Influence of coating thickness on residual stress and adhesion-strength of cold-sprayed Inconel 718 coatings

In the cold spray process, deposition of particles takes place through intensive plastic deformation upon impact in a solid state at the temperatures well below their melting point. The high particle impact velocity causes high local stresses which lead to deforming the particles and the substrate p...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology Vol. 350; pp. 64 - 73
Main Authors: Singh, R., Schruefer, S., Wilson, S., Gibmeier, J., Vassen, R.
Format: Journal Article
Language:English
Published: Lausanne Elsevier B.V 25.09.2018
Elsevier BV
Subjects:
ISSN:0257-8972, 1879-3347
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the cold spray process, deposition of particles takes place through intensive plastic deformation upon impact in a solid state at the temperatures well below their melting point. The high particle impact velocity causes high local stresses which lead to deforming the particles and the substrate plastically in the proximity of the particle–substrate interface. As a result, high residual stresses are introduced in cold spray coatings due to the peening effect of the particles collisions with the substrate. In this study, a powder based on the chemical composition of IN 718 was cold-sprayed on IN 718 substrates by using nitrogen gas for an application as a repair tool for aero engine components. The magnitude of the residual stress and its distribution through the thickness were measured by using the hole-drilling and the bending methods. Residual stress was also estimated by using an approach based on the physical process parameters. Mainly compressive residual stresses were observed in cold-sprayed IN 718 coatings. Accumulation of residual stresses in the coatings is highly affected by peening during deposition and it decreases with increase in thickness. It has been observed that the adhesion-strengths of cold-sprayed IN 718 coatings are highly influenced by coating thickness and residual stress states of the coating/substrate system. In the presence of residual stresses in the coatings, adhesion-strength decreases with increasing coating thickness. The energy-release-rate criterion has been used to predict adhesion-strength with increasing coating thickness. Predicted bond-strength values are close to the measured adhesion-strength values and decrease with increase in coating thickness. •IN 718 is cold-sprayed on IN 718 substrates by using nitrogen gas for repair application•Residual stress distribution through the thickness of coatings are measured by using hole-drilling and bending methods.•Residual stress in the coatings decreases with increase in coating thickness.•Adhesion-strengths of cold-sprayed IN 718 coatings are highly influenced by coating thickness and residual stress states of the coating/substrate system.
AbstractList In the cold spray process, deposition of particles takes place through intensive plastic deformation upon impact in a solid state at the temperatures well below their melting point. The high particle impact velocity causes high local stresses which lead to deforming the particles and the substrate plastically in the proximity of the particle–substrate interface. As a result, high residual stresses are introduced in cold spray coatings due to the peening effect of the particles collisions with the substrate. In this study, a powder based on the chemical composition of IN 718 was cold-sprayed on IN 718 substrates by using nitrogen gas for an application as a repair tool for aero engine components. The magnitude of the residual stress and its distribution through the thickness were measured by using the hole-drilling and the bending methods. Residual stress was also estimated by using an approach based on the physical process parameters. Mainly compressive residual stresses were observed in cold-sprayed IN 718 coatings. Accumulation of residual stresses in the coatings is highly affected by peening during deposition and it decreases with increase in thickness. It has been observed that the adhesion-strengths of cold-sprayed IN 718 coatings are highly influenced by coating thickness and residual stress states of the coating/substrate system. In the presence of residual stresses in the coatings, adhesion-strength decreases with increasing coating thickness. The energy-release-rate criterion has been used to predict adhesion-strength with increasing coating thickness. Predicted bond-strength values are close to the measured adhesion-strength values and decrease with increase in coating thickness.
In the cold spray process, deposition of particles takes place through intensive plastic deformation upon impact in a solid state at the temperatures well below their melting point. The high particle impact velocity causes high local stresses which lead to deforming the particles and the substrate plastically in the proximity of the particle–substrate interface. As a result, high residual stresses are introduced in cold spray coatings due to the peening effect of the particles collisions with the substrate. In this study, a powder based on the chemical composition of IN 718 was cold-sprayed on IN 718 substrates by using nitrogen gas for an application as a repair tool for aero engine components. The magnitude of the residual stress and its distribution through the thickness were measured by using the hole-drilling and the bending methods. Residual stress was also estimated by using an approach based on the physical process parameters. Mainly compressive residual stresses were observed in cold-sprayed IN 718 coatings. Accumulation of residual stresses in the coatings is highly affected by peening during deposition and it decreases with increase in thickness. It has been observed that the adhesion-strengths of cold-sprayed IN 718 coatings are highly influenced by coating thickness and residual stress states of the coating/substrate system. In the presence of residual stresses in the coatings, adhesion-strength decreases with increasing coating thickness. The energy-release-rate criterion has been used to predict adhesion-strength with increasing coating thickness. Predicted bond-strength values are close to the measured adhesion-strength values and decrease with increase in coating thickness. •IN 718 is cold-sprayed on IN 718 substrates by using nitrogen gas for repair application•Residual stress distribution through the thickness of coatings are measured by using hole-drilling and bending methods.•Residual stress in the coatings decreases with increase in coating thickness.•Adhesion-strengths of cold-sprayed IN 718 coatings are highly influenced by coating thickness and residual stress states of the coating/substrate system.
Author Schruefer, S.
Wilson, S.
Gibmeier, J.
Singh, R.
Vassen, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Singh
  fullname: Singh, R.
  email: r.singh@fz-juelich.de
  organization: Institute of Energy and Climate Research (IEK-1), Forschungszentrum-Jülich, 52428 Jülich, Germany
– sequence: 2
  givenname: S.
  surname: Schruefer
  fullname: Schruefer, S.
  organization: Rolls-Royce Deutschland Ltd & Co KG, Eschenweg 11, Dahlewitz, D-15827 Blankenfelde-Mahlow, Germany
– sequence: 3
  givenname: S.
  surname: Wilson
  fullname: Wilson, S.
  organization: Oerlikon Metco AG, Wohlen, Rigackerstrasse 16, 5610, Wohlen, AG, Switzerland
– sequence: 4
  givenname: J.
  surname: Gibmeier
  fullname: Gibmeier, J.
  organization: Institute for Applied Materials (IAM-WK), Engelbert-Arnold-Strasse 4, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
– sequence: 5
  givenname: R.
  surname: Vassen
  fullname: Vassen, R.
  organization: Institute of Energy and Climate Research (IEK-1), Forschungszentrum-Jülich, 52428 Jülich, Germany
BookMark eNqFkU1LAzEQhoNUsK3-BQl43nWym93Nggel-FEQvOg5pPloU9ekJlmh_95dqxcvPQ28zPPOzDszNHHeaYQuCeQESH29zWMfjPQi5QUQlkOdA4MTNCWsabOypM0ETaGomoy1TXGGZjFuAYA0LZ2ibulM12snNfYGjybWrXHaWPnudIzYOxx0tKoXHY4pjJJwCgu1GVTvslFz67Q50J3K4i6IvVZ46eSwZocbwv5s4zk6NaKL-uK3ztHbw_3r4il7fnlcLu6eM0mhThnRBqhSUqqakoq2qpWtKdiKGUq1LAtCVzVoVUAzXFFVJWOqAhBaEVqaqmnLObo6-O6C_-x1THzr--CGkbwgpGblsBQMXfWhSwYfY9CG74L9EGHPCfAxWb7lf8nyMVkONYcf8OYfKG0aLvQuBWG74_jtAddDBF9WBx6lHT-gbNAyceXtMYtvzpacsw
CitedBy_id crossref_primary_10_1002_adem_202200202
crossref_primary_10_1016_j_surfcoat_2020_126703
crossref_primary_10_1016_j_jmatprotec_2020_116928
crossref_primary_10_1520_JTE20180916
crossref_primary_10_1016_j_ndteint_2024_103236
crossref_primary_10_1007_s11665_024_09534_z
crossref_primary_10_1016_j_surfcoat_2025_132430
crossref_primary_10_1016_j_jallcom_2022_167550
crossref_primary_10_1016_j_ceramint_2024_08_430
crossref_primary_10_1007_s11666_020_00988_w
crossref_primary_10_1016_j_rineng_2025_105065
crossref_primary_10_1016_j_jallcom_2024_173840
crossref_primary_10_1016_j_surfcoat_2022_129211
crossref_primary_10_3390_cmd5010004
crossref_primary_10_1007_s11666_025_02009_0
crossref_primary_10_1109_TPEL_2024_3368666
crossref_primary_10_1007_s11666_023_01536_y
crossref_primary_10_3390_ma14133597
crossref_primary_10_1016_j_vacuum_2022_111405
crossref_primary_10_1016_j_optlastec_2022_108902
crossref_primary_10_1016_j_surfcoat_2020_125650
crossref_primary_10_1016_j_surfcoat_2023_129691
crossref_primary_10_1007_s11666_022_01369_1
crossref_primary_10_1016_j_surfcoat_2021_126835
crossref_primary_10_1007_s11665_024_09422_6
crossref_primary_10_3390_ma18020431
crossref_primary_10_1016_j_corsci_2019_108227
crossref_primary_10_1016_j_surfcoat_2021_127888
crossref_primary_10_1016_j_msea_2023_144955
crossref_primary_10_1007_s11666_025_01934_4
crossref_primary_10_1007_s11666_025_01936_2
crossref_primary_10_1016_j_matpr_2019_09_225
crossref_primary_10_1016_j_surfcoat_2023_129703
crossref_primary_10_1016_j_apsusc_2020_147704
crossref_primary_10_1007_s11665_023_09041_7
crossref_primary_10_1007_s11666_021_01284_x
crossref_primary_10_1016_j_surfcoat_2022_128398
crossref_primary_10_1080_21663831_2023_2227221
crossref_primary_10_1016_j_surfcoat_2022_128752
crossref_primary_10_1016_j_ijsolstr_2022_112041
crossref_primary_10_1016_j_surfcoat_2019_03_012
crossref_primary_10_1016_j_surfcoat_2023_129623
crossref_primary_10_3390_met15040400
crossref_primary_10_1016_j_surfcoat_2020_126373
crossref_primary_10_1016_j_surfcoat_2020_126494
crossref_primary_10_1016_j_surfcoat_2021_127288
crossref_primary_10_1007_s11666_022_01490_1
crossref_primary_10_3390_coatings12060765
crossref_primary_10_1016_j_engfracmech_2022_108301
crossref_primary_10_1007_s12540_023_01507_6
crossref_primary_10_3390_met10091263
crossref_primary_10_1016_j_surfcoat_2022_128502
crossref_primary_10_1021_acsami_5c12675
crossref_primary_10_1007_s11666_024_01916_y
crossref_primary_10_1007_s11666_025_02011_6
crossref_primary_10_1007_s11666_024_01832_1
crossref_primary_10_1088_2053_1591_ab7067
crossref_primary_10_1007_s11666_023_01673_4
crossref_primary_10_1016_j_surfcoat_2023_129672
crossref_primary_10_1016_j_surfin_2021_101600
crossref_primary_10_3390_coatings14060665
crossref_primary_10_1016_j_surfcoat_2019_06_028
crossref_primary_10_1016_j_surfcoat_2019_125130
crossref_primary_10_1016_j_surfin_2021_101002
crossref_primary_10_3390_ma16010232
crossref_primary_10_3390_met12050780
crossref_primary_10_1016_j_msea_2024_147024
crossref_primary_10_1111_ijac_15077
crossref_primary_10_1016_j_polymdegradstab_2021_109667
crossref_primary_10_1016_j_porgcoat_2024_108365
crossref_primary_10_1007_s11666_022_01366_4
crossref_primary_10_1007_s11595_022_2548_5
crossref_primary_10_1007_s11666_025_01974_w
crossref_primary_10_1007_s41939_024_00531_2
crossref_primary_10_3390_polym15030712
crossref_primary_10_1016_j_jallcom_2024_178182
crossref_primary_10_1007_s11666_022_01468_z
crossref_primary_10_1016_j_jmrt_2025_03_089
crossref_primary_10_1007_s11666_022_01455_4
crossref_primary_10_3390_coatings13020267
crossref_primary_10_1007_s00170_020_05665_4
crossref_primary_10_1016_j_surfcoat_2023_129689
crossref_primary_10_1002_adem_201901237
crossref_primary_10_1016_j_surfcoat_2022_128731
crossref_primary_10_1016_j_surfcoat_2025_132367
crossref_primary_10_1016_j_addma_2020_101371
crossref_primary_10_1016_j_surfcoat_2019_05_022
crossref_primary_10_1177_1350650120940071
crossref_primary_10_3390_coatings12040544
crossref_primary_10_3390_coatings13030538
crossref_primary_10_1016_j_addma_2020_101296
crossref_primary_10_1007_s40843_024_3106_1
crossref_primary_10_1007_s00170_021_08379_3
Cites_doi 10.1016/j.ijimpeng.2003.11.004
10.1016/j.matdes.2008.07.040
10.1007/BF02645271
10.1007/s11666-017-0596-8
10.1007/s11666-012-9827-1
10.1016/j.actamat.2013.06.033
10.3139/105.110216
10.1016/j.ijmachtools.2006.05.001
10.1007/s11666-009-9357-7
10.1007/s11666-017-0572-3
10.1007/BF02326825
10.1016/S0921-5093(00)00862-5
10.1016/S0257-8972(02)00919-2
10.1361/105996302770348682
10.4028/www.scientific.net/MSF.768-769.136
10.1016/j.actamat.2006.09.006
10.1007/BF01401446
10.1016/S0040-6090(97)00199-5
10.1016/j.surfcoat.2017.03.072
10.1007/BF02650471
10.1016/j.surfcoat.2004.06.028
10.1016/0013-7944(77)90013-3
10.1361/105996303770348384
10.1016/S0257-8972(02)00018-X
10.1007/s11666-016-0382-z
10.1016/j.corsci.2010.05.023
10.1016/0956-7151(94)90223-2
10.1016/j.msea.2003.08.023
10.1007/s11666-008-9281-2
10.1016/j.matlet.2003.09.048
10.1016/j.actamat.2007.05.031
10.1007/s11666-013-9976-x
10.1016/S1359-6454(01)00099-4
10.1016/j.surfcoat.2012.04.034
10.1016/j.actamat.2010.10.058
10.1361/105996306X147108
10.1007/BF02658982
10.1016/0921-5093(91)90843-C
10.1007/BF00035361
10.1361/105996398770350945
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Sep 25, 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Sep 25, 2018
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
JG9
DOI 10.1016/j.surfcoat.2018.06.080
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3347
EndPage 73
ExternalDocumentID 10_1016_j_surfcoat_2018_06_080
S0257897218306777
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29Q
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
SEW
SMS
SPG
WUQ
~HD
7QQ
7SR
8BQ
8FD
AFXIZ
AGCQF
AGRNS
JG9
SSH
ID FETCH-LOGICAL-c406t-1ef04ddccd641549d9c9f28b8f44ec3214b60ed20700155388d500aed143f5793
ISICitedReferencesCount 106
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444660500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0257-8972
IngestDate Fri Jul 25 07:35:28 EDT 2025
Sat Nov 29 07:20:54 EST 2025
Tue Nov 18 22:18:57 EST 2025
Fri Feb 23 02:47:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Residual stresses
Adhesion-strength
Inconel 718
Cold spray
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c406t-1ef04ddccd641549d9c9f28b8f44ec3214b60ed20700155388d500aed143f5793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2116837180
PQPubID 2045394
PageCount 10
ParticipantIDs proquest_journals_2116837180
crossref_primary_10_1016_j_surfcoat_2018_06_080
crossref_citationtrail_10_1016_j_surfcoat_2018_06_080
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2018_06_080
PublicationCentury 2000
PublicationDate 2018-09-25
PublicationDateYYYYMMDD 2018-09-25
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-25
  day: 25
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Surface & coatings technology
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Schmidt, Assadi, Gärtner, Richter, Stoltenhoff, Kreye, Klassen (bb0030) 2009; 18
Li, Li (bb0140) 2003; 167
Sampath, Jiang, Matejicek, Prchlik, Kulkarni, Vaidya (bb0070) 2004; A364
Luzin, Spencer, Zhang (bb0090) 2011; 59
Price, Shipway, McCartney (bb0135) 2006; 15
Schajer (bb0105) 2013
Balani, Laha, Agarwal, Karthikeyan, Munroe (bb0045) 2005; 195
Klein (bb0195) 2000; 88
Koivuluoto, Nakki, Vuoristo (bb0145) 2009; 18
Pattison, Celotto, Morgan, Bray, O'Neill (bb0035) 2007; 47
Wong, Irissou, Vo, Sone, Bernier, Legoux, Fukanuma, Yue (bb0165) 2013; 22
Buchmann, Gadow, Tabellion (bb0060) 2000; A288
Karthikeyan, Kay (bb0155) 2003
Held, Gibmeier (bb0210) 2014; 69
Kosarev, Klinkov, Alkhimov, Papyrin (bb0025) 2003; 12
Marynowski, Halden, Farley (bb0250) 1965; 3
Li, Li, Wang, Fukanuma (bb0125) 2003
Koivuluoto (bb0130) 2010
Franchim, de Campos, Travessa, Neto (bb0225) 2009; 30
Tsui, Clyne (bb0085) 1997; 306
Stoltenhoff, Kreye, Richter (bb0015) 2002; 11
Matejicek, Sampath (bb0080) 2001; 49
Ogawa, Asano (bb0220) 2000; 6
bb0230
Li, Mei, Duo, Renzhi (bb0215) 1991; 147
Clyne, Gill (bb0265) 1996; 5
Howard, Tsui, Clyne (bb0255) 1994; 42
Srinivasan, Chandrasekhar, Amuthan, Lau, Calla (bb0110) 2016; 25
Arabgol, Assadi, Schmidt, Gärtner, Klassen (bb0100) 2014; 23
Spencer, Luzin, Matthews, Zhang (bb0040) 2012; 206
Han, Rybicki, Shadley (bb0270) 1993; 2
Dykhuisen, Smith (bb0020) 1998; 7
Papyrin, Kosarev, Klinkov, Alkhimov, Fomin (bb0005) 2006
Bagherifard, Roscioli, Vittoria Zuccoli, Hadi, D'Elia, Demir, Previtali, Kondás, Guagliano (bb0170) 2017
Metallic Materials-Tensile Testing-Pat (bb0185) 2016
Greving, Shadley, Rybicki (bb0245) 1914; 3
Marrocco, McCartney, Shipway, Sturgeon (bb0160) 2006
Charalambides, Kinloch, Wang, Williams (bb0260) 1992; 54
Bansal, Shipway, Leen (bb0075) 2007; 55
Mauer, Singh, Rauwald, Schruefer, Wilson, Vaßen (bb0180) 2017; 26
Clyne, Gill (bb0065) 1996; 5
Singh, Rauwald, Wessel, Mauer, Schruefer, Barth, Wilson, Vassen (bb0175) 2017; 319
Van Steenkiste, Smith, Teets (bb0235) 2002; 154
Tokarev (bb0150) 1996; 38
Rybicki, Kanninen (bb0275) 1977; 9
Obelode, Gibmeier (bb0200) 2014; 768-769
Suhonen, Varis, Dosta, Torrell, Guilemany (bb0095) 2013; 61
Choi, Li, Luzin, Neiser, Gna (bb0055) 2007; 55
Tao, Xiong, Sun, Kong, Cui, Li, Song (bb0115) 2010; 52
Morgan, Fox, Pattison, Sutcliffe, Neill (bb0120) 2004; 58
Rendler, Vigness (bb0205) 1996; 6
Koivuluoto, Nakki, Vuoristo (bb0050) 2009; 18
Atkinson (bb0190) 1995; 54
Champagne (bb0010) 2007
Zaretskya, Kanelb, Razorenovc, Baumungd (bb0240) 2005; 31
Morgan (10.1016/j.surfcoat.2018.06.080_bb0120) 2004; 58
Obelode (10.1016/j.surfcoat.2018.06.080_bb0200) 2014; 768-769
Atkinson (10.1016/j.surfcoat.2018.06.080_bb0190) 1995; 54
Han (10.1016/j.surfcoat.2018.06.080_bb0270) 1993; 2
Schmidt (10.1016/j.surfcoat.2018.06.080_bb0030) 2009; 18
Charalambides (10.1016/j.surfcoat.2018.06.080_bb0260) 1992; 54
Pattison (10.1016/j.surfcoat.2018.06.080_bb0035) 2007; 47
Stoltenhoff (10.1016/j.surfcoat.2018.06.080_bb0015) 2002; 11
Greving (10.1016/j.surfcoat.2018.06.080_bb0245) 1914; 3
Papyrin (10.1016/j.surfcoat.2018.06.080_bb0005) 2006
Buchmann (10.1016/j.surfcoat.2018.06.080_bb0060) 2000; A288
Koivuluoto (10.1016/j.surfcoat.2018.06.080_bb0130) 2010
Dykhuisen (10.1016/j.surfcoat.2018.06.080_bb0020) 1998; 7
Price (10.1016/j.surfcoat.2018.06.080_bb0135) 2006; 15
Luzin (10.1016/j.surfcoat.2018.06.080_bb0090) 2011; 59
Clyne (10.1016/j.surfcoat.2018.06.080_bb0265) 1996; 5
Spencer (10.1016/j.surfcoat.2018.06.080_bb0040) 2012; 206
Tsui (10.1016/j.surfcoat.2018.06.080_bb0085) 1997; 306
Karthikeyan (10.1016/j.surfcoat.2018.06.080_bb0155) 2003
Li (10.1016/j.surfcoat.2018.06.080_bb0215) 1991; 147
Li (10.1016/j.surfcoat.2018.06.080_bb0125) 2003
Kosarev (10.1016/j.surfcoat.2018.06.080_bb0025) 2003; 12
Wong (10.1016/j.surfcoat.2018.06.080_bb0165) 2013; 22
Koivuluoto (10.1016/j.surfcoat.2018.06.080_bb0050) 2009; 18
Tokarev (10.1016/j.surfcoat.2018.06.080_bb0150) 1996; 38
Rendler (10.1016/j.surfcoat.2018.06.080_bb0205) 1996; 6
Arabgol (10.1016/j.surfcoat.2018.06.080_bb0100) 2014; 23
Marrocco (10.1016/j.surfcoat.2018.06.080_bb0160) 2006
Sampath (10.1016/j.surfcoat.2018.06.080_bb0070) 2004; A364
Bagherifard (10.1016/j.surfcoat.2018.06.080_bb0170) 2017
Choi (10.1016/j.surfcoat.2018.06.080_bb0055) 2007; 55
Marynowski (10.1016/j.surfcoat.2018.06.080_bb0250) 1965; 3
Rybicki (10.1016/j.surfcoat.2018.06.080_bb0275) 1977; 9
Clyne (10.1016/j.surfcoat.2018.06.080_bb0065) 1996; 5
Franchim (10.1016/j.surfcoat.2018.06.080_bb0225) 2009; 30
Metallic Materials-Tensile Testing-Pat (10.1016/j.surfcoat.2018.06.080_bb0185) 2016
Singh (10.1016/j.surfcoat.2018.06.080_bb0175) 2017; 319
Howard (10.1016/j.surfcoat.2018.06.080_bb0255) 1994; 42
Ogawa (10.1016/j.surfcoat.2018.06.080_bb0220) 2000; 6
Tao (10.1016/j.surfcoat.2018.06.080_bb0115) 2010; 52
Schajer (10.1016/j.surfcoat.2018.06.080_bb0105) 2013
Held (10.1016/j.surfcoat.2018.06.080_bb0210) 2014; 69
Matejicek (10.1016/j.surfcoat.2018.06.080_bb0080) 2001; 49
Zaretskya (10.1016/j.surfcoat.2018.06.080_bb0240) 2005; 31
Suhonen (10.1016/j.surfcoat.2018.06.080_bb0095) 2013; 61
Van Steenkiste (10.1016/j.surfcoat.2018.06.080_bb0235) 2002; 154
Srinivasan (10.1016/j.surfcoat.2018.06.080_bb0110) 2016; 25
Balani (10.1016/j.surfcoat.2018.06.080_bb0045) 2005; 195
Li (10.1016/j.surfcoat.2018.06.080_bb0140) 2003; 167
Bansal (10.1016/j.surfcoat.2018.06.080_bb0075) 2007; 55
Koivuluoto (10.1016/j.surfcoat.2018.06.080_bb0145) 2009; 18
Champagne (10.1016/j.surfcoat.2018.06.080_bb0010) 2007
Mauer (10.1016/j.surfcoat.2018.06.080_bb0180) 2017; 26
Klein (10.1016/j.surfcoat.2018.06.080_bb0195) 2000; 88
References_xml – volume: 15
  start-page: 507
  year: 2006
  end-page: 512
  ident: bb0135
  article-title: Effect of cold spray deposition of a titanium coating on fatigue behavior of a titanium alloy
  publication-title: J. Therm. Spray Technol.
– volume: A364
  start-page: 216
  year: 2004
  end-page: 231
  ident: bb0070
  article-title: Role of thermal spray processing method on the microstructure, residual stress and properties of coatings: an integrated study for Ni-5 wt.%Al bond coats
  publication-title: Mater. Sci. Eng.
– volume: 18
  start-page: 794
  year: 2009
  end-page: 808
  ident: bb0030
  article-title: From particle acceleration to impact and bonding in cold spraying
  publication-title: J. Therm. Spray Technol.
– volume: 59
  start-page: 1259
  year: 2011
  end-page: 1270
  ident: bb0090
  article-title: Residual stress and thermo-mechanical properties of cold spray metal coatings
  publication-title: Acta Mater.
– volume: 3
  start-page: 109
  year: 1965
  end-page: 115
  ident: bb0250
  article-title: Variables in plasma spraying
  publication-title: Electr. Technol.
– volume: 6
  start-page: 577
  year: 1996
  end-page: 586
  ident: bb0205
  article-title: Hole-drilling strain-gage method of measuring residual stresses
  publication-title: Exp. Mech.
– volume: 18
  start-page: 75
  year: 2009
  end-page: 82
  ident: bb0145
  article-title: Corrosion properties of cold-sprayed tantalum coatings
  publication-title: J. Therm. Spray Technol.
– volume: 5
  start-page: 401
  year: 1996
  end-page: 418
  ident: bb0265
  article-title: Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work
  publication-title: J. Therm. Spray Technol.
– volume: 31
  start-page: 41
  year: 2005
  end-page: 54
  ident: bb0240
  article-title: Impact strength properties of nickel-based refractory superalloys at normal and elevated temperatures
  publication-title: Int. J. Impact Eng.
– volume: 11
  start-page: 542
  year: 2002
  end-page: 550
  ident: bb0015
  article-title: An analysis of the cold spray process and its coatings
  publication-title: J. Therm. Spray Technol.
– year: 2010
  ident: bb0130
  article-title: Microstructural Characteristics and Corrosion Properties of Cold-Sprayed Coatings
– volume: 5
  start-page: 401
  year: 1996
  end-page: 418
  ident: bb0065
  article-title: Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work
  publication-title: J. Therm. Spray Technol.
– volume: 88
  start-page: 5487
  year: 2000
  end-page: 5489
  ident: bb0195
  article-title: How accurate is Stoney's equation and recent modifications
  publication-title: J. Therm. Spray Technol.
– volume: 147
  start-page: 167
  year: 1991
  ident: bb0215
  article-title: Mechanical approach to the residual stress field induced by shot peening
  publication-title: Mater. Sci. Eng. A
– year: 2006
  ident: bb0005
  article-title: Cold Spray Technology
– year: 2013
  ident: bb0105
  article-title: Practical Residual Stress Measurement Methods
– volume: 195
  start-page: 272
  year: 2005
  end-page: 279
  ident: bb0045
  article-title: Effect of carrier gases on microstructural and electrochemical behavior of cold-sprayed 1100 aluminum coating
  publication-title: Surf. Coat. Technol.
– volume: 319
  start-page: 249
  year: 2017
  end-page: 259
  ident: bb0175
  article-title: Effects of substrate roughness and spray-angle on deposition behavior of cold-sprayed Inconel 718
  publication-title: Surf. Coat. Technol.
– volume: 54
  start-page: 1
  year: 1995
  end-page: 14
  ident: bb0190
  publication-title: Br. Ceram. Proc.
– ident: bb0230
– year: 2006
  ident: bb0160
  article-title: Comparison of the microstructure of cold sprayed and thermally sprayed In718 coatings
  publication-title: Proceedings for Thermal Spray 2006: Building on 100 Years of Success
– volume: 55
  start-page: 5089
  year: 2007
  end-page: 5101
  ident: bb0075
  article-title: Residual stresses in high-velocity oxy-fuel thermally sprayed coatings-modelling the effect of particle velocity and temperature during the spraying process
  publication-title: Acta Mater.
– volume: 6
  start-page: 55
  year: 2000
  end-page: 62
  ident: bb0220
  article-title: Theoretical prediction of residual stress produced by shot peening and experimental verification of carburized steel
  publication-title: Mater. Sci. Res. Int.
– volume: 12
  start-page: 265
  year: 2003
  end-page: 281
  ident: bb0025
  article-title: On some aspects of gas dynamics of the cold spray process
  publication-title: J. Therm. Spray Technol.
– volume: 22
  start-page: 413
  year: 2013
  end-page: 421
  ident: bb0165
  publication-title: J. Therm. Spray Technol.
– volume: 154
  start-page: 237
  year: 2002
  end-page: 252
  ident: bb0235
  article-title: Aluminum coatings via kinetic spray with relatively large powder particles
  publication-title: Surf. Coat. Technol.
– volume: 167
  start-page: 278
  year: 2003
  end-page: 283
  ident: bb0140
  article-title: Deposition characteristics of titanium coating in cold spraying
  publication-title: Surf. Coat. Technol.
– volume: 306
  start-page: 23
  year: 1997
  end-page: 33
  ident: bb0085
  article-title: An analytical model for predicting residual stresses in progressively deposited coatings—part 1: planar geometry
  publication-title: Thin Solid Films
– volume: 3
  start-page: 371
  year: 1914
  end-page: 378
  ident: bb0245
  article-title: Effects of coating thickness and residual stresses on the bond strength of ASTM C633-79 thermal spray coating test specimens
  publication-title: J. Therm. Spray Technol.
– volume: 30
  start-page: 1556
  year: 2009
  ident: bb0225
  article-title: Analytical modelling for residual stresses produced by shot peening
  publication-title: Mater. Des.
– volume: 206
  start-page: 4249
  year: 2012
  end-page: 4255
  ident: bb0040
  article-title: Residual stresses in cold spray Al coatings: the effect of alloying and of process parameters
  publication-title: Surf. Coat. Technol.
– volume: A288
  start-page: 154
  year: 2000
  end-page: 159
  ident: bb0060
  article-title: Experimental and numerical residual stress analysis of layer coated composites
  publication-title: Mater. Sci. Eng.
– volume: 49
  start-page: 1993
  year: 2001
  end-page: 1999
  ident: bb0080
  article-title: Intrinsic residual stresses in single splats produced by thermal spray processes
  publication-title: Acta Mater.
– volume: 25
  start-page: 725
  year: 2016
  end-page: 744
  ident: bb0110
  article-title: Characterization of cold-sprayed IN625 and NiCr coatings
  publication-title: J. Therm. Spray Technol.
– volume: 47
  start-page: 627
  year: 2007
  end-page: 634
  ident: bb0035
  article-title: A non-thermal approach to freeform fabrication
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 61
  start-page: 6329
  year: 2013
  end-page: 6337
  ident: bb0095
  article-title: Residual stress development in cold sprayed Al, Cu and Ti coatings
  publication-title: Acta Mater.
– volume: 23
  start-page: 84
  year: 2014
  end-page: 90
  ident: bb0100
  article-title: Analysis of thermal history and residual stress in cold-sprayed coatings
  publication-title: J. Therm. Spray Technol.
– volume: 768-769
  start-page: 136
  year: 2014
  end-page: 143
  ident: bb0200
  article-title: Influence of the interfacial roughness on residual stress analysis of thick film systems by incremental hole drilling
  publication-title: Mater. Sci. Forum
– volume: 38
  start-page: 136
  year: 1996
  end-page: 139
  ident: bb0150
  article-title: Structure of aluminum powder coatings prepared by cold gas dynamic spraying
  publication-title: Met. Sci. Heat Treat.
– start-page: 117
  year: 2003
  end-page: 121
  ident: bb0155
  article-title: Cold spray technology: an industrial perspective
  publication-title: Proceedings of Thermal Spray 2003: Advancing the Science & Applying the Technology, ASM International, Orlando, FL
– volume: 26
  start-page: 1423
  year: 2017
  end-page: 1433
  ident: bb0180
  article-title: Diagnostics of cold sprayed particle velocities approaching critical deposition conditions
  publication-title: J. Therm. Spray Technol.
– volume: 42
  start-page: 2823
  year: 1994
  end-page: 2836
  ident: bb0255
  article-title: The effect of residual stresses on the debonding of coatings, part I: a model for delamination at a biomaterial Interface
  publication-title: Acta Metall. Mater.
– volume: 55
  start-page: 857
  year: 2007
  end-page: 866
  ident: bb0055
  article-title: Integrated characterization of cold sprayed aluminum coatings
  publication-title: Acta Mater.
– year: 2017
  ident: bb0170
  article-title: Cold spray deposition of freestanding inconel samples and comparative analysis with selective laser melting
  publication-title: J. Therm. Spray Technol.
– start-page: 91
  year: 2003
  end-page: 96
  ident: bb0125
  article-title: Effect of spray angle on deposition characteristics in cold spraying, thermal spray 2003: advancing the science and applying the
  publication-title: Technology
– volume: 69
  start-page: 71
  year: 2014
  end-page: 79
  ident: bb0210
  article-title: Residual stress analysis of thick film systems by the incremental hole-drilling method—influence of interlayers and interfacial roughness
  publication-title: HTM J. Heat Treatm. Mater.
– volume: 52
  start-page: 3191
  year: 2010
  end-page: 3197
  ident: bb0115
  article-title: Microstructure and corrosion performance of a cold sprayed aluminium coating on AZ91D magnesium alloy
  publication-title: Corros. Sci.
– year: 2016
  ident: bb0185
  article-title: Method of Test at Room Temperature
– volume: 9
  start-page: 931
  year: 1977
  end-page: 938
  ident: bb0275
  article-title: A finite element calculations of stress intensity factors by a modified crack closure integral
  publication-title: Eng. Fract. Mech.
– volume: 18
  start-page: 75
  year: 2009
  end-page: 82
  ident: bb0050
  article-title: Corrosion properties of cold-sprayed tantalum coatings
  publication-title: J. Therm. Spray Technol.
– volume: 7
  start-page: 205
  year: 1998
  end-page: 212
  ident: bb0020
  article-title: Gas dynamic principle of cold spray
  publication-title: J. Therm. Spray Technol.
– volume: 2
  start-page: 235
  year: 1993
  end-page: 241
  ident: bb0270
  article-title: Application of facture mechanics to the interpretation of bond strength Aata from ASTM standard C633-79
  publication-title: J. Therm. Spray Technol.
– year: 2007
  ident: bb0010
  article-title: The Cold Spray Deposition Process: Fundamentals and Applications
– volume: 54
  start-page: 269
  year: 1992
  end-page: 291
  ident: bb0260
  article-title: On the analysis of mixed mode failure
  publication-title: Int. J. Fract.
– volume: 58
  start-page: 1317
  year: 2004
  end-page: 1320
  ident: bb0120
  article-title: Analysis of cold gas dynamically sprayed aluminium deposits
  publication-title: Mater. Lett.
– volume: 31
  start-page: 41
  year: 2005
  ident: 10.1016/j.surfcoat.2018.06.080_bb0240
  article-title: Impact strength properties of nickel-based refractory superalloys at normal and elevated temperatures
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2003.11.004
– volume: 30
  start-page: 1556
  year: 2009
  ident: 10.1016/j.surfcoat.2018.06.080_bb0225
  article-title: Analytical modelling for residual stresses produced by shot peening
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2008.07.040
– volume: 5
  start-page: 401
  year: 1996
  ident: 10.1016/j.surfcoat.2018.06.080_bb0065
  article-title: Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/BF02645271
– volume: 26
  start-page: 1423
  year: 2017
  ident: 10.1016/j.surfcoat.2018.06.080_bb0180
  article-title: Diagnostics of cold sprayed particle velocities approaching critical deposition conditions
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-017-0596-8
– volume: 22
  start-page: 413
  year: 2013
  ident: 10.1016/j.surfcoat.2018.06.080_bb0165
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-012-9827-1
– volume: 61
  start-page: 6329
  year: 2013
  ident: 10.1016/j.surfcoat.2018.06.080_bb0095
  article-title: Residual stress development in cold sprayed Al, Cu and Ti coatings
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.06.033
– volume: 69
  start-page: 71
  year: 2014
  ident: 10.1016/j.surfcoat.2018.06.080_bb0210
  article-title: Residual stress analysis of thick film systems by the incremental hole-drilling method—influence of interlayers and interfacial roughness
  publication-title: HTM J. Heat Treatm. Mater.
  doi: 10.3139/105.110216
– volume: 47
  start-page: 627
  year: 2007
  ident: 10.1016/j.surfcoat.2018.06.080_bb0035
  article-title: A non-thermal approach to freeform fabrication
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2006.05.001
– volume: 6
  start-page: 55
  year: 2000
  ident: 10.1016/j.surfcoat.2018.06.080_bb0220
  article-title: Theoretical prediction of residual stress produced by shot peening and experimental verification of carburized steel
  publication-title: Mater. Sci. Res. Int.
– volume: 18
  start-page: 794
  year: 2009
  ident: 10.1016/j.surfcoat.2018.06.080_bb0030
  article-title: From particle acceleration to impact and bonding in cold spraying
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-009-9357-7
– year: 2017
  ident: 10.1016/j.surfcoat.2018.06.080_bb0170
  article-title: Cold spray deposition of freestanding inconel samples and comparative analysis with selective laser melting
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-017-0572-3
– volume: 88
  start-page: 5487
  year: 2000
  ident: 10.1016/j.surfcoat.2018.06.080_bb0195
  article-title: How accurate is Stoney's equation and recent modifications
  publication-title: J. Therm. Spray Technol.
– volume: 6
  start-page: 577
  year: 1996
  ident: 10.1016/j.surfcoat.2018.06.080_bb0205
  article-title: Hole-drilling strain-gage method of measuring residual stresses
  publication-title: Exp. Mech.
  doi: 10.1007/BF02326825
– volume: A288
  start-page: 154
  year: 2000
  ident: 10.1016/j.surfcoat.2018.06.080_bb0060
  article-title: Experimental and numerical residual stress analysis of layer coated composites
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/S0921-5093(00)00862-5
– volume: 167
  start-page: 278
  issue: 2003
  year: 2003
  ident: 10.1016/j.surfcoat.2018.06.080_bb0140
  article-title: Deposition characteristics of titanium coating in cold spraying
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(02)00919-2
– volume: 11
  start-page: 542
  year: 2002
  ident: 10.1016/j.surfcoat.2018.06.080_bb0015
  article-title: An analysis of the cold spray process and its coatings
  publication-title: J. Therm. Spray Technol.
  doi: 10.1361/105996302770348682
– volume: 768-769
  start-page: 136
  year: 2014
  ident: 10.1016/j.surfcoat.2018.06.080_bb0200
  article-title: Influence of the interfacial roughness on residual stress analysis of thick film systems by incremental hole drilling
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.768-769.136
– volume: 55
  start-page: 857
  year: 2007
  ident: 10.1016/j.surfcoat.2018.06.080_bb0055
  article-title: Integrated characterization of cold sprayed aluminum coatings
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2006.09.006
– volume: 38
  start-page: 136
  year: 1996
  ident: 10.1016/j.surfcoat.2018.06.080_bb0150
  article-title: Structure of aluminum powder coatings prepared by cold gas dynamic spraying
  publication-title: Met. Sci. Heat Treat.
  doi: 10.1007/BF01401446
– volume: 306
  start-page: 23
  year: 1997
  ident: 10.1016/j.surfcoat.2018.06.080_bb0085
  article-title: An analytical model for predicting residual stresses in progressively deposited coatings—part 1: planar geometry
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(97)00199-5
– volume: 319
  start-page: 249
  year: 2017
  ident: 10.1016/j.surfcoat.2018.06.080_bb0175
  article-title: Effects of substrate roughness and spray-angle on deposition behavior of cold-sprayed Inconel 718
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2017.03.072
– volume: 2
  start-page: 235
  year: 1993
  ident: 10.1016/j.surfcoat.2018.06.080_bb0270
  article-title: Application of facture mechanics to the interpretation of bond strength Aata from ASTM standard C633-79
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/BF02650471
– year: 2010
  ident: 10.1016/j.surfcoat.2018.06.080_bb0130
– year: 2006
  ident: 10.1016/j.surfcoat.2018.06.080_bb0005
– year: 2007
  ident: 10.1016/j.surfcoat.2018.06.080_bb0010
– volume: 195
  start-page: 272
  year: 2005
  ident: 10.1016/j.surfcoat.2018.06.080_bb0045
  article-title: Effect of carrier gases on microstructural and electrochemical behavior of cold-sprayed 1100 aluminum coating
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2004.06.028
– volume: 9
  start-page: 931
  year: 1977
  ident: 10.1016/j.surfcoat.2018.06.080_bb0275
  article-title: A finite element calculations of stress intensity factors by a modified crack closure integral
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/0013-7944(77)90013-3
– volume: 12
  start-page: 265
  year: 2003
  ident: 10.1016/j.surfcoat.2018.06.080_bb0025
  article-title: On some aspects of gas dynamics of the cold spray process
  publication-title: J. Therm. Spray Technol.
  doi: 10.1361/105996303770348384
– volume: 154
  start-page: 237
  year: 2002
  ident: 10.1016/j.surfcoat.2018.06.080_bb0235
  article-title: Aluminum coatings via kinetic spray with relatively large powder particles
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(02)00018-X
– volume: 25
  start-page: 725
  year: 2016
  ident: 10.1016/j.surfcoat.2018.06.080_bb0110
  article-title: Characterization of cold-sprayed IN625 and NiCr coatings
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-016-0382-z
– volume: 52
  start-page: 3191
  year: 2010
  ident: 10.1016/j.surfcoat.2018.06.080_bb0115
  article-title: Microstructure and corrosion performance of a cold sprayed aluminium coating on AZ91D magnesium alloy
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2010.05.023
– year: 2013
  ident: 10.1016/j.surfcoat.2018.06.080_bb0105
– volume: 3
  start-page: 109
  year: 1965
  ident: 10.1016/j.surfcoat.2018.06.080_bb0250
  article-title: Variables in plasma spraying
  publication-title: Electr. Technol.
– volume: 5
  start-page: 401
  year: 1996
  ident: 10.1016/j.surfcoat.2018.06.080_bb0265
  article-title: Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/BF02645271
– year: 2006
  ident: 10.1016/j.surfcoat.2018.06.080_bb0160
  article-title: Comparison of the microstructure of cold sprayed and thermally sprayed In718 coatings
– volume: 42
  start-page: 2823
  year: 1994
  ident: 10.1016/j.surfcoat.2018.06.080_bb0255
  article-title: The effect of residual stresses on the debonding of coatings, part I: a model for delamination at a biomaterial Interface
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(94)90223-2
– volume: A364
  start-page: 216
  year: 2004
  ident: 10.1016/j.surfcoat.2018.06.080_bb0070
  article-title: Role of thermal spray processing method on the microstructure, residual stress and properties of coatings: an integrated study for Ni-5 wt.%Al bond coats
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2003.08.023
– volume: 18
  start-page: 75
  year: 2009
  ident: 10.1016/j.surfcoat.2018.06.080_bb0145
  article-title: Corrosion properties of cold-sprayed tantalum coatings
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-008-9281-2
– start-page: 91
  year: 2003
  ident: 10.1016/j.surfcoat.2018.06.080_bb0125
  article-title: Effect of spray angle on deposition characteristics in cold spraying, thermal spray 2003: advancing the science and applying the
  publication-title: Technology
– volume: 58
  start-page: 1317
  year: 2004
  ident: 10.1016/j.surfcoat.2018.06.080_bb0120
  article-title: Analysis of cold gas dynamically sprayed aluminium deposits
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2003.09.048
– start-page: 117
  year: 2003
  ident: 10.1016/j.surfcoat.2018.06.080_bb0155
  article-title: Cold spray technology: an industrial perspective
– volume: 55
  start-page: 5089
  year: 2007
  ident: 10.1016/j.surfcoat.2018.06.080_bb0075
  article-title: Residual stresses in high-velocity oxy-fuel thermally sprayed coatings-modelling the effect of particle velocity and temperature during the spraying process
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2007.05.031
– volume: 23
  start-page: 84
  year: 2014
  ident: 10.1016/j.surfcoat.2018.06.080_bb0100
  article-title: Analysis of thermal history and residual stress in cold-sprayed coatings
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-013-9976-x
– year: 2016
  ident: 10.1016/j.surfcoat.2018.06.080_bb0185
– volume: 49
  start-page: 1993
  year: 2001
  ident: 10.1016/j.surfcoat.2018.06.080_bb0080
  article-title: Intrinsic residual stresses in single splats produced by thermal spray processes
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(01)00099-4
– volume: 206
  start-page: 4249
  year: 2012
  ident: 10.1016/j.surfcoat.2018.06.080_bb0040
  article-title: Residual stresses in cold spray Al coatings: the effect of alloying and of process parameters
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2012.04.034
– volume: 59
  start-page: 1259
  year: 2011
  ident: 10.1016/j.surfcoat.2018.06.080_bb0090
  article-title: Residual stress and thermo-mechanical properties of cold spray metal coatings
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.10.058
– volume: 15
  start-page: 507
  year: 2006
  ident: 10.1016/j.surfcoat.2018.06.080_bb0135
  article-title: Effect of cold spray deposition of a titanium coating on fatigue behavior of a titanium alloy
  publication-title: J. Therm. Spray Technol.
  doi: 10.1361/105996306X147108
– volume: 3
  start-page: 371
  year: 1914
  ident: 10.1016/j.surfcoat.2018.06.080_bb0245
  article-title: Effects of coating thickness and residual stresses on the bond strength of ASTM C633-79 thermal spray coating test specimens
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/BF02658982
– volume: 54
  start-page: 1
  year: 1995
  ident: 10.1016/j.surfcoat.2018.06.080_bb0190
  publication-title: Br. Ceram. Proc.
– volume: 18
  start-page: 75
  year: 2009
  ident: 10.1016/j.surfcoat.2018.06.080_bb0050
  article-title: Corrosion properties of cold-sprayed tantalum coatings
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-008-9281-2
– volume: 147
  start-page: 167
  year: 1991
  ident: 10.1016/j.surfcoat.2018.06.080_bb0215
  article-title: Mechanical approach to the residual stress field induced by shot peening
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/0921-5093(91)90843-C
– volume: 54
  start-page: 269
  year: 1992
  ident: 10.1016/j.surfcoat.2018.06.080_bb0260
  article-title: On the analysis of mixed mode failure
  publication-title: Int. J. Fract.
  doi: 10.1007/BF00035361
– volume: 7
  start-page: 205
  year: 1998
  ident: 10.1016/j.surfcoat.2018.06.080_bb0020
  article-title: Gas dynamic principle of cold spray
  publication-title: J. Therm. Spray Technol.
  doi: 10.1361/105996398770350945
SSID ssj0001794
Score 2.5651379
Snippet In the cold spray process, deposition of particles takes place through intensive plastic deformation upon impact in a solid state at the temperatures well...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 64
SubjectTerms Adhesion tests
Adhesion-strength
Adhesive strength
Bending
Chemical composition
Coating effects
Cold spray
Cold spraying
Composition
Compressive properties
Deformation mechanisms
Deposition
Engine components
Impact velocity
Inconel 718
Melting points
Nickel base alloys
Organic chemistry
Particle impact
Peening
Plastic deformation
Process parameters
Residual stress
Residual stresses
Stress concentration
Studies
Substrates
Superalloys
Velocity
Title Influence of coating thickness on residual stress and adhesion-strength of cold-sprayed Inconel 718 coatings
URI https://dx.doi.org/10.1016/j.surfcoat.2018.06.080
https://www.proquest.com/docview/2116837180
Volume 350
WOSCitedRecordID wos000444660500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1879-3347
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001794
  issn: 0257-8972
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFgk4ICggCgXtgVu1xY-1d32sqgLtoUK0SLlZ9u6apFhOZLtV-Sf8XGZfdtoApQcuVjTJbmzPl5nxZOYbhN6VJQO3HMckLQUlVJacFEGlSExlVFEmWVoUZtgEOznh02n2eTL56XthLmvWNPzqKlv-V1WDDJStW2fvoO5hUxDAa1A6HEHtcPwnxR_5sSO2YrywkyBmc_HdWLWF7l_pbAuWaxQxfK1ypnTijGhZ862f2dW1JN2yLX4oXTQMj86q3gU347ftVkPb04u2KoQyWPLv7_ZrmftTkJtUzpe98U-gWXuhCW9NKnYQj0ySo-zjHNz33H7yeG81ZRGa-grb3uwsG9gJwjN2zQzHloDWGVJLbe5csh12smbsbd7hHLxMW-nr0oV6lo3VDoe6zq59w-sNtYi-zO089_vkep9c1_vx4B7ajFiSgb3c3D86nB4PXl4bMpO_c5ey0n3--zP6U-BzIwQwcc3ZE_TYPZDgfQukp2iimi304MDPAdxCj1YoK5-heoAXXlTY6RkP8MKLBnt4YQsvDPDCa_Cyq0d4YQcvDPDy23bP0dcPh2cHn4ib2EEEBIY9CVUVUCmFkCnV3H8yE1kV8ZJXlCqhZ2KVaaBkFDA7sIpzmQRBoSRE7VUCruIF2mjgy14irGjBEhUXEEGVlAUlB-uRaCYmzWVbRuE2SvztzIWjs9dTVer87wrdRu-HdUtL6HLrisxrK3dhqQ03cwDirWt3vHpzZyO6PArDlMdwO4NXdz6Z1-jh-IvaQRs9_D7foPvisp937VsH0l8yHL57
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+coating+thickness+on+residual+stress+and+adhesion-strength+of+cold-sprayed+Inconel+718+coatings&rft.jtitle=Surface+%26+coatings+technology&rft.au=Singh%2C+R.&rft.au=Schruefer%2C+S.&rft.au=Wilson%2C+S.&rft.au=Gibmeier%2C+J.&rft.date=2018-09-25&rft.issn=0257-8972&rft.volume=350&rft.spage=64&rft.epage=73&rft_id=info:doi/10.1016%2Fj.surfcoat.2018.06.080&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_surfcoat_2018_06_080
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon