
crossref_primary_10_1016_j_ress_2023_109850
crossref_primary_10_1016_j_knosys_2023_110692
crossref_primary_10_3390_machines13010060
crossref_primary_10_1016_j_neucom_2025_131293
crossref_primary_10_1016_j_jsv_2024_118562
crossref_primary_10_1016_j_ress_2025_111152
crossref_primary_10_1016_j_eswa_2025_126947
crossref_primary_10_1016_j_measurement_2025_117359
crossref_primary_10_3390_aerospace12030259
crossref_primary_10_1016_j_ress_2024_110663
crossref_primary_10_1016_j_autcon_2024_105648
crossref_primary_10_1017_dce_2025_3
crossref_primary_10_1016_j_jmsy_2024_04_027
crossref_primary_10_1016_j_ress_2023_109703
crossref_primary_10_1109_TIM_2023_3236323
crossref_primary_10_1109_TIM_2023_3291801
crossref_primary_10_3390_aerospace9120839
crossref_primary_10_1016_j_ress_2025_111039
crossref_primary_10_1088_1361_6501_adcce4
crossref_primary_10_3390_machines13090831
crossref_primary_10_1016_j_ymssp_2025_113015
crossref_primary_10_1016_j_ymssp_2023_110187
crossref_primary_10_1016_j_ress_2025_111022
crossref_primary_10_1016_j_ress_2025_111264
crossref_primary_10_3390_s24061765
crossref_primary_10_1007_s40684_025_00694_4
crossref_primary_10_1109_TII_2024_3352269
crossref_primary_10_3390_en18081899
crossref_primary_10_3390_su17094237
crossref_primary_10_3390_en18030660
crossref_primary_10_1016_j_ress_2023_109717
crossref_primary_10_1016_j_ress_2025_111140
crossref_primary_10_1016_j_engappai_2023_106956
crossref_primary_10_1016_j_jmsy_2024_04_017
crossref_primary_10_1038_s41598_023_31532_9
crossref_primary_10_1109_JSEN_2024_3507096
crossref_primary_10_1016_j_ress_2022_108686
crossref_primary_10_3390_s22114217
crossref_primary_10_1016_j_ress_2023_109832
crossref_primary_10_1109_JIOT_2024_3435917
crossref_primary_10_1016_j_ress_2024_110313
crossref_primary_10_1109_TPEL_2025_3563853
crossref_primary_10_1016_j_pnucene_2025_105792
crossref_primary_10_1109_TMECH_2022_3210765
crossref_primary_10_1007_s11760_025_04617_3
crossref_primary_10_1088_3049_4761_aded84
crossref_primary_10_3390_act14080382
Cites_doi 10.1016/j.jcp.2018.10.045
10.1016/j.ress.2014.03.014
10.1007/s40747-016-0019-3
10.1016/j.asoc.2010.08.011
10.1016/j.jsp.2009.10.001
10.1016/j.ymssp.2014.12.018
10.1016/j.ejor.2015.06.032
10.1016/j.ymssp.2019.01.060
10.1007/s00449-006-0109-5
10.1109/TPAMI.2018.2799847
10.1016/j.ress.2019.03.018
10.1007/s10994-010-5188-5
10.1016/j.ress.2019.02.015
10.1016/j.ress.2019.03.044
10.1109/ACCESS.2016.2587754
10.1109/TNNLS.2018.2828699
10.1016/j.ress.2010.06.001
10.1097/EDE.0b013e3182576cdb
10.1002/we.2102
10.1016/j.ress.2018.11.011
10.1214/aos/1013203451
10.1016/j.ress.2019.106676
10.1016/j.ymssp.2014.09.013
10.1109/TIE.2016.2519325
10.1016/j.mfglet.2018.02.003
10.1177/1475921710388972
10.1007/s41872-020-00119-y
10.1016/j.apor.2017.12.009
10.1109/TIE.2019.2907440
10.1109/MSP.2017.2695801
10.1016/j.ress.2018.11.027
10.1109/TPAMI.2013.50
10.3390/e19020047
10.1111/risa.12247
10.1016/j.ress.2006.04.007
10.1016/j.ress.2010.11.005
10.1016/S0895-4356(02)00539-5
10.1016/j.ress.2018.08.010
10.1007/s13349-011-0009-5
10.1186/1471-2288-10-7
10.1109/TIE.2012.2188259
10.1111/j.1540-5907.2010.00447.x
10.1016/j.eswa.2018.08.033
10.1016/j.ress.2013.08.004
10.1080/10618600.2014.907095
10.1016/j.ress.2019.02.002
10.1016/j.ymssp.2018.07.048
10.1109/TR.2013.2285033
10.1016/j.ress.2017.10.004
10.1109/JIOT.2019.2957029
10.1016/j.ress.2019.106754
10.1006/mssp.2001.1462
10.1016/j.apenergy.2017.04.048
10.1016/j.ress.2013.02.022
10.1198/016214502388618447
10.1016/j.ress.2015.02.001
10.1016/j.asoc.2016.06.030
10.1109/TPAMI.2018.2833865
10.1016/S0888-3270(03)00041-4
10.1016/j.ress.2018.02.007
10.1016/j.neucom.2016.09.076
10.1016/j.ymssp.2005.09.012
10.1016/j.ress.2019.106727
10.1177/1475921718794953
10.1016/j.acha.2017.02.002
10.1016/j.ress.2019.02.011
10.1016/j.engappai.2019.103346
10.1016/j.ress.2018.02.013
10.1186/1471-2288-10-81
10.1016/j.ress.2019.02.001
10.1016/j.asoc.2017.08.016
10.1016/j.ejor.2010.11.018
10.1109/TR.2016.2591504
10.1016/j.jclinepi.2006.01.014
10.1109/TPAMI.2019.2914897
10.1061/(ASCE)AS.1943-5525.0000572
10.3390/machines5040021
10.1016/j.ress.2020.107257
10.1109/TKDE.2021.3079836
10.1016/j.ress.2018.02.012
10.1016/j.ress.2019.01.006
10.1016/j.ress.2016.12.003
10.1016/j.measurement.2017.02.003
10.1016/j.compbiomed.2020.104041
10.1016/j.neucom.2018.07.004
10.1016/j.ress.2018.09.018
10.1016/j.chemolab.2016.12.009
10.1016/j.jprocont.2018.05.004
10.1007/s11071-014-1857-4
10.1016/j.ress.2018.01.017
10.1016/j.solener.2018.10.054
10.1016/j.cosrev.2009.03.005
10.1016/j.ymssp.2016.10.034
10.1016/j.jnca.2015.11.016
10.1007/s10115-013-0679-x
10.1016/j.engappai.2019.03.003
10.1016/j.ress.2017.02.007
10.1016/j.renene.2018.10.062
10.1016/j.rser.2015.08.061
10.1016/j.jprocont.2019.05.012
10.4310/SII.2009.v2.n3.a8
10.1016/j.engappai.2015.08.010
10.1109/TEC.2007.914185
10.1109/TNNLS.2018.2812811
10.1016/j.ress.2018.02.003
10.1201/9781315273860
10.1109/TPAMI.2018.2843329
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Feb 2022
Attribution - NonCommercial
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 2022
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
1XC
VOOES
DOI 10.1016/j.ress.2021.108119
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID oai:HAL:hal-03907690v1
10_1016_j_ress_2021_108119
S0951832021006153
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
SOI
1XC
VOOES
ID FETCH-LOGICAL-c406t-1fe9f941f4869ec463e5cd4c01ca00305c02d7beecbc60afdd322758de468ef53
ISICitedReferencesCount 448
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000728598300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Tue Oct 14 20:40:36 EDT 2025
Wed Aug 13 04:27:04 EDT 2025
Sat Nov 29 07:05:53 EST 2025
Tue Nov 18 21:43:09 EST 2025
Fri Feb 23 02:43:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Recurrent Neural Networks (RNNs), Reservoir Computing (RC)
Deep Neural Networks (DNNs)
Optimal Transport (OT)
Prognostics and Health Management (PHM)
Generative Adversarial Networks (GANs)
Predictive maintenance
Reservoir Computing (RC)
Recurrent Neural Networks (RNNs)
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c406t-1fe9f941f4869ec463e5cd4c01ca00305c02d7beecbc60afdd322758de468ef53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7108-637X
OpenAccessLink https://minesparis-psl.hal.science/hal-03907690
PQID 2620408059
PQPubID 2045406
ParticipantIDs hal_primary_oai_HAL_hal_03907690v1
proquest_journals_2620408059
crossref_citationtrail_10_1016_j_ress_2021_108119
crossref_primary_10_1016_j_ress_2021_108119
elsevier_sciencedirect_doi_10_1016_j_ress_2021_108119
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
2022-02
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Jaeger (bib0099) 2016; 18
Vergouw (bib0128) 2010
Baraldi, Di Maio, Rigamonti, Zio, Seraoui (bib0079) 2015
Brownjohn, de Stefano, Xu, Wenzel, Aktan (bib0106) 2011
Wang, Tsui, Miao (bib0005) 2017
Cuturi, Doucet (bib0063) 2014
Pele, Werman (bib0064) 2009
Yang, Shi, Gao, Wang, Yang (bib0089) 2018
Hastie, Rosset, Zhu, Zou (bib0040) 2009
Cakir, He, Bargal, Sclaroff (bib0081) 2019
Yu, Yoo, Jang, Park, Kim (bib0042) 2018
Bengio, Courville, Vincent (bib0087) 2013
Eekhout, de Boer, Twisk, de Vet, Heymans (bib0122) 2012
Li, Wang, Zhang (bib0059) 2013
Seo, Gary, Marsh (bib0052) 2006
Duan, Makis, Deng (bib0028) 2020; 193
Li, Chen, Jin, Shi, Goh, Ng (bib0037) 2019
Tang, Parsons, Jude (bib0074) 2019; 186
Gan (bib0007) 2020
Leturiondo, Salgado, Ciani, Galar, Catelani (bib0131) 2017
Sankararaman, Goebel (bib0102) 2015
Aven, Zio (bib0143) 2011
Baraldi, Di Maio, Turati, Zio (bib0044) 2015
Jardine, Lin, Banjevic (bib0053) 2006; 20
Wan, Ni (bib0029) 2019
Downey, Lui, Hu, Laflamme, Hu (bib0121) . 2019; 182
Zhu, Lu, Yao, Dai, Hu (bib0094) 2018
Samanta, Al-Balushi (bib0101) 2003; 17
Barreno, Nelson, Joseph, Tygar (bib0154) 2010
Baraldi, Razavi-Far, Zio (bib0157) 2011; 96
Park, Kolouri, Kundu, Rohde (bib0069) 2018
Panda, Khilar (bib0070) 2012
Cao, Huang, Yang, Wang, Wang, Tan (bib0083) 2019
Listou Ellefsen, Bjørlykhaug, Æsøy, Ushakov, Zhang (bib0112) 2019; 183
Sharp, Weiss (bib0011) 2018
Huang, Yi, Li (bib0051) 2017
Baraldi, Di Maio, Rigamonti, Zio, Seraoui (bib0084) 2015; 58
Xu, Baraldi, Al-Dahidi, Zio (bib0134) 2020
Yan, Ji, Shen (bib0046) 2017
A. Karpatne, W. Watkins, J. Read, and V. Kumar, “Physics-guided neural networks (PGNN): an application in lake temperature modeling.” arXiv preprint
.
Costilla-Reyes, Vera-Rodriguez, Scully, Ozanyan (bib0092) 2019
Arcos Jiménez, Gómez Muñoz, García Márquez (bib0075) 2019; 184
Chen, Xu, Wang, Wang (bib0023) 2018
Liu, Zio (bib0158) 2016; 47
Montavon, Müller, Cuturi (bib0061) 2016
Zhang, Lee (bib0104) 2011
Elattar, Elminir, Riad (bib0008) 2016
Saltelli, Tarantola (bib0145) 2002
Ribeiro, Singh, Guestrin (bib0140) 2016
Deng, Di Bucchianico, Pechenizkiy (bib0161) 2020; 196
Siryani, Tanju, Eveleigh (bib0018) 2017
R. Tipireddy, P. Perdikaris, P. Stinis, & A. Tartakovsky (2019). A comparative study of physics-informed neural network models for learning unknown dynamics and constitutive relations. arXiv preprint
García Nieto, García-Gonzalo, Sánchez Lasheras, De Cos Juez (bib0116) 2015; 138
Bangalore, Letzgus, Karlsson, Patriksson (bib0047) 2017
Kwon, Hodkiewicz, Fan, Shibutani, Pecht (bib0017) 2016
He, Dai, Lu, Mou (bib0111) 2018; 180
Borgonovo, Plischke (bib0146) 2016
Al-Dahidi, Di Maio, Baraldi, Zio (bib0159) 2017; 231
Honaker, King (bib0129) 2010; 54
Ahmed, Mahmood, Hu (bib0036) 2016
Joe Qin (bib0041) 2009
Nguyen, Medjaher (bib0113) 2019; 188
Dumargue, Pougeon, Massé (bib0010) 2016
King, Titchener-Hooker, Zhou (bib0144) 2007
Chen, Peng, Zhu, Li (bib0138) 2020
Garcia-Alvarez (bib0071) 2009
Tamilselvan, Wang (bib0073) 2013; 115
Lei, Jia, Lin, Xing, Ding (bib0095) 2016; 63
Goldstein, Kapelner, Bleich, Pitkin (bib0152) 2015
Yang, Tang, Yao (bib0135) 2008
Saxena, Celaya, Saha, Saha, Goebel (bib0016) 2010; 1
Wang, Tang, Yue, Zhou, Deonauth (bib0054) 2018
Marugán, Chacón, Márquez (bib0034) 2019; 191
L. Biggio, A. Wieland, M.A. Chao, I. Kastanis, & O. Fink (2021). Uncertainty-aware remaining useful life predictor. arXiv preprint
Yin, Ding, Xie, Luo (bib0093) 2014
Li, Zhang, Ding (bib0109) 2019; 182
Zhang, Wang, Li, Gao (bib0090) 2019
Shi, Cao, Zhang, Li, Xu (bib0020) 2016
Xu, Baraldi, Lu, Cannarile, Zio (bib0039) 2019
Kammammettu, Li (bib0067) 2019
Clark, Altman (bib0133) 2003
Jennions, Niculita, Esperon-Miguez (bib0009) 2016; 7
Zeng, Di Maio, Zio, Kang (bib0015) 2017; 231
Mujica, Rodellar, Fernández, Güemes (bib0050) 2011
Zio (bib0001) 2016
Zio (bib0025) 2009
Xu, Sun, Wan, Liu, Song (bib0078) 2017
Caesarendra, Tjahjowidodo (bib0057) 2017
Han, Yu, Song, Tang, Dai (bib0012) 2019
Flage, Aven, Zio, Baraldi (bib0156) 2014; 34
Tahan, Tsoutsanis, Muhammad, Abdul Karim (bib0004) 2017
Marshall, Altman, Royston, Holder (bib0132) 2010
Friedman (bib0151) 2001
Sankararaman, Mahadevan, Orchard (bib0155) 2020; 6
L. Von Rueden et al., “Informed machine learning-a taxonomy and survey of integrating knowledge into learning systems.” IEEE Transactions on Knowledge and Data Engineering preprint pp.1-1, doi: 10.1109/TKDE.2021.3079836.
Manjurul Islam, Kim (bib0076) 2019; 184
Li, Ding, Sun (bib0110) 2018
Ng, Cabrera, Tse, Chen, Tsui (bib0066) 2015
Shi, Chehade (bib0114) 2021; 205
Odgaard, Lin, Jorgensen (bib0048) 2008
Yang, Liu, Zeng, Xie (bib0049) 2019
Chang, Fang (bib0120) 2019; 186
Štrumbelj, Kononenko (bib0142) 2014
Xing, Liu (bib0038) 2019; 55
Han, Liu, Wu, Sarkar, Jiang (bib0096) 2019
Raj, Murali (bib0056) 2013
Donders, van der Heijden, Stijnen, Moons (bib0127) 2006
Hu, Xie, Ng, Levitin (bib0033) 2007; 92
Lei, Li, Guo, Li, Yan, Lin (bib0003) 2018
Ramdas, Trillos, Cuturi (bib0065) 2017
Gretton, Borgwardt, Rasch, Schölkopf, Smola (bib0062) 2012
Baptista, Henriques, de Medeiros, Malere, Nascimento, Prendinger (bib0118) 2019; 184
Di Maio, Baraldi, Zio, Seraoui (bib0043) 2013
Benker, Furtner, Semm, Zaeh (bib0163) 2020
Marseguerra (bib0031) 2014; 129
Reder, Yürüşen, Melero (bib0086) 2018; 169
Xiao, Huang, Pan, Liu, Song (bib0130) 2017
Lundberg, Lee (bib0137) 2017
Daigle, Goebel (bib0103) 2011; 2
Wang, Baraldi, Lu, Zio (bib0068) 2020
Razavi-Far, Chakrabarti, Saif, Zio (bib0125) 2019
Chen, Jing, Chang, Liu (bib0115) 2019; 185
Bian, Yang, Huang, Xu, Liu, Zio (bib0085) 2019; 188
Papernot, McDaniel, Goodfellow, Jha, Celik, Swami (bib0153) 2016
Arn, Narayana, Draper, Emerson, Kirby, Peterson (bib0080) 2018
Kankar, Sharma, Harsha (bib0055) 2011; 11
Tolo, Silvia, Tian, Bausch, Becerra, Santhosh, Vinod (bib0032) 2019; 186
Di Maio, Turati, Z (bib0014) 2016
Qian, Zhang (bib0100) 2018; 70
Jeong Haedong, Park, Park (bib0027) 2019; 184
Raissi, Perdikaris, Karniadakis (bib0148) 2019; 378
Liu, Zhang, Niu, Yao, Wu (bib0139) 2020
Sekhar (bib0026) 2004
Kolouri, Park, Thorpe, Slepcev, Rohde (bib0058) 2017
Compare, Baraldi, Zio (bib0006) 2020
Xu, Baraldi, Zio (bib0097) 2020
Zheng, Li, Yan, Tang, Tan (bib0082) 2018
Yang, Sun, Ye (bib0013) 2020
Liu, Zhou, Xu, Zheng, Peng, Jiang (bib0022) 2018
Si, Wang, Hu, Zhou (bib0107) 2011
Li, Zia, Tran, Yu, Hager, Chandraker (bib0091) 2019
Zhao, Liang, Wang, Lu (bib0117) 2017; 164
Liu, Li, Zio (bib0035) 2017; 87
Fink, Zio, Weidmann (bib0072) 2014; 121
Yoon, Hwang (bib0136) 1995
Lukoševičius, Jaeger (bib0098) 2009; 3
Liu, Hu, Zhang (bib0108) 2019; 185
Zhang, Baraldi, Cadet, Yousfi-Steiner, Bérenguer, Zio (bib0160) 2019; 124
Kandukuri, Klausen, Karimi, Robbersmyr (bib0002) 2016
Peng, Ye, Chen (bib0162) 2019; 67
Lin, Lu, Chen, Zhou, Sun (bib0021) 2019
Goebel (bib0024) 2017
Liu, Zio (bib0105) 2017; 160
Robles-Velasco, Cortés, Muñuzuri, Onieva (bib0077) 2020; 196
Ranjbar, Moradi, Azami, Jalili (bib0123) 2015
Rabin, Ferradans, Papadakis (bib0060) 2014
Li, Wen (bib0045) 2014
Winnig (bib0019) 2016; 57
Cheng, Chan (bib0124) 2019; 81
Ahmad, Khan, Islam, Kim (bib0119) 2019; 184
Baraldi, Enders (bib0126) 2010
Magesh, Myloth, Tom (bib0141) 2020
Quintanilha, Elias, da Silva, Fonini, da Silva, Netto (bib0030) 2021
Lei, Jia, Lin, Xing, Ding (bib0088) 2016
Liu (10.1016/j.ress.2021.108119_bib0105) 2017; 160
Gretton (10.1016/j.ress.2021.108119_bib0062) 2012
Magesh (10.1016/j.ress.2021.108119_bib0141) 2020
Odgaard (10.1016/j.ress.2021.108119_bib0048) 2008
Shi (10.1016/j.ress.2021.108119_bib0114) 2021; 205
Benker (10.1016/j.ress.2021.108119_bib0163) 2020
Reder (10.1016/j.ress.2021.108119_bib0086) 2018; 169
Yan (10.1016/j.ress.2021.108119_bib0046) 2017
Costilla-Reyes (10.1016/j.ress.2021.108119_bib0092) 2019
Rabin (10.1016/j.ress.2021.108119_bib0060) 2014
Ribeiro (10.1016/j.ress.2021.108119_bib0140) 2016
Xu (10.1016/j.ress.2021.108119_bib0097) 2020
Wang (10.1016/j.ress.2021.108119_bib0054) 2018
Cheng (10.1016/j.ress.2021.108119_bib0124) 2019; 81
Saxena (10.1016/j.ress.2021.108119_bib0016) 2010; 1
Marseguerra (10.1016/j.ress.2021.108119_bib0031) 2014; 129
Samanta (10.1016/j.ress.2021.108119_bib0101) 2003; 17
Lei (10.1016/j.ress.2021.108119_bib0003) 2018
Eekhout (10.1016/j.ress.2021.108119_bib0122) 2012
Ahmed (10.1016/j.ress.2021.108119_bib0036) 2016
Baptista (10.1016/j.ress.2021.108119_bib0118) 2019; 184
Yang (10.1016/j.ress.2021.108119_bib0089) 2018
Liu (10.1016/j.ress.2021.108119_bib0108) 2019; 185
Saltelli (10.1016/j.ress.2021.108119_bib0145) 2002
Han (10.1016/j.ress.2021.108119_bib0096) 2019
Aven (10.1016/j.ress.2021.108119_bib0143) 2011
Yang (10.1016/j.ress.2021.108119_bib0049) 2019
Zhang (10.1016/j.ress.2021.108119_bib0090) 2019
Chen (10.1016/j.ress.2021.108119_bib0138) 2020
Kolouri (10.1016/j.ress.2021.108119_bib0058) 2017
Ng (10.1016/j.ress.2021.108119_bib0066) 2015
Di Maio (10.1016/j.ress.2021.108119_bib0043) 2013
Zhao (10.1016/j.ress.2021.108119_bib0117) 2017; 164
Nguyen (10.1016/j.ress.2021.108119_bib0113) 2019; 188
Donders (10.1016/j.ress.2021.108119_bib0127) 2006
Yang (10.1016/j.ress.2021.108119_bib0013) 2020
Friedman (10.1016/j.ress.2021.108119_bib0151) 2001
Jardine (10.1016/j.ress.2021.108119_bib0053) 2006; 20
Chen (10.1016/j.ress.2021.108119_bib0023) 2018
Liu (10.1016/j.ress.2021.108119_bib0035) 2017; 87
Baraldi (10.1016/j.ress.2021.108119_bib0084) 2015; 58
Li (10.1016/j.ress.2021.108119_bib0059) 2013
Goldstein (10.1016/j.ress.2021.108119_bib0152) 2015
Xiao (10.1016/j.ress.2021.108119_bib0130) 2017
Lukoševičius (10.1016/j.ress.2021.108119_bib0098) 2009; 3
Montavon (10.1016/j.ress.2021.108119_bib0061) 2016
Sankararaman (10.1016/j.ress.2021.108119_bib0102) 2015
Winnig (10.1016/j.ress.2021.108119_bib0019) 2016; 57
Xu (10.1016/j.ress.2021.108119_bib0078) 2017
Liu (10.1016/j.ress.2021.108119_bib0158) 2016; 47
Li (10.1016/j.ress.2021.108119_bib0110) 2018
Qian (10.1016/j.ress.2021.108119_bib0100) 2018; 70
Compare (10.1016/j.ress.2021.108119_bib0006) 2020
Kandukuri (10.1016/j.ress.2021.108119_bib0002) 2016
Di Maio (10.1016/j.ress.2021.108119_bib0014) 2016
Caesarendra (10.1016/j.ress.2021.108119_bib0057) 2017
Ahmad (10.1016/j.ress.2021.108119_bib0119) 2019; 184
Leturiondo (10.1016/j.ress.2021.108119_bib0131) 2017
Siryani (10.1016/j.ress.2021.108119_bib0018) 2017
Xu (10.1016/j.ress.2021.108119_bib0039) 2019
Mujica (10.1016/j.ress.2021.108119_bib0050) 2011
Robles-Velasco (10.1016/j.ress.2021.108119_bib0077) 2020; 196
He (10.1016/j.ress.2021.108119_bib0111) 2018; 180
Wang (10.1016/j.ress.2021.108119_bib0005) 2017
Deng (10.1016/j.ress.2021.108119_bib0161) 2020; 196
Baraldi (10.1016/j.ress.2021.108119_bib0157) 2011; 96
Zhang (10.1016/j.ress.2021.108119_bib0160) 2019; 124
Duan (10.1016/j.ress.2021.108119_bib0028) 2020; 193
King (10.1016/j.ress.2021.108119_bib0144) 2007
Tamilselvan (10.1016/j.ress.2021.108119_bib0073) 2013; 115
Tolo (10.1016/j.ress.2021.108119_bib0032) 2019; 186
Tang (10.1016/j.ress.2021.108119_bib0074) 2019; 186
Dumargue (10.1016/j.ress.2021.108119_bib0010) 2016
García Nieto (10.1016/j.ress.2021.108119_bib0116) 2015; 138
Fink (10.1016/j.ress.2021.108119_bib0072) 2014; 121
Seo (10.1016/j.ress.2021.108119_bib0052) 2006
Kwon (10.1016/j.ress.2021.108119_bib0017) 2016
Yin (10.1016/j.ress.2021.108119_bib0093) 2014
Honaker (10.1016/j.ress.2021.108119_bib0129) 2010; 54
Pele (10.1016/j.ress.2021.108119_bib0064) 2009
Zio (10.1016/j.ress.2021.108119_bib0025) 2009
Lin (10.1016/j.ress.2021.108119_bib0021) 2019
Lei (10.1016/j.ress.2021.108119_bib0095) 2016; 63
10.1016/j.ress.2021.108119_bib0150
Barreno (10.1016/j.ress.2021.108119_bib0154) 2010
Huang (10.1016/j.ress.2021.108119_bib0051) 2017
Jaeger (10.1016/j.ress.2021.108119_bib0099) 2016; 18
Yu (10.1016/j.ress.2021.108119_bib0042) 2018
Wang (10.1016/j.ress.2021.108119_bib0068) 2020
Goebel (10.1016/j.ress.2021.108119_bib0024) 2017
Joe Qin (10.1016/j.ress.2021.108119_bib0041) 2009
Li (10.1016/j.ress.2021.108119_bib0037) 2019
Arcos Jiménez (10.1016/j.ress.2021.108119_bib0075) 2019; 184
Baraldi (10.1016/j.ress.2021.108119_bib0079) 2015
Ramdas (10.1016/j.ress.2021.108119_bib0065) 2017
Sekhar (10.1016/j.ress.2021.108119_bib0026) 2004
Elattar (10.1016/j.ress.2021.108119_bib0008) 2016
Li (10.1016/j.ress.2021.108119_bib0109) 2019; 182
Chen (10.1016/j.ress.2021.108119_bib0115) 2019; 185
Chang (10.1016/j.ress.2021.108119_bib0120) 2019; 186
Sharp (10.1016/j.ress.2021.108119_bib0011) 2018
Arn (10.1016/j.ress.2021.108119_bib0080) 2018
Li (10.1016/j.ress.2021.108119_bib0091) 2019
Raissi (10.1016/j.ress.2021.108119_bib0148) 2019; 378
Clark (10.1016/j.ress.2021.108119_bib0133) 2003
Si (10.1016/j.ress.2021.108119_bib0107) 2011
Kammammettu (10.1016/j.ress.2021.108119_bib0067) 2019
Bengio (10.1016/j.ress.2021.108119_bib0087) 2013
Downey (10.1016/j.ress.2021.108119_bib0121) 2019; 182
Xu (10.1016/j.ress.2021.108119_bib0134) 2020
Liu (10.1016/j.ress.2021.108119_bib0022) 2018
Cakir (10.1016/j.ress.2021.108119_bib0081) 2019
Jeong Haedong (10.1016/j.ress.2021.108119_bib0027) 2019; 184
10.1016/j.ress.2021.108119_bib0147
Garcia-Alvarez (10.1016/j.ress.2021.108119_bib0071) 2009
Štrumbelj (10.1016/j.ress.2021.108119_bib0142) 2014
Park (10.1016/j.ress.2021.108119_bib0069) 2018
Hastie (10.1016/j.ress.2021.108119_bib0040) 2009
10.1016/j.ress.2021.108119_bib0149
Jennions (10.1016/j.ress.2021.108119_bib0009) 2016; 7
Gan (10.1016/j.ress.2021.108119_bib0007) 2020
Han (10.1016/j.ress.2021.108119_bib0012) 2019
Xing (10.1016/j.ress.2021.108119_bib0038) 2019; 55
Baraldi (10.1016/j.ress.2021.108119_bib0126) 2010
Zio (10.1016/j.ress.2021.108119_bib0001) 2016
Zeng (10.1016/j.ress.2021.108119_bib0015) 2017; 231
Vergouw (10.1016/j.ress.2021.108119_bib0128) 2010
Zhu (10.1016/j.ress.2021.108119_bib0094) 2018
Panda (10.1016/j.ress.2021.108119_bib0070) 2012
Kankar (10.1016/j.ress.2021.108119_bib0055) 2011; 11
Razavi-Far (10.1016/j.ress.2021.108119_bib0125) 2019
Lundberg (10.1016/j.ress.2021.108119_bib0137) 2017
Tahan (10.1016/j.ress.2021.108119_bib0004) 2017
Li (10.1016/j.ress.2021.108119_bib0045) 2014
Marugán (10.1016/j.ress.2021.108119_bib0034) 2019; 191
Bian (10.1016/j.ress.2021.108119_bib0085) 2019; 188
Ranjbar (10.1016/j.ress.2021.108119_bib0123) 2015
Listou Ellefsen (10.1016/j.ress.2021.108119_bib0112) 2019; 183
Peng (10.1016/j.ress.2021.108119_bib0162) 2019; 67
Hu (10.1016/j.ress.2021.108119_bib0033) 2007; 92
Cao (10.1016/j.ress.2021.108119_bib0083) 2019
Yang (10.1016/j.ress.2021.108119_bib0135) 2008
Baraldi (10.1016/j.ress.2021.108119_bib0044) 2015
Daigle (10.1016/j.ress.2021.108119_bib0103) 2011; 2
Sankararaman (10.1016/j.ress.2021.108119_bib0155) 2020; 6
Lei (10.1016/j.ress.2021.108119_bib0088) 2016
Liu (10.1016/j.ress.2021.108119_bib0139) 2020
Zheng (10.1016/j.ress.2021.108119_bib0082) 2018
Wan (10.1016/j.ress.2021.108119_bib0029) 2019
Raj (10.1016/j.ress.2021.108119_bib0056) 2013
Zhang (10.1016/j.ress.2021.108119_bib0104) 2011
Brownjohn (10.1016/j.ress.2021.108119_bib0106) 2011
Yoon (10.1016/j.ress.2021.108119_bib0136) 1995
Manjurul Islam (10.1016/j.ress.2021.108119_bib0076) 2019; 184
Bangalore (10.1016/j.ress.2021.108119_bib0047) 2017
Papernot (10.1016/j.ress.2021.108119_bib0153) 2016
Quintanilha (10.1016/j.ress.2021.108119_bib0030) 2021
Flage (10.1016/j.ress.2021.108119_bib0156) 2014; 34
10.1016/j.ress.2021.108119_bib0164
Cuturi (10.1016/j.ress.2021.108119_bib0063) 2014
Borgonovo (10.1016/j.ress.2021.108119_bib0146) 2016
Shi (10.1016/j.ress.2021.108119_bib0020) 2016
Marshall (10.1016/j.ress.2021.108119_bib0132) 2010
Al-Dahidi (10.1016/j.ress.2021.108119_bib0159) 2017; 231
References_xml – year: 2015
  ident: bib0066
  article-title: Distance-based analysis of dynamical systems reconstructed from vibrations for bearing diagnostics
  publication-title: Nonlinear Dyn
– year: 2016
  ident: bib0008
  article-title: Prognostics: a literature review
  publication-title: Complex & Intell Syst
– year: 2017
  ident: bib0130
  article-title: Fault diagnosis and prognosis of wastewater processes with incomplete data by the auto-associative neural networks and ARMA model
  publication-title: Chemom Intell Lab Syst
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: bib0148
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J Comput Phys
– year: 2018
  ident: bib0054
  article-title: Study on nonlinear dynamic characteristics inherent in offshore jacket platform using long-term monitored response of ice-structure interaction
  publication-title: Appl Ocean Res
– reference: L. Biggio, A. Wieland, M.A. Chao, I. Kastanis, & O. Fink (2021). Uncertainty-aware remaining useful life predictor. arXiv preprint
– year: 2019
  ident: bib0049
  article-title: Real-time condition monitoring and fault detection of components based on machine-learning reconstruction model
  publication-title: Renew Energy
– start-page: 703
  year: 2019
  end-page: 716
  ident: bib0037
  article-title: MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks
– volume: 186
  start-page: 51
  year: 2019
  end-page: 63
  ident: bib0120
  article-title: A hybrid prognostic method for system degradation based on particle filter and relevance vector machine
  publication-title: Reliab Eng Syst Saf
– volume: 231
  start-page: 36
  year: 2017
  end-page: 52
  ident: bib0015
  article-title: A hierarchical decision-making framework for the assessment of the prediction capability of prognostic methods
  publication-title: J Risk Reliab
– volume: 185
  start-page: 502
  year: 2019
  end-page: 510
  ident: bib0108
  article-title: Remaining useful life prediction based on health index similarity
  publication-title: Reliab Eng Syst Saf
– year: 2019
  ident: bib0021
  article-title: Unsupervised deep learning of compact binary descriptors
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 121
  start-page: 198
  year: 2014
  end-page: 206
  ident: bib0072
  article-title: Predicting component reliability and level of degradation with complex-valued neural networks
  publication-title: Reliab Eng Syst Saf
– year: 2018
  ident: bib0094
  article-title: Fault diagnosis approach for photovoltaic arrays based on unsupervised sample clustering and probabilistic neural network model
  publication-title: Sol Energy
– reference: L. Von Rueden et al., “Informed machine learning-a taxonomy and survey of integrating knowledge into learning systems.” IEEE Transactions on Knowledge and Data Engineering preprint pp.1-1, doi: 10.1109/TKDE.2021.3079836.
– year: 2009
  ident: bib0064
  article-title: Fast and robust earth mover's distances
  publication-title: Proceedings of the IEEE international conference on computer vision
– volume: 182
  start-page: 1
  year: . 2019
  end-page: 12
  ident: bib0121
  article-title: Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds
  publication-title: Reliab Eng Syst Saf
– year: 2007
  ident: bib0144
  article-title: Ranking bioprocess variables using global sensitivity analysis: a case study in centrifugation
  publication-title: Bioprocess Biosyst Eng
– year: 2019
  ident: bib0029
  article-title: Bayesian multi-task learning methodology for reconstruction of structural health monitoring data
  publication-title: Struct Health Monit
– year: 2015
  ident: bib0123
  article-title: An imputation-based matrix factorization method for improving accuracy of collaborative filtering systems
  publication-title: Eng Appl Artif Intell
– year: 2012
  ident: bib0062
  article-title: A kernel two-sample test
  publication-title: J Mach Learn Res
– volume: 183
  start-page: 240
  year: 2019
  end-page: 251
  ident: bib0112
  article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture
  publication-title: Reliab Eng Syst Saf
– year: 2020
  ident: bib0006
  article-title: Challenges to IoT-enabled predictive maintenance for industry 4.0
  publication-title: IEEE Internet Things J
– year: 2020
  ident: bib0139
  article-title: Intelligent prognostics of machining tools based on adaptive variational mode decomposition and deep learning method with attention mechanism
  publication-title: Neurocomputing
– volume: 124
  start-page: 479
  year: 2019
  end-page: 501
  ident: bib0160
  article-title: An ensemble of models for integrating dependent sources of information for the prognosis of the remaining useful life of proton exchange membrane fuel cells
  publication-title: Mech Syst Signal Process
– volume: 185
  start-page: 372
  year: 2019
  end-page: 382
  ident: bib0115
  article-title: Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process
  publication-title: Reliab Eng Syst Saf
– volume: 186
  start-page: 110
  year: 2019
  end-page: 119
  ident: bib0032
  article-title: Robust on-line diagnosis tool for the early accident detection in nuclear power plants
  publication-title: Reliab Eng Syst Saf
– year: 2021
  ident: bib0030
  article-title: A fault detector/classifier for closed-ring power generators using machine learning
  publication-title: Reliab Eng Syst Saf
– year: 2018
  ident: bib0080
  article-title: Motion segmentation via generalized curvatures
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 63
  start-page: 3137
  year: 2016
  end-page: 3147
  ident: bib0095
  article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
  publication-title: IEEE Trans Ind Electron
– year: 2008
  ident: bib0135
  article-title: Self-adaptive differential evolution with neighborhood search
  publication-title: Proceedings of the 2008 IEEE congress on evolutionary computation, CEC 2008
– reference: R. Tipireddy, P. Perdikaris, P. Stinis, & A. Tartakovsky (2019). A comparative study of physics-informed neural network models for learning unknown dynamics and constitutive relations. arXiv preprint
– volume: 96
  start-page: 480
  year: 2011
  end-page: 488
  ident: bib0157
  article-title: Classifier-ensemble incremental-learning procedure for nuclear transient identification at different operational conditions
  publication-title: Reliab Eng Syst Saf
– year: 2016
  ident: bib0061
  article-title: Wasserstein training of restricted boltzmann machines
  publication-title: Adv Neural Inf Process Syst
– start-page: 4768
  year: 2017
  end-page: 4777
  ident: bib0137
  article-title: A unified approach to interpreting model predictions
  publication-title: Proceedings of the 31st international conference on neural information processing systems
– year: 2019
  ident: bib0067
  article-title: Change point and fault detection using Kantorovich distance
  publication-title: J Process Control
– year: 2008
  ident: bib0048
  article-title: Observer and data-driven-model-based fault detection in power plant coal mills
  publication-title: IEEE Trans Energy Convers
– year: 2020
  ident: bib0138
  article-title: A novel deep learning method based on attention mechanism for bearing remaining useful life prediction
  publication-title: Applied Soft Computing Journal
– year: 2017
  ident: bib0051
  article-title: Sensor fault diagnosis for structural health monitoring based on statistical hypothesis test and missing variable approach
  publication-title: J Aerosp Eng
– year: 2006
  ident: bib0052
  article-title: A review and comparison of methods for detecting outliersin univariate data sets
  publication-title: Dep Biostat Grad Sch Public Health
– volume: 184
  start-page: 2
  year: 2019
  end-page: 12
  ident: bib0075
  article-title: Dirt and mud detection and diagnosis on a wind turbine blade employing guided waves and supervised learning classifiers
  publication-title: Reliab Eng Syst Saf
– year: 2012
  ident: bib0122
  article-title: Missing data: a systematic review of how they are reported and handled
  publication-title: Epidemiology
– year: 2010
  ident: bib0128
  article-title: The search for stable prognostic models in multiple imputed data sets
  publication-title: BMC Med Res Methodol
– year: 2018
  ident: bib0022
  article-title: Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks
  publication-title: Neurocomputing
– year: 2018
  ident: bib0069
  article-title: The cumulative distribution transform and linear pattern classification
  publication-title: Appl Comput Harmon Anal
– year: 2019
  ident: bib0096
  article-title: An adaptive spatiotemporal feature learning approach for fault diagnosis in complex systems
  publication-title: Mech Syst Signal Process
– year: 2001
  ident: bib0151
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
– year: 2015
  ident: bib0044
  article-title: Robust signal reconstruction for condition monitoring of industrial components via a modified auto associative kernel regression method
  publication-title: Mech Syst Signal Process
– year: 2019
  ident: bib0090
  article-title: Deep latent low-rank representation for face sketch synthesis
  publication-title: IEEE Trans Neural Netw Learn Syst
– year: 2013
  ident: bib0056
  article-title: Early classification of bearing faults using morphological operators and fuzzy inference
  publication-title: IEEE Trans Ind Electron
– volume: 67
  start-page: 2283
  year: 2019
  end-page: 2293
  ident: bib0162
  article-title: Bayesian deep-learning-based health prognostics toward prognostics uncertainty
  publication-title: IEEE Trans Ind Electron
– year: 2016
  ident: bib0020
  article-title: Edge computing: vision and challenges
  publication-title: IEEE Int Things J
– year: 2017
  ident: bib0024
  article-title: Prognostics: the science of making predictions
– year: 2010
  ident: bib0126
  article-title: An introduction to modern missing data analyses
  publication-title: J Sch Psychol
– year: 2006
  ident: bib0127
  article-title: Review: a gentle introduction to imputation of missing values
  publication-title: J Clin Epidemiol
– year: 2009
  ident: bib0041
  article-title: Data-driven fault detection and diagnosis for complex industrial processes
  publication-title: IFAC Proceedingsof the Volumes (IFAC-PapersOnline)
– year: 2017
  ident: bib0078
  article-title: Industrial big data for fault diagnosis: taxonomy, review, and applications
  publication-title: IEEE Access
– volume: 182
  start-page: 208
  year: 2019
  end-page: 218
  ident: bib0109
  article-title: Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction
  publication-title: Reliab Eng Syst Saf
– volume: 70
  start-page: 1034
  year: 2018
  end-page: 1041
  ident: bib0100
  article-title: A simple feedforward convolutional conceptor neural network for classification
  publication-title: Appl Soft Comput
– year: 2019
  ident: bib0092
  article-title: Analysis of Spatio-temporal representations for robust footstep recognition with deep residual neural networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 184
  start-page: 27
  year: 2019
  end-page: 40
  ident: bib0027
  article-title: Hyungcheol Min, “Fault detection and identification method using observer-based residuals
  publication-title: Reliab Eng System Saf
– year: 2011
  ident: bib0143
  article-title: Some considerations on the treatment of uncertainties in risk assessment for practical decision making
  publication-title: Reliab Eng Syst Saf
– volume: 20
  start-page: 1483
  year: 2006
  end-page: 1510
  ident: bib0053
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech Syst Signal Process
– year: 2016
  ident: bib0140
  article-title: ‘Why should i trust you?’ Explaining the predictions of any classifier
  publication-title: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data Mining
– year: 2019
  ident: bib0083
  article-title: Feedback convolutional neural network for visual localization and segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2010
  ident: bib0132
  article-title: Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study
  publication-title: BMC Med Res Methodol
– volume: 196
  year: 2020
  ident: bib0161
  article-title: Controlling the accuracy and uncertainty trade-off in RUL prediction with a surrogate wiener propagation model
  publication-title: Reliab Eng Syst Saf
– year: 2018
  ident: bib0042
  article-title: A novel hybrid of auto-associative kernel regression and dynamic independent component analysis for fault detection in nonlinear multimode processes
  publication-title: J Process Control
– volume: 129
  start-page: 1
  year: 2014
  end-page: 9
  ident: bib0031
  article-title: Early detection of gradual concept drifts by text categorization and support Vector Machine techniques: the TRIO algorithm
  publication-title: Reliab Eng Syst Saf
– year: 2019
  ident: bib0091
  article-title: Deep supervision with intermediate concepts
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2017
  ident: bib0018
  article-title: A machine learning decision-support system improves the internet of things’ smart meter operations
  publication-title: IEEE Int Things J
– year: 2017
  ident: bib0004
  article-title: Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: a review
  publication-title: Appl Energy
– year: 2017
  ident: bib0047
  article-title: An artificial neural network-based condition monitoring method for wind turbines, with application to the monitoring of the gearbox
  publication-title: Wind Energy
– volume: 87
  start-page: 401
  year: 2017
  end-page: 409
  ident: bib0035
  article-title: A SVM framework for fault detection of the braking system in a high speed train
  publication-title: Mech Syst Signal Process
– volume: 180
  start-page: 385
  year: 2018
  end-page: 393
  ident: bib0111
  article-title: Developing ladder network for intelligent evaluation system: case of remaining useful life prediction for centrifugal pumps
  publication-title: Reliability Eng Syst Saf
– volume: 1
  start-page: 4
  year: 2010
  end-page: 23
  ident: bib0016
  article-title: Metrics for offline evaluation of prognostic performance
  publication-title: Int J Progn Health Manag
– volume: 193
  year: 2020
  ident: bib0028
  article-title: A two-level Bayesian early fault detection for mechanical equipment subject to dependent failure modes
  publication-title: Reliab Eng Syst Saf
– year: 2014
  ident: bib0060
  article-title: Adaptive color transfer with relaxed optimal transport
  publication-title: 2014 IEEE international conference on image processing, ICIP 2014
– volume: 160
  start-page: 21
  year: 2017
  end-page: 36
  ident: bib0105
  article-title: System dynamic reliability assessment and failure prognostics
  publication-title: Reliab Eng Syst Saf
– volume: 115
  start-page: 124
  year: 2013
  end-page: 135
  ident: bib0073
  article-title: Failure diagnosis using deep belief learning based health state classification
  publication-title: Reliab Eng Syst Saf
– year: 2018
  ident: bib0082
  article-title: Sparse Temporal encoding of visual features for robust object recognition by spiking neurons
  publication-title: IEEE Trans Neural Netw Learn Syst
– year: 2019
  ident: bib0125
  article-title: An integrated imputation-prediction scheme for prognostics of battery data with missing observations
  publication-title: Expert Syst Appl
– year: 2015
  ident: bib0079
  article-title: Unsupervised clustering of vibration signals for identifying anomalous conditions in a nuclear turbine
  publication-title: J Intell Fuzzy Syst
– reference: A. Karpatne, W. Watkins, J. Read, and V. Kumar, “Physics-guided neural networks (PGNN): an application in lake temperature modeling.” arXiv preprint
– year: 2012
  ident: bib0070
  article-title: Distributed soft fault detection algorithm in wireless sensor networks using statistical test
  publication-title: Proceedings of the 2012 2nd IEEE international conference on parallel, distributed and grid computing, PDGC 2012
– year: 2020
  ident: bib0013
  article-title: Designing mission abort strategies based on early-warning information: application to UAV
  publication-title: IEEE Trans Ind Inf
– year: 2016
  ident: bib0017
  article-title: IoT-Based prognostics and systems health management for industrial applications
  publication-title: IEEE Access
– volume: 186
  start-page: 24
  year: 2019
  end-page: 36
  ident: bib0074
  article-title: Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system
  publication-title: Reliab Eng Syst Saf
– year: 2017
  ident: bib0131
  article-title: Architecture for hybrid modelling and its application to diagnosis and prognosis with missing data
  publication-title: Meas J Int Meas Confed
– year: 2011
  ident: bib0050
  article-title: Q-statistic and t2-statistic pca-based measures for damage assessment in structures
  publication-title: Struct Health Monit
– year: 2019
  ident: bib0081
  article-title: Hashing with mutual information
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 138
  start-page: 219
  year: 2015
  end-page: 231
  ident: bib0116
  article-title: Hybrid PSO-SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability
  publication-title: Reliab Eng Syst Saf
– volume: 184
  start-page: 228
  year: 2019
  end-page: 239
  ident: bib0118
  article-title: Remaining useful life estimation in aeronautics: combining data-driven and Kalman filtering
  publication-title: Reliab Eng Syst Saf
– volume: 184
  start-page: 67
  year: 2019
  end-page: 76
  ident: bib0119
  article-title: A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models
  publication-title: Reliab Eng Syst Saf
– year: 2014
  ident: bib0142
  article-title: Explaining prediction models and individual predictions with feature contributions
  publication-title: Knowl Inf Syst
– year: 2019
  ident: bib0039
  article-title: Anomaly detection for industrial systems using generative adversarial networks
  publication-title: Proceedings of the 4th International Conference on System Reliability and Safety (ICSRS 2019)
– year: 2020
  ident: bib0068
  article-title: Fault detection based on optimal transport theory
  publication-title: Proceedings of the ESREL 2020 – PSAM 15
– volume: 54
  start-page: 561
  year: 2010
  end-page: 581
  ident: bib0129
  article-title: What to do about missing values in time-series cross-section data
  publication-title: Am J Pol Sci
– year: 2016
  ident: bib0010
  article-title: An approach to designing PHM systems with systems engineering
  publication-title: Proceedings of the European conference of the Prognostics and health management society
– year: 2015
  ident: bib0102
  article-title: Uncertainty in prognostics and systems health management
  publication-title: Int J Progn Health Manag
– volume: 17
  start-page: 317
  year: 2003
  end-page: 328
  ident: bib0101
  article-title: Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
  publication-title: Mech Syst Signal Process
– volume: 205
  year: 2021
  ident: bib0114
  article-title: A dual-LSTM framework combining change point detection and remaining useful life prediction
  publication-title: Reliab Eng Syst Saf
– year: 2010
  ident: bib0154
  article-title: The security of machine learning
  publication-title: Mach Learn
– year: 2014
  ident: bib0093
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans Ind Electron
– year: 2017
  ident: bib0057
  article-title: A review of feature extraction methods in vibration-based condition monitoring and its application for degradation trend estimation of low-speed slew bearing
  publication-title: Machines
– year: 2016
  ident: bib0036
  article-title: A survey of network anomaly detection techniques
  publication-title: J Netw Comput Appl
– year: 2009
  ident: bib0071
  article-title: Fault detection using principal component Analysis (PCA) in a wastewater treatment plant (WWTP)
  publication-title: Proceedings of the 62th international student's scientific conference
– year: 2016
  ident: bib0088
  article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big Data
  publication-title: IEEE Trans Ind Electron
– volume: 58
  start-page: 160
  year: 2015
  end-page: 178
  ident: bib0084
  article-title: Clustering for unsupervised fault diagnosis in nuclear turbine shut-down transients
  publication-title: Mech Syst Signal Process
– volume: 47
  start-page: 553
  year: 2016
  end-page: 564
  ident: bib0158
  article-title: A SVR-based ensemble approach for drifting data streams with recurring patterns
  publication-title: Appl Soft Comput
– volume: 3
  start-page: 127
  year: 2009
  end-page: 149
  ident: bib0098
  article-title: Reservoir computing approaches to recurrent neural network training
  publication-title: Comput Sci Rev
– volume: 11
  start-page: 2300
  year: 2011
  end-page: 2312
  ident: bib0055
  article-title: Fault diagnosis of ball bearings using continuous wavelet transform
  publication-title: Appl Soft Comput
– year: 2013
  ident: bib0059
  article-title: A novel earth mover's distance methodology for image matching with gaussian mixture models
  publication-title: Proceedings of the IEEE international conference on computer vision
– year: 2014
  ident: bib0063
  article-title: Fast computation of Wasserstein barycenters
  publication-title: Proceedings of the31st international conference on machine learning, ICML 2014
– year: 2018
  ident: bib0003
  article-title: Machinery health prognostics: a systematic review from data acquisition to RUL prediction
  publication-title: Mech Syst Signal Process
– volume: 184
  start-page: 55
  year: 2019
  end-page: 66
  ident: bib0076
  article-title: Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector Machines
  publication-title: Reliab Eng Syst Saf
– volume: 191
  year: 2019
  ident: bib0034
  article-title: Reliability analysis of detecting false alarms that employ neural networks: a real case study on wind turbines
  publication-title: Reliab Eng Syst Saf
– year: 2018
  ident: bib0089
  article-title: Incomplete-data oriented multiview dimension reduction via sparse low-rank representation
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 164
  start-page: 74
  year: 2017
  end-page: 83
  ident: bib0117
  article-title: Remaining useful life prediction of aircraft engine based on degradation pattern learning
  publication-title: Reliab Eng Syst Saf
– year: 2018
  ident: bib0110
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab Eng Syst Saf
– year: 2016
  ident: bib0001
  article-title: Some challenges and opportunities in reliability engineering
  publication-title: IEEE Trans Reliab
– year: 2017
  ident: bib0058
  article-title: Optimal Mass Transport: signal processing and machine-learning applications
  publication-title: IEEE Signal Process Mag
– year: 2020
  ident: bib0163
  article-title: Utilizing uncertainty information in remaining useful life estimation via Bayesian neural networks and Hamiltonian Monte Carlo
  publication-title: J Manuf Syst
– year: 2020
  ident: bib0007
  article-title: Prognostics and health management of electronics: fundamentals, machine learning, and the internet of things
  publication-title: Life Cycle Reliab Saf Eng
– volume: 81
  start-page: 283
  year: 2019
  end-page: 299
  ident: bib0124
  article-title: A novel purity-based k nearest neighbors imputation method and its application in financial distress prediction
  publication-title: Eng Appl Artif Intell
– year: 2003
  ident: bib0133
  article-title: Developing a prognostic model in the presence of missing data: an ovarian cancer case study
  publication-title: J Clin Epidemiol
– volume: 57
  start-page: 5
  year: 2016
  ident: bib0019
  article-title: GE’s big bet on data and analytics
  publication-title: Proc MIT Sloan Manag Rev
– year: 2013
  ident: bib0087
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2016
  ident: bib0146
  article-title: Sensitivity analysis: a review of recent advances
  publication-title: Eur J Oper Res
– volume: 231
  start-page: 350
  year: 2017
  end-page: 363
  ident: bib0159
  article-title: A locally adaptive ensemble approach for data-driven prognostics of heterogeneous fleets
  publication-title: Proc Inst Mech Eng, Part O J Risk Reliab
– volume: 7
  start-page: 1
  year: 2016
  end-page: 16
  ident: bib0009
  article-title: Integrating IVHM and asset design
  publication-title: Int J Progn Health Manag
– year: 2018
  ident: bib0011
  article-title: Hierarchical modeling of a manufacturing work cell to promote contextualized PHM information across multiple levels
  publication-title: Manuf Lett
– volume: 188
  start-page: 432
  year: 2019
  end-page: 443
  ident: bib0085
  article-title: Degradation state mining and identification for railway point machines
  publication-title: Reliab Eng Syst Saf
– volume: 55
  start-page: 45
  year: 2019
  end-page: 58
  ident: bib0038
  article-title: Robust Ada Boost based ensemble of one-class support vector machines
  publication-title: Inf Fus
– volume: 169
  start-page: 554
  year: 2018
  end-page: 569
  ident: bib0086
  article-title: Data-driven learning framework for associating weather conditions and wind turbine failures
  publication-title: Reliab Eng Syst Saf
– year: 2016
  ident: bib0002
  article-title: A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management
  publication-title: Renew Sustain Energy Rev
– year: 2002
  ident: bib0145
  article-title: On the relative importance of input factors in mathematical models
  publication-title: J Am Stat Assoc
– year: 2011
  ident: bib0104
  article-title: A review on prognostics and health monitoring of Li-ion battery
  publication-title: J Power Sources
– volume: 92
  start-page: 332
  year: 2007
  end-page: 340
  ident: bib0033
  article-title: Robust recurrent neural network modeling for software fault detection and correction prediction
  publication-title: Reliab Eng Syst Saf
– year: 2015
  ident: bib0152
  article-title: Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation
  publication-title: J Comput Gr Stat
– year: 2009
  ident: bib0040
  article-title: Multi-class AdaBoost
  publication-title: Stat Interface
– year: 2020
  ident: bib0134
  article-title: Fault prognostics by an ensemble of Echo State Networks in presence of event based measurements
  publication-title: Eng Appl Artif Intell
– year: 2011
  ident: bib0106
  article-title: Vibration-based monitoring of civil infrastructure: challenges and successes
  publication-title: J Civ Struct Health Monit
– start-page: 12019.
  year: 2019
  end-page: 8
  ident: bib0012
  publication-title: A distributed autonomic logistics system with parallel-computing diagnostic algorithm for aircrafts
– year: 2011
  ident: bib0107
  article-title: Remaining useful life estimation - a review on the statistical data driven approaches
  publication-title: Eur J Oper Res
– year: 2009
  ident: bib0025
  article-title: “Computational methods for reliability and risk analysis,” in
– year: 2014
  ident: bib0045
  article-title: A model-based fault detection and diagnostic methodology based on PCA method and wavelet transform
  publication-title: Energy Build
– volume: 18
  start-page: 1
  year: 2016
  end-page: 43
  ident: bib0099
  article-title: Using conceptors to manage neural long-term memories for temporal patterns
  publication-title: Mach Learn
– volume: 196
  year: 2020
  ident: bib0077
  article-title: Prediction of pipe failures in water supply networks using logistic regression and support vector classification
  publication-title: Reliab Eng Syst Saf
– year: 2017
  ident: bib0046
  article-title: Online fault detection methods for chillers combining extended Kalman filter and recursive one-class SVM
  publication-title: Neurocomputing
– volume: 188
  start-page: 251
  year: 2019
  end-page: 262
  ident: bib0113
  article-title: A new dynamic predictive maintenance framework using deep learning for failure prognostics
  publication-title: Reliab Eng Syst Saf
– year: 2004
  ident: bib0026
  article-title: Model-based identification of two cracks in a rotor system
  publication-title: Mech Syst Signal Process
– volume: 2
  start-page: 84
  year: 2011
  end-page: 99
  ident: bib0103
  article-title: A model-based prognostics approach applied to pneumatic valves
  publication-title: Int J Progn Health Manag
– year: 2016
  ident: bib0014
  article-title: Prediction capability assessment of data-driven prognostic methods for railway applications
  publication-title: Proceedings of the PHM society european conference PHM society.org
– year: 2013
  ident: bib0043
  article-title: Fault detection in nuclear power plants components by a combination of statistical methods
  publication-title: IEEE Trans Reliab
– volume: 6
  year: 2020
  ident: bib0155
  article-title: Uncertainty in PHM
  publication-title: Int J Progn Health Manag
– reference: .
– year: 2020
  ident: bib0141
  article-title: An Explainable machine learning model for early detection of Parkinson's disease using LIME on DaTSCAN imagery
  publication-title: Comput. Biol. Med.
– year: 2017
  ident: bib0005
  article-title: Prognostics and health management: a review of vibration based bearing and gear health indicators
  publication-title: IEEE Access
– year: 2018
  ident: bib0023
  article-title: Detection of weak transient signals based on unsupervised learning for bearing fault diagnosis
  publication-title: Neurocomputing
– year: 2020
  ident: bib0097
  article-title: Fault diagnostics by conceptors-aided clustering
  publication-title: 2020
– volume: 34
  start-page: 1196
  year: 2014
  end-page: 1207
  ident: bib0156
  article-title: Concerns, challenges, and directions of development for the issue of representing uncertainty in risk assessment
  publication-title: Risk Anal
– year: 2017
  ident: bib0065
  article-title: On wasserstein two-sample testing and related families of nonparametric tests
  publication-title: Entropy
– year: 2016
  ident: bib0153
  article-title: Practical black-box attacks against Deep learning systems using adversarial examples
  publication-title: ASIA CCS 2017-Proceedings of the 2017 ACM Asia conference on computer and communications security
– year: 1995
  ident: bib0136
  article-title: Multiple attribute decision making: an introduction
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0148
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2018.10.045
– year: 2014
  ident: 10.1016/j.ress.2021.108119_bib0045
  article-title: A model-based fault detection and diagnostic methodology based on PCA method and wavelet transform
  publication-title: Energy Build
– volume: 129
  start-page: 1
  year: 2014
  ident: 10.1016/j.ress.2021.108119_bib0031
  article-title: Early detection of gradual concept drifts by text categorization and support Vector Machine techniques: the TRIO algorithm
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2014.03.014
– year: 2016
  ident: 10.1016/j.ress.2021.108119_bib0008
  article-title: Prognostics: a literature review
  publication-title: Complex & Intell Syst
  doi: 10.1007/s40747-016-0019-3
– volume: 11
  start-page: 2300
  issue: 2
  year: 2011
  ident: 10.1016/j.ress.2021.108119_bib0055
  article-title: Fault diagnosis of ball bearings using continuous wavelet transform
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2010.08.011
– year: 2010
  ident: 10.1016/j.ress.2021.108119_bib0126
  article-title: An introduction to modern missing data analyses
  publication-title: J Sch Psychol
  doi: 10.1016/j.jsp.2009.10.001
– volume: 6
  issue: 4
  year: 2020
  ident: 10.1016/j.ress.2021.108119_bib0155
  article-title: Uncertainty in PHM
  publication-title: Int J Progn Health Manag
– year: 2014
  ident: 10.1016/j.ress.2021.108119_bib0093
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans Ind Electron
– year: 2020
  ident: 10.1016/j.ress.2021.108119_bib0068
  article-title: Fault detection based on optimal transport theory
– volume: 58
  start-page: 160
  year: 2015
  ident: 10.1016/j.ress.2021.108119_bib0084
  article-title: Clustering for unsupervised fault diagnosis in nuclear turbine shut-down transients
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2014.12.018
– ident: 10.1016/j.ress.2021.108119_bib0147
– volume: 231
  start-page: 36
  issue: 1
  year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0015
  article-title: A hierarchical decision-making framework for the assessment of the prediction capability of prognostic methods
  publication-title: J Risk Reliab
– year: 2009
  ident: 10.1016/j.ress.2021.108119_bib0025
– year: 2016
  ident: 10.1016/j.ress.2021.108119_bib0146
  article-title: Sensitivity analysis: a review of recent advances
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2015.06.032
– volume: 124
  start-page: 479
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0160
  article-title: An ensemble of models for integrating dependent sources of information for the prognosis of the remaining useful life of proton exchange membrane fuel cells
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2019.01.060
– year: 2007
  ident: 10.1016/j.ress.2021.108119_bib0144
  article-title: Ranking bioprocess variables using global sensitivity analysis: a case study in centrifugation
  publication-title: Bioprocess Biosyst Eng
  doi: 10.1007/s00449-006-0109-5
– year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0092
  article-title: Analysis of Spatio-temporal representations for robust footstep recognition with deep residual neural networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2799847
– volume: 188
  start-page: 251
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0113
  article-title: A new dynamic predictive maintenance framework using deep learning for failure prognostics
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.03.018
– year: 2010
  ident: 10.1016/j.ress.2021.108119_bib0154
  article-title: The security of machine learning
  publication-title: Mach Learn
  doi: 10.1007/s10994-010-5188-5
– year: 2016
  ident: 10.1016/j.ress.2021.108119_bib0014
  article-title: Prediction capability assessment of data-driven prognostic methods for railway applications
– volume: 186
  start-page: 110
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0032
  article-title: Robust on-line diagnosis tool for the early accident detection in nuclear power plants
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.02.015
– year: 2016
  ident: 10.1016/j.ress.2021.108119_bib0061
  article-title: Wasserstein training of restricted boltzmann machines
  publication-title: Adv Neural Inf Process Syst
– volume: 188
  start-page: 432
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0085
  article-title: Degradation state mining and identification for railway point machines
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.03.044
– year: 2016
  ident: 10.1016/j.ress.2021.108119_bib0017
  article-title: IoT-Based prognostics and systems health management for industrial applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2587754
– year: 2016
  ident: 10.1016/j.ress.2021.108119_bib0153
  article-title: Practical black-box attacks against Deep learning systems using adversarial examples
– start-page: 703
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0037
  article-title: MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks
– year: 2014
  ident: 10.1016/j.ress.2021.108119_bib0063
  article-title: Fast computation of Wasserstein barycenters
– year: 2018
  ident: 10.1016/j.ress.2021.108119_bib0089
  article-title: Incomplete-data oriented multiview dimension reduction via sparse low-rank representation
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2828699
– year: 2011
  ident: 10.1016/j.ress.2021.108119_bib0143
  article-title: Some considerations on the treatment of uncertainties in risk assessment for practical decision making
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2010.06.001
– year: 2012
  ident: 10.1016/j.ress.2021.108119_bib0122
  article-title: Missing data: a systematic review of how they are reported and handled
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3182576cdb
– year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0047
  article-title: An artificial neural network-based condition monitoring method for wind turbines, with application to the monitoring of the gearbox
  publication-title: Wind Energy
  doi: 10.1002/we.2102
– volume: 182
  start-page: 208
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0109
  article-title: Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.11.011
– year: 2001
  ident: 10.1016/j.ress.2021.108119_bib0151
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
  doi: 10.1214/aos/1013203451
– volume: 193
  year: 2020
  ident: 10.1016/j.ress.2021.108119_bib0028
  article-title: A two-level Bayesian early fault detection for mechanical equipment subject to dependent failure modes
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.106676
– year: 2015
  ident: 10.1016/j.ress.2021.108119_bib0044
  article-title: Robust signal reconstruction for condition monitoring of industrial components via a modified auto associative kernel regression method
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2014.09.013
– year: 2012
  ident: 10.1016/j.ress.2021.108119_bib0070
  article-title: Distributed soft fault detection algorithm in wireless sensor networks using statistical test
– volume: 63
  start-page: 3137
  issue: 5
  year: 2016
  ident: 10.1016/j.ress.2021.108119_bib0095
  article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2016.2519325
– year: 2018
  ident: 10.1016/j.ress.2021.108119_bib0011
  article-title: Hierarchical modeling of a manufacturing work cell to promote contextualized PHM information across multiple levels
  publication-title: Manuf Lett
  doi: 10.1016/j.mfglet.2018.02.003
– year: 2011
  ident: 10.1016/j.ress.2021.108119_bib0050
  article-title: Q-statistic and t2-statistic pca-based measures for damage assessment in structures
  publication-title: Struct Health Monit
  doi: 10.1177/1475921710388972
– year: 2020
  ident: 10.1016/j.ress.2021.108119_bib0007
  article-title: Prognostics and health management of electronics: fundamentals, machine learning, and the internet of things
  publication-title: Life Cycle Reliab Saf Eng
  doi: 10.1007/s41872-020-00119-y
– year: 2018
  ident: 10.1016/j.ress.2021.108119_bib0003
  article-title: Machinery health prognostics: a systematic review from data acquisition to RUL prediction
  publication-title: Mech Syst Signal Process
– year: 2018
  ident: 10.1016/j.ress.2021.108119_bib0054
  article-title: Study on nonlinear dynamic characteristics inherent in offshore jacket platform using long-term monitored response of ice-structure interaction
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2017.12.009
– volume: 67
  start-page: 2283
  issue: 3
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0162
  article-title: Bayesian deep-learning-based health prognostics toward prognostics uncertainty
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2019.2907440
– year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0058
  article-title: Optimal Mass Transport: signal processing and machine-learning applications
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2017.2695801
– ident: 10.1016/j.ress.2021.108119_bib0149
– year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0039
  article-title: Anomaly detection for industrial systems using generative adversarial networks
– volume: 183
  start-page: 240
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0112
  article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.11.027
– year: 2013
  ident: 10.1016/j.ress.2021.108119_bib0087
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.50
– year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0065
  article-title: On wasserstein two-sample testing and related families of nonparametric tests
  publication-title: Entropy
  doi: 10.3390/e19020047
– volume: 34
  start-page: 1196
  issue: 7
  year: 2014
  ident: 10.1016/j.ress.2021.108119_bib0156
  article-title: Concerns, challenges, and directions of development for the issue of representing uncertainty in risk assessment
  publication-title: Risk Anal
  doi: 10.1111/risa.12247
– year: 2020
  ident: 10.1016/j.ress.2021.108119_bib0138
  article-title: A novel deep learning method based on attention mechanism for bearing remaining useful life prediction
  publication-title: Applied Soft Computing Journal
– volume: 92
  start-page: 332
  issue: 3
  year: 2007
  ident: 10.1016/j.ress.2021.108119_bib0033
  article-title: Robust recurrent neural network modeling for software fault detection and correction prediction
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2006.04.007
– volume: 96
  start-page: 480
  issue: 4
  year: 2011
  ident: 10.1016/j.ress.2021.108119_bib0157
  article-title: Classifier-ensemble incremental-learning procedure for nuclear transient identification at different operational conditions
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2010.11.005
– year: 2003
  ident: 10.1016/j.ress.2021.108119_bib0133
  article-title: Developing a prognostic model in the presence of missing data: an ovarian cancer case study
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(02)00539-5
– volume: 180
  start-page: 385
  year: 2018
  ident: 10.1016/j.ress.2021.108119_bib0111
  article-title: Developing ladder network for intelligent evaluation system: case of remaining useful life prediction for centrifugal pumps
  publication-title: Reliability Eng Syst Saf
  doi: 10.1016/j.ress.2018.08.010
– year: 2011
  ident: 10.1016/j.ress.2021.108119_bib0106
  article-title: Vibration-based monitoring of civil infrastructure: challenges and successes
  publication-title: J Civ Struct Health Monit
  doi: 10.1007/s13349-011-0009-5
– ident: 10.1016/j.ress.2021.108119_bib0164
– year: 2010
  ident: 10.1016/j.ress.2021.108119_bib0132
  article-title: Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-10-7
– year: 2013
  ident: 10.1016/j.ress.2021.108119_bib0056
  article-title: Early classification of bearing faults using morphological operators and fuzzy inference
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2012.2188259
– volume: 54
  start-page: 561
  issue: 2
  year: 2010
  ident: 10.1016/j.ress.2021.108119_bib0129
  article-title: What to do about missing values in time-series cross-section data
  publication-title: Am J Pol Sci
  doi: 10.1111/j.1540-5907.2010.00447.x
– year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0125
  article-title: An integrated imputation-prediction scheme for prognostics of battery data with missing observations
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.08.033
– volume: 121
  start-page: 198
  year: 2014
  ident: 10.1016/j.ress.2021.108119_bib0072
  article-title: Predicting component reliability and level of degradation with complex-valued neural networks
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2013.08.004
– year: 2015
  ident: 10.1016/j.ress.2021.108119_bib0152
  article-title: Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation
  publication-title: J Comput Gr Stat
  doi: 10.1080/10618600.2014.907095
– volume: 231
  start-page: 350
  issue: 4
  year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0159
  article-title: A locally adaptive ensemble approach for data-driven prognostics of heterogeneous fleets
  publication-title: Proc Inst Mech Eng, Part O J Risk Reliab
– volume: 2
  start-page: 84
  issue: 2
  year: 2011
  ident: 10.1016/j.ress.2021.108119_bib0103
  article-title: A model-based prognostics approach applied to pneumatic valves
  publication-title: Int J Progn Health Manag
– volume: 185
  start-page: 502
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0108
  article-title: Remaining useful life prediction based on health index similarity
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.02.002
– year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0096
  article-title: An adaptive spatiotemporal feature learning approach for fault diagnosis in complex systems
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.07.048
– year: 2013
  ident: 10.1016/j.ress.2021.108119_bib0043
  article-title: Fault detection in nuclear power plants components by a combination of statistical methods
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2013.2285033
– year: 2009
  ident: 10.1016/j.ress.2021.108119_bib0071
  article-title: Fault detection using principal component Analysis (PCA) in a wastewater treatment plant (WWTP)
– volume: 169
  start-page: 554
  year: 2018
  ident: 10.1016/j.ress.2021.108119_bib0086
  article-title: Data-driven learning framework for associating weather conditions and wind turbine failures
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.10.004
– year: 2008
  ident: 10.1016/j.ress.2021.108119_bib0135
  article-title: Self-adaptive differential evolution with neighborhood search
– year: 2020
  ident: 10.1016/j.ress.2021.108119_bib0006
  article-title: Challenges to IoT-enabled predictive maintenance for industry 4.0
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2019.2957029
– volume: 57
  start-page: 5
  year: 2016
  ident: 10.1016/j.ress.2021.108119_bib0019
  article-title: GE’s big bet on data and analytics
  publication-title: Proc MIT Sloan Manag Rev
– volume: 196
  year: 2020
  ident: 10.1016/j.ress.2021.108119_bib0077
  article-title: Prediction of pipe failures in water supply networks using logistic regression and support vector classification
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.106754
– volume: 17
  start-page: 317
  issue: 2
  year: 2003
  ident: 10.1016/j.ress.2021.108119_bib0101
  article-title: Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
  publication-title: Mech Syst Signal Process
  doi: 10.1006/mssp.2001.1462
– year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0004
  article-title: Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: a review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.04.048
– volume: 115
  start-page: 124
  year: 2013
  ident: 10.1016/j.ress.2021.108119_bib0073
  article-title: Failure diagnosis using deep belief learning based health state classification
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2013.02.022
– year: 2002
  ident: 10.1016/j.ress.2021.108119_bib0145
  article-title: On the relative importance of input factors in mathematical models
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214502388618447
– volume: 138
  start-page: 219
  year: 2015
  ident: 10.1016/j.ress.2021.108119_bib0116
  article-title: Hybrid PSO-SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.02.001
– volume: 47
  start-page: 553
  year: 2016
  ident: 10.1016/j.ress.2021.108119_bib0158
  article-title: A SVR-based ensemble approach for drifting data streams with recurring patterns
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.06.030
– year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0021
  article-title: Unsupervised deep learning of compact binary descriptors
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2833865
– year: 2015
  ident: 10.1016/j.ress.2021.108119_bib0079
  article-title: Unsupervised clustering of vibration signals for identifying anomalous conditions in a nuclear turbine
  publication-title: J Intell Fuzzy Syst
– year: 2020
  ident: 10.1016/j.ress.2021.108119_bib0163
  article-title: Utilizing uncertainty information in remaining useful life estimation via Bayesian neural networks and Hamiltonian Monte Carlo
  publication-title: J Manuf Syst
– year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0005
  article-title: Prognostics and health management: a review of vibration based bearing and gear health indicators
  publication-title: IEEE Access
– year: 1995
  ident: 10.1016/j.ress.2021.108119_bib0136
– year: 2004
  ident: 10.1016/j.ress.2021.108119_bib0026
  article-title: Model-based identification of two cracks in a rotor system
  publication-title: Mech Syst Signal Process
  doi: 10.1016/S0888-3270(03)00041-4
– volume: 184
  start-page: 27
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0027
  article-title: Hyungcheol Min, “Fault detection and identification method using observer-based residuals
  publication-title: Reliab Eng System Saf
  doi: 10.1016/j.ress.2018.02.007
– year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0046
  article-title: Online fault detection methods for chillers combining extended Kalman filter and recursive one-class SVM
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.076
– volume: 20
  start-page: 1483
  issue: 7
  year: 2006
  ident: 10.1016/j.ress.2021.108119_bib0053
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2005.09.012
– year: 2016
  ident: 10.1016/j.ress.2021.108119_bib0088
  article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big Data
  publication-title: IEEE Trans Ind Electron
– year: 2020
  ident: 10.1016/j.ress.2021.108119_bib0013
  article-title: Designing mission abort strategies based on early-warning information: application to UAV
  publication-title: IEEE Trans Ind Inf
– year: 2006
  ident: 10.1016/j.ress.2021.108119_bib0052
  article-title: A review and comparison of methods for detecting outliersin univariate data sets
  publication-title: Dep Biostat Grad Sch Public Health
– year: 2018
  ident: 10.1016/j.ress.2021.108119_bib0080
  article-title: Motion segmentation via generalized curvatures
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2020
  ident: 10.1016/j.ress.2021.108119_bib0139
  article-title: Intelligent prognostics of machining tools based on adaptive variational mode decomposition and deep learning method with attention mechanism
  publication-title: Neurocomputing
– year: 2009
  ident: 10.1016/j.ress.2021.108119_bib0041
  article-title: Data-driven fault detection and diagnosis for complex industrial processes
– year: 2016
  ident: 10.1016/j.ress.2021.108119_bib0020
  article-title: Edge computing: vision and challenges
  publication-title: IEEE Int Things J
– volume: 196
  year: 2020
  ident: 10.1016/j.ress.2021.108119_bib0161
  article-title: Controlling the accuracy and uncertainty trade-off in RUL prediction with a surrogate wiener propagation model
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.106727
– year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0029
  article-title: Bayesian multi-task learning methodology for reconstruction of structural health monitoring data
  publication-title: Struct Health Monit
  doi: 10.1177/1475921718794953
– year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0090
  article-title: Deep latent low-rank representation for face sketch synthesis
  publication-title: IEEE Trans Neural Netw Learn Syst
– year: 2018
  ident: 10.1016/j.ress.2021.108119_bib0069
  article-title: The cumulative distribution transform and linear pattern classification
  publication-title: Appl Comput Harmon Anal
  doi: 10.1016/j.acha.2017.02.002
– volume: 186
  start-page: 51
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0120
  article-title: A hybrid prognostic method for system degradation based on particle filter and relevance vector machine
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.02.011
– year: 2020
  ident: 10.1016/j.ress.2021.108119_bib0134
  article-title: Fault prognostics by an ensemble of Echo State Networks in presence of event based measurements
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.103346
– year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0091
  article-title: Deep supervision with intermediate concepts
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0078
  article-title: Industrial big data for fault diagnosis: taxonomy, review, and applications
  publication-title: IEEE Access
– volume: 184
  start-page: 2
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0075
  article-title: Dirt and mud detection and diagnosis on a wind turbine blade employing guided waves and supervised learning classifiers
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.02.013
– year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0018
  article-title: A machine learning decision-support system improves the internet of things’ smart meter operations
  publication-title: IEEE Int Things J
– year: 2010
  ident: 10.1016/j.ress.2021.108119_bib0128
  article-title: The search for stable prognostic models in multiple imputed data sets
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-10-81
– volume: 186
  start-page: 24
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0074
  article-title: Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.02.001
– volume: 191
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0034
  article-title: Reliability analysis of detecting false alarms that employ neural networks: a real case study on wind turbines
  publication-title: Reliab Eng Syst Saf
– year: 2011
  ident: 10.1016/j.ress.2021.108119_bib0104
  article-title: A review on prognostics and health monitoring of Li-ion battery
  publication-title: J Power Sources
– volume: 70
  start-page: 1034
  year: 2018
  ident: 10.1016/j.ress.2021.108119_bib0100
  article-title: A simple feedforward convolutional conceptor neural network for classification
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.08.016
– issue: 107614
  year: 2021
  ident: 10.1016/j.ress.2021.108119_bib0030
  article-title: A fault detector/classifier for closed-ring power generators using machine learning
  publication-title: Reliab Eng Syst Saf
– year: 2011
  ident: 10.1016/j.ress.2021.108119_bib0107
  article-title: Remaining useful life estimation - a review on the statistical data driven approaches
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2010.11.018
– year: 2016
  ident: 10.1016/j.ress.2021.108119_bib0140
  article-title: ‘Why should i trust you?’ Explaining the predictions of any classifier
– volume: 1
  start-page: 4
  issue: 1
  year: 2010
  ident: 10.1016/j.ress.2021.108119_bib0016
  article-title: Metrics for offline evaluation of prognostic performance
  publication-title: Int J Progn Health Manag
– year: 2020
  ident: 10.1016/j.ress.2021.108119_bib0097
  article-title: Fault diagnostics by conceptors-aided clustering
– year: 2016
  ident: 10.1016/j.ress.2021.108119_bib0001
  article-title: Some challenges and opportunities in reliability engineering
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2016.2591504
– year: 2015
  ident: 10.1016/j.ress.2021.108119_bib0102
  article-title: Uncertainty in prognostics and systems health management
  publication-title: Int J Progn Health Manag
– year: 2006
  ident: 10.1016/j.ress.2021.108119_bib0127
  article-title: Review: a gentle introduction to imputation of missing values
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2006.01.014
– year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0081
  article-title: Hashing with mutual information
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2914897
– year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0051
  article-title: Sensor fault diagnosis for structural health monitoring based on statistical hypothesis test and missing variable approach
  publication-title: J Aerosp Eng
  doi: 10.1061/(ASCE)AS.1943-5525.0000572
– year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0057
  article-title: A review of feature extraction methods in vibration-based condition monitoring and its application for degradation trend estimation of low-speed slew bearing
  publication-title: Machines
  doi: 10.3390/machines5040021
– volume: 205
  year: 2021
  ident: 10.1016/j.ress.2021.108119_bib0114
  article-title: A dual-LSTM framework combining change point detection and remaining useful life prediction
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107257
– ident: 10.1016/j.ress.2021.108119_bib0150
  doi: 10.1109/TKDE.2021.3079836
– volume: 184
  start-page: 55
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0076
  article-title: Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector Machines
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.02.012
– year: 2014
  ident: 10.1016/j.ress.2021.108119_bib0060
  article-title: Adaptive color transfer with relaxed optimal transport
– start-page: 12019.
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0012
– volume: 55
  start-page: 45
  issue: August 2019
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0038
  article-title: Robust Ada Boost based ensemble of one-class support vector machines
  publication-title: Inf Fus
– volume: 185
  start-page: 372
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0115
  article-title: Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.01.006
– volume: 160
  start-page: 21
  year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0105
  article-title: System dynamic reliability assessment and failure prognostics
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2016.12.003
– year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0131
  article-title: Architecture for hybrid modelling and its application to diagnosis and prognosis with missing data
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2017.02.003
– year: 2020
  ident: 10.1016/j.ress.2021.108119_bib0141
  article-title: An Explainable machine learning model for early detection of Parkinson's disease using LIME on DaTSCAN imagery
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104041
– year: 2009
  ident: 10.1016/j.ress.2021.108119_bib0064
  article-title: Fast and robust earth mover's distances
– year: 2018
  ident: 10.1016/j.ress.2021.108119_bib0023
  article-title: Detection of weak transient signals based on unsupervised learning for bearing fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.004
– volume: 182
  start-page: 1
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0121
  article-title: Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.09.018
– year: 2012
  ident: 10.1016/j.ress.2021.108119_bib0062
  article-title: A kernel two-sample test
  publication-title: J Mach Learn Res
– start-page: 4768
  year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0137
  article-title: A unified approach to interpreting model predictions
– year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0130
  article-title: Fault diagnosis and prognosis of wastewater processes with incomplete data by the auto-associative neural networks and ARMA model
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2016.12.009
– year: 2018
  ident: 10.1016/j.ress.2021.108119_bib0042
  article-title: A novel hybrid of auto-associative kernel regression and dynamic independent component analysis for fault detection in nonlinear multimode processes
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2018.05.004
– year: 2015
  ident: 10.1016/j.ress.2021.108119_bib0066
  article-title: Distance-based analysis of dynamical systems reconstructed from vibrations for bearing diagnostics
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-014-1857-4
– year: 2013
  ident: 10.1016/j.ress.2021.108119_bib0059
  article-title: A novel earth mover's distance methodology for image matching with gaussian mixture models
– volume: 184
  start-page: 228
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0118
  article-title: Remaining useful life estimation in aeronautics: combining data-driven and Kalman filtering
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.01.017
– year: 2016
  ident: 10.1016/j.ress.2021.108119_bib0010
  article-title: An approach to designing PHM systems with systems engineering
– year: 2018
  ident: 10.1016/j.ress.2021.108119_bib0094
  article-title: Fault diagnosis approach for photovoltaic arrays based on unsupervised sample clustering and probabilistic neural network model
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.10.054
– volume: 3
  start-page: 127
  issue: 3
  year: 2009
  ident: 10.1016/j.ress.2021.108119_bib0098
  article-title: Reservoir computing approaches to recurrent neural network training
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2009.03.005
– volume: 87
  start-page: 401
  issue: October 2016
  year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0035
  article-title: A SVM framework for fault detection of the braking system in a high speed train
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.10.034
– year: 2016
  ident: 10.1016/j.ress.2021.108119_bib0036
  article-title: A survey of network anomaly detection techniques
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2015.11.016
– year: 2014
  ident: 10.1016/j.ress.2021.108119_bib0142
  article-title: Explaining prediction models and individual predictions with feature contributions
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-013-0679-x
– volume: 81
  start-page: 283
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0124
  article-title: A novel purity-based k nearest neighbors imputation method and its application in financial distress prediction
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.03.003
– volume: 164
  start-page: 74
  year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0117
  article-title: Remaining useful life prediction of aircraft engine based on degradation pattern learning
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.02.007
– year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0049
  article-title: Real-time condition monitoring and fault detection of components based on machine-learning reconstruction model
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.10.062
– year: 2016
  ident: 10.1016/j.ress.2021.108119_bib0002
  article-title: A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.08.061
– volume: 18
  start-page: 1
  year: 2016
  ident: 10.1016/j.ress.2021.108119_bib0099
  article-title: Using conceptors to manage neural long-term memories for temporal patterns
  publication-title: Mach Learn
– year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0067
  article-title: Change point and fault detection using Kantorovich distance
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2019.05.012
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.ress.2021.108119_bib0009
  article-title: Integrating IVHM and asset design
  publication-title: Int J Progn Health Manag
– year: 2009
  ident: 10.1016/j.ress.2021.108119_bib0040
  article-title: Multi-class AdaBoost
  publication-title: Stat Interface
  doi: 10.4310/SII.2009.v2.n3.a8
– year: 2015
  ident: 10.1016/j.ress.2021.108119_bib0123
  article-title: An imputation-based matrix factorization method for improving accuracy of collaborative filtering systems
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2015.08.010
– year: 2017
  ident: 10.1016/j.ress.2021.108119_bib0024
– year: 2008
  ident: 10.1016/j.ress.2021.108119_bib0048
  article-title: Observer and data-driven-model-based fault detection in power plant coal mills
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2007.914185
– year: 2018
  ident: 10.1016/j.ress.2021.108119_bib0082
  article-title: Sparse Temporal encoding of visual features for robust object recognition by spiking neurons
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2812811
– volume: 184
  start-page: 67
  year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0119
  article-title: A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.02.003
– year: 2018
  ident: 10.1016/j.ress.2021.108119_bib0022
  article-title: Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks
  publication-title: Neurocomputing
– year: 2018
  ident: 10.1016/j.ress.2021.108119_bib0110
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab Eng Syst Saf
  doi: 10.1201/9781315273860
– year: 2019
  ident: 10.1016/j.ress.2021.108119_bib0083
  article-title: Feedback convolutional neural network for visual localization and segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2843329
SSID ssj0004957
Score 2.7265031
Snippet •Main PHM challenges in industry 4.0: physics, data and solution requirements.•Data challenges: missing of anomalies, labels and the continuously monitored...
We are performing the digital transition of industry, living the 4th industrial revolution, building a new World in which the digital, physical and human...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108119
SubjectTerms Cyber-physical systems
Deep Neural Networks (DNNs)
Engineering Sciences
Generative Adversarial Networks (GANs)
Optimal Transport (OT)
Predictive maintenance
Prognostics and Health Management (PHM)
Recurrent Neural Networks (RNNs), Reservoir Computing (RC)
Reliability engineering
Title Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice
URI https://dx.doi.org/10.1016/j.ress.2021.108119
https://www.proquest.com/docview/2620408059
https://minesparis-psl.hal.science/hal-03907690
Volume 218
WOSCitedRecordID wos000728598300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZoywEOiKcIFGQhkFqttvK-19wiFBRQqXIoKLfVrh8lFdqtktCUf8-M7X0Q1IoeOGSVtbyOlfl2PDMef0PIWyZFFmud-lJWAhwUJv2yFNpPoyzJYpGmsamx9O04OznJ53M-c0nsK1NOIKvr_OqKX_xXUUMbCBuPzt5C3N2g0ADfQehwBbHD9Z8EP1s2mDzX0S-7g0Z9ngsalbPpl3chx3AAaGPcQoDPxu4kbEyDbPAeetawvHlYa4l7Z43LisR9eUswYI9YDS1czHG23N-_PNWTHRqIWdpob1Vqxz5iQtYLE62d1KCRm2EQAvxX1iV0tNHEwAflwIaKNXSa1arGAIwPqx3_0to2gHB-hAEGcNnD4Kjv_CdF9tbS1SUUtrlq5wWOUeAYhR1jh-yFWcJB4e2NP03mn_tDs9zSwLYzdyeqbPLf9kyus1p2vmP67NYqbkyT04fkgfMp6Nhi4RG5o-rH5P6AafIJWQxQQUF01KKC9qigB4CJw_fU4IECHuhGmZ4GD1Q2eH-AaKDr5pCeNXRRU4sF063FwlPy9ePk9MPUd1U2fAHG3NoPtOKax4GO85QrEaeRSoSMBQtEaTxMwUKZVUqJSqSs1FLCGgBeplRxmiudRM_Ibt3U6jmhFdNMaq0zEelYZ0kVCtwnlmWeixDW0REJ2n-xEI6CHiuh_Ciul9-IeN0zF5aA5cbeSSucwpmQ1jQsAGs3PvcGJNn9AHKuT8fHBbaxiLMs5ewyGJH9VtCFe-FhECzoAG5Xwl_caqYvyb3-Rdonu-vlT_WK3BWX68Vq-dqB9TeyxqUO
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prognostics+and+Health+Management+%28PHM%29%3A+Where+are+we+and+where+do+we+%28need+to%29+go+in+theory+and+practice&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Zio%2C+Enrico&rft.date=2022-02-01&rft.issn=0951-8320&rft.volume=218&rft.spage=108119&rft_id=info:doi/10.1016%2Fj.ress.2021.108119&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2021_108119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon