Influence of coating thickness on residual stress and adhesion-strength of cold-sprayed Inconel 718 coatings
In the cold spray process, deposition of particles takes place through intensive plastic deformation upon impact in a solid state at the temperatures well below their melting point. The high particle impact velocity causes high local stresses which lead to deforming the particles and the substrate p...
Saved in:
| Published in: | Surface & coatings technology Vol. 350; pp. 64 - 73 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Lausanne
Elsevier B.V
25.09.2018
Elsevier BV |
| Subjects: | |
| ISSN: | 0257-8972, 1879-3347 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In the cold spray process, deposition of particles takes place through intensive plastic deformation upon impact in a solid state at the temperatures well below their melting point. The high particle impact velocity causes high local stresses which lead to deforming the particles and the substrate plastically in the proximity of the particle–substrate interface. As a result, high residual stresses are introduced in cold spray coatings due to the peening effect of the particles collisions with the substrate. In this study, a powder based on the chemical composition of IN 718 was cold-sprayed on IN 718 substrates by using nitrogen gas for an application as a repair tool for aero engine components. The magnitude of the residual stress and its distribution through the thickness were measured by using the hole-drilling and the bending methods. Residual stress was also estimated by using an approach based on the physical process parameters. Mainly compressive residual stresses were observed in cold-sprayed IN 718 coatings. Accumulation of residual stresses in the coatings is highly affected by peening during deposition and it decreases with increase in thickness. It has been observed that the adhesion-strengths of cold-sprayed IN 718 coatings are highly influenced by coating thickness and residual stress states of the coating/substrate system. In the presence of residual stresses in the coatings, adhesion-strength decreases with increasing coating thickness. The energy-release-rate criterion has been used to predict adhesion-strength with increasing coating thickness. Predicted bond-strength values are close to the measured adhesion-strength values and decrease with increase in coating thickness.
•IN 718 is cold-sprayed on IN 718 substrates by using nitrogen gas for repair application•Residual stress distribution through the thickness of coatings are measured by using hole-drilling and bending methods.•Residual stress in the coatings decreases with increase in coating thickness.•Adhesion-strengths of cold-sprayed IN 718 coatings are highly influenced by coating thickness and residual stress states of the coating/substrate system. |
|---|---|
| AbstractList | In the cold spray process, deposition of particles takes place through intensive plastic deformation upon impact in a solid state at the temperatures well below their melting point. The high particle impact velocity causes high local stresses which lead to deforming the particles and the substrate plastically in the proximity of the particle–substrate interface. As a result, high residual stresses are introduced in cold spray coatings due to the peening effect of the particles collisions with the substrate. In this study, a powder based on the chemical composition of IN 718 was cold-sprayed on IN 718 substrates by using nitrogen gas for an application as a repair tool for aero engine components. The magnitude of the residual stress and its distribution through the thickness were measured by using the hole-drilling and the bending methods. Residual stress was also estimated by using an approach based on the physical process parameters. Mainly compressive residual stresses were observed in cold-sprayed IN 718 coatings. Accumulation of residual stresses in the coatings is highly affected by peening during deposition and it decreases with increase in thickness. It has been observed that the adhesion-strengths of cold-sprayed IN 718 coatings are highly influenced by coating thickness and residual stress states of the coating/substrate system. In the presence of residual stresses in the coatings, adhesion-strength decreases with increasing coating thickness. The energy-release-rate criterion has been used to predict adhesion-strength with increasing coating thickness. Predicted bond-strength values are close to the measured adhesion-strength values and decrease with increase in coating thickness. In the cold spray process, deposition of particles takes place through intensive plastic deformation upon impact in a solid state at the temperatures well below their melting point. The high particle impact velocity causes high local stresses which lead to deforming the particles and the substrate plastically in the proximity of the particle–substrate interface. As a result, high residual stresses are introduced in cold spray coatings due to the peening effect of the particles collisions with the substrate. In this study, a powder based on the chemical composition of IN 718 was cold-sprayed on IN 718 substrates by using nitrogen gas for an application as a repair tool for aero engine components. The magnitude of the residual stress and its distribution through the thickness were measured by using the hole-drilling and the bending methods. Residual stress was also estimated by using an approach based on the physical process parameters. Mainly compressive residual stresses were observed in cold-sprayed IN 718 coatings. Accumulation of residual stresses in the coatings is highly affected by peening during deposition and it decreases with increase in thickness. It has been observed that the adhesion-strengths of cold-sprayed IN 718 coatings are highly influenced by coating thickness and residual stress states of the coating/substrate system. In the presence of residual stresses in the coatings, adhesion-strength decreases with increasing coating thickness. The energy-release-rate criterion has been used to predict adhesion-strength with increasing coating thickness. Predicted bond-strength values are close to the measured adhesion-strength values and decrease with increase in coating thickness. •IN 718 is cold-sprayed on IN 718 substrates by using nitrogen gas for repair application•Residual stress distribution through the thickness of coatings are measured by using hole-drilling and bending methods.•Residual stress in the coatings decreases with increase in coating thickness.•Adhesion-strengths of cold-sprayed IN 718 coatings are highly influenced by coating thickness and residual stress states of the coating/substrate system. |
| Author | Schruefer, S. Wilson, S. Gibmeier, J. Singh, R. Vassen, R. |
| Author_xml | – sequence: 1 givenname: R. surname: Singh fullname: Singh, R. email: r.singh@fz-juelich.de organization: Institute of Energy and Climate Research (IEK-1), Forschungszentrum-Jülich, 52428 Jülich, Germany – sequence: 2 givenname: S. surname: Schruefer fullname: Schruefer, S. organization: Rolls-Royce Deutschland Ltd & Co KG, Eschenweg 11, Dahlewitz, D-15827 Blankenfelde-Mahlow, Germany – sequence: 3 givenname: S. surname: Wilson fullname: Wilson, S. organization: Oerlikon Metco AG, Wohlen, Rigackerstrasse 16, 5610, Wohlen, AG, Switzerland – sequence: 4 givenname: J. surname: Gibmeier fullname: Gibmeier, J. organization: Institute for Applied Materials (IAM-WK), Engelbert-Arnold-Strasse 4, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany – sequence: 5 givenname: R. surname: Vassen fullname: Vassen, R. organization: Institute of Energy and Climate Research (IEK-1), Forschungszentrum-Jülich, 52428 Jülich, Germany |
| BookMark | eNqFkU1LAzEQhoNUsK3-BQl43nWym93Nggel-FEQvOg5pPloU9ekJlmh_95dqxcvPQ28zPPOzDszNHHeaYQuCeQESH29zWMfjPQi5QUQlkOdA4MTNCWsabOypM0ETaGomoy1TXGGZjFuAYA0LZ2ibulM12snNfYGjybWrXHaWPnudIzYOxx0tKoXHY4pjJJwCgu1GVTvslFz67Q50J3K4i6IvVZ46eSwZocbwv5s4zk6NaKL-uK3ztHbw_3r4il7fnlcLu6eM0mhThnRBqhSUqqakoq2qpWtKdiKGUq1LAtCVzVoVUAzXFFVJWOqAhBaEVqaqmnLObo6-O6C_-x1THzr--CGkbwgpGblsBQMXfWhSwYfY9CG74L9EGHPCfAxWb7lf8nyMVkONYcf8OYfKG0aLvQuBWG74_jtAddDBF9WBx6lHT-gbNAyceXtMYtvzpacsw |
| CitedBy_id | crossref_primary_10_1002_adem_202200202 crossref_primary_10_1016_j_surfcoat_2020_126703 crossref_primary_10_1016_j_jmatprotec_2020_116928 crossref_primary_10_1520_JTE20180916 crossref_primary_10_1016_j_ndteint_2024_103236 crossref_primary_10_1007_s11665_024_09534_z crossref_primary_10_1016_j_surfcoat_2025_132430 crossref_primary_10_1016_j_jallcom_2022_167550 crossref_primary_10_1016_j_ceramint_2024_08_430 crossref_primary_10_1007_s11666_020_00988_w crossref_primary_10_1016_j_rineng_2025_105065 crossref_primary_10_1016_j_jallcom_2024_173840 crossref_primary_10_1016_j_surfcoat_2022_129211 crossref_primary_10_3390_cmd5010004 crossref_primary_10_1007_s11666_025_02009_0 crossref_primary_10_1109_TPEL_2024_3368666 crossref_primary_10_1007_s11666_023_01536_y crossref_primary_10_3390_ma14133597 crossref_primary_10_1016_j_vacuum_2022_111405 crossref_primary_10_1016_j_optlastec_2022_108902 crossref_primary_10_1016_j_surfcoat_2020_125650 crossref_primary_10_1016_j_surfcoat_2023_129691 crossref_primary_10_1007_s11666_022_01369_1 crossref_primary_10_1016_j_surfcoat_2021_126835 crossref_primary_10_1007_s11665_024_09422_6 crossref_primary_10_3390_ma18020431 crossref_primary_10_1016_j_corsci_2019_108227 crossref_primary_10_1016_j_surfcoat_2021_127888 crossref_primary_10_1016_j_msea_2023_144955 crossref_primary_10_1007_s11666_025_01934_4 crossref_primary_10_1007_s11666_025_01936_2 crossref_primary_10_1016_j_matpr_2019_09_225 crossref_primary_10_1016_j_surfcoat_2023_129703 crossref_primary_10_1016_j_apsusc_2020_147704 crossref_primary_10_1007_s11665_023_09041_7 crossref_primary_10_1007_s11666_021_01284_x crossref_primary_10_1016_j_surfcoat_2022_128398 crossref_primary_10_1080_21663831_2023_2227221 crossref_primary_10_1016_j_surfcoat_2022_128752 crossref_primary_10_1016_j_ijsolstr_2022_112041 crossref_primary_10_1016_j_surfcoat_2019_03_012 crossref_primary_10_1016_j_surfcoat_2023_129623 crossref_primary_10_3390_met15040400 crossref_primary_10_1016_j_surfcoat_2020_126373 crossref_primary_10_1016_j_surfcoat_2020_126494 crossref_primary_10_1016_j_surfcoat_2021_127288 crossref_primary_10_1007_s11666_022_01490_1 crossref_primary_10_3390_coatings12060765 crossref_primary_10_1016_j_engfracmech_2022_108301 crossref_primary_10_1007_s12540_023_01507_6 crossref_primary_10_3390_met10091263 crossref_primary_10_1016_j_surfcoat_2022_128502 crossref_primary_10_1021_acsami_5c12675 crossref_primary_10_1007_s11666_024_01916_y crossref_primary_10_1007_s11666_025_02011_6 crossref_primary_10_1007_s11666_024_01832_1 crossref_primary_10_1088_2053_1591_ab7067 crossref_primary_10_1007_s11666_023_01673_4 crossref_primary_10_1016_j_surfcoat_2023_129672 crossref_primary_10_1016_j_surfin_2021_101600 crossref_primary_10_3390_coatings14060665 crossref_primary_10_1016_j_surfcoat_2019_06_028 crossref_primary_10_1016_j_surfcoat_2019_125130 crossref_primary_10_1016_j_surfin_2021_101002 crossref_primary_10_3390_ma16010232 crossref_primary_10_3390_met12050780 crossref_primary_10_1016_j_msea_2024_147024 crossref_primary_10_1111_ijac_15077 crossref_primary_10_1016_j_polymdegradstab_2021_109667 crossref_primary_10_1016_j_porgcoat_2024_108365 crossref_primary_10_1007_s11666_022_01366_4 crossref_primary_10_1007_s11595_022_2548_5 crossref_primary_10_1007_s11666_025_01974_w crossref_primary_10_1007_s41939_024_00531_2 crossref_primary_10_3390_polym15030712 crossref_primary_10_1016_j_jallcom_2024_178182 crossref_primary_10_1007_s11666_022_01468_z crossref_primary_10_1016_j_jmrt_2025_03_089 crossref_primary_10_1007_s11666_022_01455_4 crossref_primary_10_3390_coatings13020267 crossref_primary_10_1007_s00170_020_05665_4 crossref_primary_10_1016_j_surfcoat_2023_129689 crossref_primary_10_1002_adem_201901237 crossref_primary_10_1016_j_surfcoat_2022_128731 crossref_primary_10_1016_j_surfcoat_2025_132367 crossref_primary_10_1016_j_addma_2020_101371 crossref_primary_10_1016_j_surfcoat_2019_05_022 crossref_primary_10_1177_1350650120940071 crossref_primary_10_3390_coatings12040544 crossref_primary_10_3390_coatings13030538 crossref_primary_10_1016_j_addma_2020_101296 crossref_primary_10_1007_s40843_024_3106_1 crossref_primary_10_1007_s00170_021_08379_3 |
| Cites_doi | 10.1016/j.ijimpeng.2003.11.004 10.1016/j.matdes.2008.07.040 10.1007/BF02645271 10.1007/s11666-017-0596-8 10.1007/s11666-012-9827-1 10.1016/j.actamat.2013.06.033 10.3139/105.110216 10.1016/j.ijmachtools.2006.05.001 10.1007/s11666-009-9357-7 10.1007/s11666-017-0572-3 10.1007/BF02326825 10.1016/S0921-5093(00)00862-5 10.1016/S0257-8972(02)00919-2 10.1361/105996302770348682 10.4028/www.scientific.net/MSF.768-769.136 10.1016/j.actamat.2006.09.006 10.1007/BF01401446 10.1016/S0040-6090(97)00199-5 10.1016/j.surfcoat.2017.03.072 10.1007/BF02650471 10.1016/j.surfcoat.2004.06.028 10.1016/0013-7944(77)90013-3 10.1361/105996303770348384 10.1016/S0257-8972(02)00018-X 10.1007/s11666-016-0382-z 10.1016/j.corsci.2010.05.023 10.1016/0956-7151(94)90223-2 10.1016/j.msea.2003.08.023 10.1007/s11666-008-9281-2 10.1016/j.matlet.2003.09.048 10.1016/j.actamat.2007.05.031 10.1007/s11666-013-9976-x 10.1016/S1359-6454(01)00099-4 10.1016/j.surfcoat.2012.04.034 10.1016/j.actamat.2010.10.058 10.1361/105996306X147108 10.1007/BF02658982 10.1016/0921-5093(91)90843-C 10.1007/BF00035361 10.1361/105996398770350945 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Sep 25, 2018 |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Sep 25, 2018 |
| DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD JG9 |
| DOI | 10.1016/j.surfcoat.2018.06.080 |
| DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1879-3347 |
| EndPage | 73 |
| ExternalDocumentID | 10_1016_j_surfcoat_2018_06_080 S0257897218306777 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29Q 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS FEDTE FGOYB G-2 HMV HVGLF HX~ HZ~ NDZJH R2- SEW SMS SPG WUQ ~HD 7QQ 7SR 8BQ 8FD AFXIZ AGCQF AGRNS JG9 SSH |
| ID | FETCH-LOGICAL-c406t-1ef04ddccd641549d9c9f28b8f44ec3214b60ed20700155388d500aed143f5793 |
| ISICitedReferencesCount | 106 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444660500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0257-8972 |
| IngestDate | Fri Jul 25 07:35:28 EDT 2025 Sat Nov 29 07:20:54 EST 2025 Tue Nov 18 22:18:57 EST 2025 Fri Feb 23 02:47:43 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Residual stresses Adhesion-strength Inconel 718 Cold spray |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c406t-1ef04ddccd641549d9c9f28b8f44ec3214b60ed20700155388d500aed143f5793 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2116837180 |
| PQPubID | 2045394 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2116837180 crossref_primary_10_1016_j_surfcoat_2018_06_080 crossref_citationtrail_10_1016_j_surfcoat_2018_06_080 elsevier_sciencedirect_doi_10_1016_j_surfcoat_2018_06_080 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-09-25 |
| PublicationDateYYYYMMDD | 2018-09-25 |
| PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Surface & coatings technology |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Schmidt, Assadi, Gärtner, Richter, Stoltenhoff, Kreye, Klassen (bb0030) 2009; 18 Li, Li (bb0140) 2003; 167 Sampath, Jiang, Matejicek, Prchlik, Kulkarni, Vaidya (bb0070) 2004; A364 Luzin, Spencer, Zhang (bb0090) 2011; 59 Price, Shipway, McCartney (bb0135) 2006; 15 Schajer (bb0105) 2013 Balani, Laha, Agarwal, Karthikeyan, Munroe (bb0045) 2005; 195 Klein (bb0195) 2000; 88 Koivuluoto, Nakki, Vuoristo (bb0145) 2009; 18 Pattison, Celotto, Morgan, Bray, O'Neill (bb0035) 2007; 47 Wong, Irissou, Vo, Sone, Bernier, Legoux, Fukanuma, Yue (bb0165) 2013; 22 Buchmann, Gadow, Tabellion (bb0060) 2000; A288 Karthikeyan, Kay (bb0155) 2003 Held, Gibmeier (bb0210) 2014; 69 Kosarev, Klinkov, Alkhimov, Papyrin (bb0025) 2003; 12 Marynowski, Halden, Farley (bb0250) 1965; 3 Li, Li, Wang, Fukanuma (bb0125) 2003 Koivuluoto (bb0130) 2010 Franchim, de Campos, Travessa, Neto (bb0225) 2009; 30 Tsui, Clyne (bb0085) 1997; 306 Stoltenhoff, Kreye, Richter (bb0015) 2002; 11 Matejicek, Sampath (bb0080) 2001; 49 Ogawa, Asano (bb0220) 2000; 6 bb0230 Li, Mei, Duo, Renzhi (bb0215) 1991; 147 Clyne, Gill (bb0265) 1996; 5 Howard, Tsui, Clyne (bb0255) 1994; 42 Srinivasan, Chandrasekhar, Amuthan, Lau, Calla (bb0110) 2016; 25 Arabgol, Assadi, Schmidt, Gärtner, Klassen (bb0100) 2014; 23 Spencer, Luzin, Matthews, Zhang (bb0040) 2012; 206 Han, Rybicki, Shadley (bb0270) 1993; 2 Dykhuisen, Smith (bb0020) 1998; 7 Papyrin, Kosarev, Klinkov, Alkhimov, Fomin (bb0005) 2006 Bagherifard, Roscioli, Vittoria Zuccoli, Hadi, D'Elia, Demir, Previtali, Kondás, Guagliano (bb0170) 2017 Metallic Materials-Tensile Testing-Pat (bb0185) 2016 Greving, Shadley, Rybicki (bb0245) 1914; 3 Marrocco, McCartney, Shipway, Sturgeon (bb0160) 2006 Charalambides, Kinloch, Wang, Williams (bb0260) 1992; 54 Bansal, Shipway, Leen (bb0075) 2007; 55 Mauer, Singh, Rauwald, Schruefer, Wilson, Vaßen (bb0180) 2017; 26 Clyne, Gill (bb0065) 1996; 5 Singh, Rauwald, Wessel, Mauer, Schruefer, Barth, Wilson, Vassen (bb0175) 2017; 319 Van Steenkiste, Smith, Teets (bb0235) 2002; 154 Tokarev (bb0150) 1996; 38 Rybicki, Kanninen (bb0275) 1977; 9 Obelode, Gibmeier (bb0200) 2014; 768-769 Suhonen, Varis, Dosta, Torrell, Guilemany (bb0095) 2013; 61 Choi, Li, Luzin, Neiser, Gna (bb0055) 2007; 55 Tao, Xiong, Sun, Kong, Cui, Li, Song (bb0115) 2010; 52 Morgan, Fox, Pattison, Sutcliffe, Neill (bb0120) 2004; 58 Rendler, Vigness (bb0205) 1996; 6 Koivuluoto, Nakki, Vuoristo (bb0050) 2009; 18 Atkinson (bb0190) 1995; 54 Champagne (bb0010) 2007 Zaretskya, Kanelb, Razorenovc, Baumungd (bb0240) 2005; 31 Morgan (10.1016/j.surfcoat.2018.06.080_bb0120) 2004; 58 Obelode (10.1016/j.surfcoat.2018.06.080_bb0200) 2014; 768-769 Atkinson (10.1016/j.surfcoat.2018.06.080_bb0190) 1995; 54 Han (10.1016/j.surfcoat.2018.06.080_bb0270) 1993; 2 Schmidt (10.1016/j.surfcoat.2018.06.080_bb0030) 2009; 18 Charalambides (10.1016/j.surfcoat.2018.06.080_bb0260) 1992; 54 Pattison (10.1016/j.surfcoat.2018.06.080_bb0035) 2007; 47 Stoltenhoff (10.1016/j.surfcoat.2018.06.080_bb0015) 2002; 11 Greving (10.1016/j.surfcoat.2018.06.080_bb0245) 1914; 3 Papyrin (10.1016/j.surfcoat.2018.06.080_bb0005) 2006 Buchmann (10.1016/j.surfcoat.2018.06.080_bb0060) 2000; A288 Koivuluoto (10.1016/j.surfcoat.2018.06.080_bb0130) 2010 Dykhuisen (10.1016/j.surfcoat.2018.06.080_bb0020) 1998; 7 Price (10.1016/j.surfcoat.2018.06.080_bb0135) 2006; 15 Luzin (10.1016/j.surfcoat.2018.06.080_bb0090) 2011; 59 Clyne (10.1016/j.surfcoat.2018.06.080_bb0265) 1996; 5 Spencer (10.1016/j.surfcoat.2018.06.080_bb0040) 2012; 206 Tsui (10.1016/j.surfcoat.2018.06.080_bb0085) 1997; 306 Karthikeyan (10.1016/j.surfcoat.2018.06.080_bb0155) 2003 Li (10.1016/j.surfcoat.2018.06.080_bb0215) 1991; 147 Li (10.1016/j.surfcoat.2018.06.080_bb0125) 2003 Kosarev (10.1016/j.surfcoat.2018.06.080_bb0025) 2003; 12 Wong (10.1016/j.surfcoat.2018.06.080_bb0165) 2013; 22 Koivuluoto (10.1016/j.surfcoat.2018.06.080_bb0050) 2009; 18 Tokarev (10.1016/j.surfcoat.2018.06.080_bb0150) 1996; 38 Rendler (10.1016/j.surfcoat.2018.06.080_bb0205) 1996; 6 Arabgol (10.1016/j.surfcoat.2018.06.080_bb0100) 2014; 23 Marrocco (10.1016/j.surfcoat.2018.06.080_bb0160) 2006 Sampath (10.1016/j.surfcoat.2018.06.080_bb0070) 2004; A364 Bagherifard (10.1016/j.surfcoat.2018.06.080_bb0170) 2017 Choi (10.1016/j.surfcoat.2018.06.080_bb0055) 2007; 55 Marynowski (10.1016/j.surfcoat.2018.06.080_bb0250) 1965; 3 Rybicki (10.1016/j.surfcoat.2018.06.080_bb0275) 1977; 9 Clyne (10.1016/j.surfcoat.2018.06.080_bb0065) 1996; 5 Franchim (10.1016/j.surfcoat.2018.06.080_bb0225) 2009; 30 Metallic Materials-Tensile Testing-Pat (10.1016/j.surfcoat.2018.06.080_bb0185) 2016 Singh (10.1016/j.surfcoat.2018.06.080_bb0175) 2017; 319 Howard (10.1016/j.surfcoat.2018.06.080_bb0255) 1994; 42 Ogawa (10.1016/j.surfcoat.2018.06.080_bb0220) 2000; 6 Tao (10.1016/j.surfcoat.2018.06.080_bb0115) 2010; 52 Schajer (10.1016/j.surfcoat.2018.06.080_bb0105) 2013 Held (10.1016/j.surfcoat.2018.06.080_bb0210) 2014; 69 Matejicek (10.1016/j.surfcoat.2018.06.080_bb0080) 2001; 49 Zaretskya (10.1016/j.surfcoat.2018.06.080_bb0240) 2005; 31 Suhonen (10.1016/j.surfcoat.2018.06.080_bb0095) 2013; 61 Van Steenkiste (10.1016/j.surfcoat.2018.06.080_bb0235) 2002; 154 Srinivasan (10.1016/j.surfcoat.2018.06.080_bb0110) 2016; 25 Balani (10.1016/j.surfcoat.2018.06.080_bb0045) 2005; 195 Li (10.1016/j.surfcoat.2018.06.080_bb0140) 2003; 167 Bansal (10.1016/j.surfcoat.2018.06.080_bb0075) 2007; 55 Koivuluoto (10.1016/j.surfcoat.2018.06.080_bb0145) 2009; 18 Champagne (10.1016/j.surfcoat.2018.06.080_bb0010) 2007 Mauer (10.1016/j.surfcoat.2018.06.080_bb0180) 2017; 26 Klein (10.1016/j.surfcoat.2018.06.080_bb0195) 2000; 88 |
| References_xml | – volume: 15 start-page: 507 year: 2006 end-page: 512 ident: bb0135 article-title: Effect of cold spray deposition of a titanium coating on fatigue behavior of a titanium alloy publication-title: J. Therm. Spray Technol. – volume: A364 start-page: 216 year: 2004 end-page: 231 ident: bb0070 article-title: Role of thermal spray processing method on the microstructure, residual stress and properties of coatings: an integrated study for Ni-5 wt.%Al bond coats publication-title: Mater. Sci. Eng. – volume: 18 start-page: 794 year: 2009 end-page: 808 ident: bb0030 article-title: From particle acceleration to impact and bonding in cold spraying publication-title: J. Therm. Spray Technol. – volume: 59 start-page: 1259 year: 2011 end-page: 1270 ident: bb0090 article-title: Residual stress and thermo-mechanical properties of cold spray metal coatings publication-title: Acta Mater. – volume: 3 start-page: 109 year: 1965 end-page: 115 ident: bb0250 article-title: Variables in plasma spraying publication-title: Electr. Technol. – volume: 6 start-page: 577 year: 1996 end-page: 586 ident: bb0205 article-title: Hole-drilling strain-gage method of measuring residual stresses publication-title: Exp. Mech. – volume: 18 start-page: 75 year: 2009 end-page: 82 ident: bb0145 article-title: Corrosion properties of cold-sprayed tantalum coatings publication-title: J. Therm. Spray Technol. – volume: 5 start-page: 401 year: 1996 end-page: 418 ident: bb0265 article-title: Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work publication-title: J. Therm. Spray Technol. – volume: 31 start-page: 41 year: 2005 end-page: 54 ident: bb0240 article-title: Impact strength properties of nickel-based refractory superalloys at normal and elevated temperatures publication-title: Int. J. Impact Eng. – volume: 11 start-page: 542 year: 2002 end-page: 550 ident: bb0015 article-title: An analysis of the cold spray process and its coatings publication-title: J. Therm. Spray Technol. – year: 2010 ident: bb0130 article-title: Microstructural Characteristics and Corrosion Properties of Cold-Sprayed Coatings – volume: 5 start-page: 401 year: 1996 end-page: 418 ident: bb0065 article-title: Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work publication-title: J. Therm. Spray Technol. – volume: 88 start-page: 5487 year: 2000 end-page: 5489 ident: bb0195 article-title: How accurate is Stoney's equation and recent modifications publication-title: J. Therm. Spray Technol. – volume: 147 start-page: 167 year: 1991 ident: bb0215 article-title: Mechanical approach to the residual stress field induced by shot peening publication-title: Mater. Sci. Eng. A – year: 2006 ident: bb0005 article-title: Cold Spray Technology – year: 2013 ident: bb0105 article-title: Practical Residual Stress Measurement Methods – volume: 195 start-page: 272 year: 2005 end-page: 279 ident: bb0045 article-title: Effect of carrier gases on microstructural and electrochemical behavior of cold-sprayed 1100 aluminum coating publication-title: Surf. Coat. Technol. – volume: 319 start-page: 249 year: 2017 end-page: 259 ident: bb0175 article-title: Effects of substrate roughness and spray-angle on deposition behavior of cold-sprayed Inconel 718 publication-title: Surf. Coat. Technol. – volume: 54 start-page: 1 year: 1995 end-page: 14 ident: bb0190 publication-title: Br. Ceram. Proc. – ident: bb0230 – year: 2006 ident: bb0160 article-title: Comparison of the microstructure of cold sprayed and thermally sprayed In718 coatings publication-title: Proceedings for Thermal Spray 2006: Building on 100 Years of Success – volume: 55 start-page: 5089 year: 2007 end-page: 5101 ident: bb0075 article-title: Residual stresses in high-velocity oxy-fuel thermally sprayed coatings-modelling the effect of particle velocity and temperature during the spraying process publication-title: Acta Mater. – volume: 6 start-page: 55 year: 2000 end-page: 62 ident: bb0220 article-title: Theoretical prediction of residual stress produced by shot peening and experimental verification of carburized steel publication-title: Mater. Sci. Res. Int. – volume: 12 start-page: 265 year: 2003 end-page: 281 ident: bb0025 article-title: On some aspects of gas dynamics of the cold spray process publication-title: J. Therm. Spray Technol. – volume: 22 start-page: 413 year: 2013 end-page: 421 ident: bb0165 publication-title: J. Therm. Spray Technol. – volume: 154 start-page: 237 year: 2002 end-page: 252 ident: bb0235 article-title: Aluminum coatings via kinetic spray with relatively large powder particles publication-title: Surf. Coat. Technol. – volume: 167 start-page: 278 year: 2003 end-page: 283 ident: bb0140 article-title: Deposition characteristics of titanium coating in cold spraying publication-title: Surf. Coat. Technol. – volume: 306 start-page: 23 year: 1997 end-page: 33 ident: bb0085 article-title: An analytical model for predicting residual stresses in progressively deposited coatings—part 1: planar geometry publication-title: Thin Solid Films – volume: 3 start-page: 371 year: 1914 end-page: 378 ident: bb0245 article-title: Effects of coating thickness and residual stresses on the bond strength of ASTM C633-79 thermal spray coating test specimens publication-title: J. Therm. Spray Technol. – volume: 30 start-page: 1556 year: 2009 ident: bb0225 article-title: Analytical modelling for residual stresses produced by shot peening publication-title: Mater. Des. – volume: 206 start-page: 4249 year: 2012 end-page: 4255 ident: bb0040 article-title: Residual stresses in cold spray Al coatings: the effect of alloying and of process parameters publication-title: Surf. Coat. Technol. – volume: A288 start-page: 154 year: 2000 end-page: 159 ident: bb0060 article-title: Experimental and numerical residual stress analysis of layer coated composites publication-title: Mater. Sci. Eng. – volume: 49 start-page: 1993 year: 2001 end-page: 1999 ident: bb0080 article-title: Intrinsic residual stresses in single splats produced by thermal spray processes publication-title: Acta Mater. – volume: 25 start-page: 725 year: 2016 end-page: 744 ident: bb0110 article-title: Characterization of cold-sprayed IN625 and NiCr coatings publication-title: J. Therm. Spray Technol. – volume: 47 start-page: 627 year: 2007 end-page: 634 ident: bb0035 article-title: A non-thermal approach to freeform fabrication publication-title: Int. J. Mach. Tools Manuf. – volume: 61 start-page: 6329 year: 2013 end-page: 6337 ident: bb0095 article-title: Residual stress development in cold sprayed Al, Cu and Ti coatings publication-title: Acta Mater. – volume: 23 start-page: 84 year: 2014 end-page: 90 ident: bb0100 article-title: Analysis of thermal history and residual stress in cold-sprayed coatings publication-title: J. Therm. Spray Technol. – volume: 768-769 start-page: 136 year: 2014 end-page: 143 ident: bb0200 article-title: Influence of the interfacial roughness on residual stress analysis of thick film systems by incremental hole drilling publication-title: Mater. Sci. Forum – volume: 38 start-page: 136 year: 1996 end-page: 139 ident: bb0150 article-title: Structure of aluminum powder coatings prepared by cold gas dynamic spraying publication-title: Met. Sci. Heat Treat. – start-page: 117 year: 2003 end-page: 121 ident: bb0155 article-title: Cold spray technology: an industrial perspective publication-title: Proceedings of Thermal Spray 2003: Advancing the Science & Applying the Technology, ASM International, Orlando, FL – volume: 26 start-page: 1423 year: 2017 end-page: 1433 ident: bb0180 article-title: Diagnostics of cold sprayed particle velocities approaching critical deposition conditions publication-title: J. Therm. Spray Technol. – volume: 42 start-page: 2823 year: 1994 end-page: 2836 ident: bb0255 article-title: The effect of residual stresses on the debonding of coatings, part I: a model for delamination at a biomaterial Interface publication-title: Acta Metall. Mater. – volume: 55 start-page: 857 year: 2007 end-page: 866 ident: bb0055 article-title: Integrated characterization of cold sprayed aluminum coatings publication-title: Acta Mater. – year: 2017 ident: bb0170 article-title: Cold spray deposition of freestanding inconel samples and comparative analysis with selective laser melting publication-title: J. Therm. Spray Technol. – start-page: 91 year: 2003 end-page: 96 ident: bb0125 article-title: Effect of spray angle on deposition characteristics in cold spraying, thermal spray 2003: advancing the science and applying the publication-title: Technology – volume: 69 start-page: 71 year: 2014 end-page: 79 ident: bb0210 article-title: Residual stress analysis of thick film systems by the incremental hole-drilling method—influence of interlayers and interfacial roughness publication-title: HTM J. Heat Treatm. Mater. – volume: 52 start-page: 3191 year: 2010 end-page: 3197 ident: bb0115 article-title: Microstructure and corrosion performance of a cold sprayed aluminium coating on AZ91D magnesium alloy publication-title: Corros. Sci. – year: 2016 ident: bb0185 article-title: Method of Test at Room Temperature – volume: 9 start-page: 931 year: 1977 end-page: 938 ident: bb0275 article-title: A finite element calculations of stress intensity factors by a modified crack closure integral publication-title: Eng. Fract. Mech. – volume: 18 start-page: 75 year: 2009 end-page: 82 ident: bb0050 article-title: Corrosion properties of cold-sprayed tantalum coatings publication-title: J. Therm. Spray Technol. – volume: 7 start-page: 205 year: 1998 end-page: 212 ident: bb0020 article-title: Gas dynamic principle of cold spray publication-title: J. Therm. Spray Technol. – volume: 2 start-page: 235 year: 1993 end-page: 241 ident: bb0270 article-title: Application of facture mechanics to the interpretation of bond strength Aata from ASTM standard C633-79 publication-title: J. Therm. Spray Technol. – year: 2007 ident: bb0010 article-title: The Cold Spray Deposition Process: Fundamentals and Applications – volume: 54 start-page: 269 year: 1992 end-page: 291 ident: bb0260 article-title: On the analysis of mixed mode failure publication-title: Int. J. Fract. – volume: 58 start-page: 1317 year: 2004 end-page: 1320 ident: bb0120 article-title: Analysis of cold gas dynamically sprayed aluminium deposits publication-title: Mater. Lett. – volume: 31 start-page: 41 year: 2005 ident: 10.1016/j.surfcoat.2018.06.080_bb0240 article-title: Impact strength properties of nickel-based refractory superalloys at normal and elevated temperatures publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2003.11.004 – volume: 30 start-page: 1556 year: 2009 ident: 10.1016/j.surfcoat.2018.06.080_bb0225 article-title: Analytical modelling for residual stresses produced by shot peening publication-title: Mater. Des. doi: 10.1016/j.matdes.2008.07.040 – volume: 5 start-page: 401 year: 1996 ident: 10.1016/j.surfcoat.2018.06.080_bb0065 article-title: Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work publication-title: J. Therm. Spray Technol. doi: 10.1007/BF02645271 – volume: 26 start-page: 1423 year: 2017 ident: 10.1016/j.surfcoat.2018.06.080_bb0180 article-title: Diagnostics of cold sprayed particle velocities approaching critical deposition conditions publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-017-0596-8 – volume: 22 start-page: 413 year: 2013 ident: 10.1016/j.surfcoat.2018.06.080_bb0165 publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-012-9827-1 – volume: 61 start-page: 6329 year: 2013 ident: 10.1016/j.surfcoat.2018.06.080_bb0095 article-title: Residual stress development in cold sprayed Al, Cu and Ti coatings publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.06.033 – volume: 69 start-page: 71 year: 2014 ident: 10.1016/j.surfcoat.2018.06.080_bb0210 article-title: Residual stress analysis of thick film systems by the incremental hole-drilling method—influence of interlayers and interfacial roughness publication-title: HTM J. Heat Treatm. Mater. doi: 10.3139/105.110216 – volume: 47 start-page: 627 year: 2007 ident: 10.1016/j.surfcoat.2018.06.080_bb0035 article-title: A non-thermal approach to freeform fabrication publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2006.05.001 – volume: 6 start-page: 55 year: 2000 ident: 10.1016/j.surfcoat.2018.06.080_bb0220 article-title: Theoretical prediction of residual stress produced by shot peening and experimental verification of carburized steel publication-title: Mater. Sci. Res. Int. – volume: 18 start-page: 794 year: 2009 ident: 10.1016/j.surfcoat.2018.06.080_bb0030 article-title: From particle acceleration to impact and bonding in cold spraying publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-009-9357-7 – year: 2017 ident: 10.1016/j.surfcoat.2018.06.080_bb0170 article-title: Cold spray deposition of freestanding inconel samples and comparative analysis with selective laser melting publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-017-0572-3 – volume: 88 start-page: 5487 year: 2000 ident: 10.1016/j.surfcoat.2018.06.080_bb0195 article-title: How accurate is Stoney's equation and recent modifications publication-title: J. Therm. Spray Technol. – volume: 6 start-page: 577 year: 1996 ident: 10.1016/j.surfcoat.2018.06.080_bb0205 article-title: Hole-drilling strain-gage method of measuring residual stresses publication-title: Exp. Mech. doi: 10.1007/BF02326825 – volume: A288 start-page: 154 year: 2000 ident: 10.1016/j.surfcoat.2018.06.080_bb0060 article-title: Experimental and numerical residual stress analysis of layer coated composites publication-title: Mater. Sci. Eng. doi: 10.1016/S0921-5093(00)00862-5 – volume: 167 start-page: 278 issue: 2003 year: 2003 ident: 10.1016/j.surfcoat.2018.06.080_bb0140 article-title: Deposition characteristics of titanium coating in cold spraying publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(02)00919-2 – volume: 11 start-page: 542 year: 2002 ident: 10.1016/j.surfcoat.2018.06.080_bb0015 article-title: An analysis of the cold spray process and its coatings publication-title: J. Therm. Spray Technol. doi: 10.1361/105996302770348682 – volume: 768-769 start-page: 136 year: 2014 ident: 10.1016/j.surfcoat.2018.06.080_bb0200 article-title: Influence of the interfacial roughness on residual stress analysis of thick film systems by incremental hole drilling publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.768-769.136 – volume: 55 start-page: 857 year: 2007 ident: 10.1016/j.surfcoat.2018.06.080_bb0055 article-title: Integrated characterization of cold sprayed aluminum coatings publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.09.006 – volume: 38 start-page: 136 year: 1996 ident: 10.1016/j.surfcoat.2018.06.080_bb0150 article-title: Structure of aluminum powder coatings prepared by cold gas dynamic spraying publication-title: Met. Sci. Heat Treat. doi: 10.1007/BF01401446 – volume: 306 start-page: 23 year: 1997 ident: 10.1016/j.surfcoat.2018.06.080_bb0085 article-title: An analytical model for predicting residual stresses in progressively deposited coatings—part 1: planar geometry publication-title: Thin Solid Films doi: 10.1016/S0040-6090(97)00199-5 – volume: 319 start-page: 249 year: 2017 ident: 10.1016/j.surfcoat.2018.06.080_bb0175 article-title: Effects of substrate roughness and spray-angle on deposition behavior of cold-sprayed Inconel 718 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2017.03.072 – volume: 2 start-page: 235 year: 1993 ident: 10.1016/j.surfcoat.2018.06.080_bb0270 article-title: Application of facture mechanics to the interpretation of bond strength Aata from ASTM standard C633-79 publication-title: J. Therm. Spray Technol. doi: 10.1007/BF02650471 – year: 2010 ident: 10.1016/j.surfcoat.2018.06.080_bb0130 – year: 2006 ident: 10.1016/j.surfcoat.2018.06.080_bb0005 – year: 2007 ident: 10.1016/j.surfcoat.2018.06.080_bb0010 – volume: 195 start-page: 272 year: 2005 ident: 10.1016/j.surfcoat.2018.06.080_bb0045 article-title: Effect of carrier gases on microstructural and electrochemical behavior of cold-sprayed 1100 aluminum coating publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2004.06.028 – volume: 9 start-page: 931 year: 1977 ident: 10.1016/j.surfcoat.2018.06.080_bb0275 article-title: A finite element calculations of stress intensity factors by a modified crack closure integral publication-title: Eng. Fract. Mech. doi: 10.1016/0013-7944(77)90013-3 – volume: 12 start-page: 265 year: 2003 ident: 10.1016/j.surfcoat.2018.06.080_bb0025 article-title: On some aspects of gas dynamics of the cold spray process publication-title: J. Therm. Spray Technol. doi: 10.1361/105996303770348384 – volume: 154 start-page: 237 year: 2002 ident: 10.1016/j.surfcoat.2018.06.080_bb0235 article-title: Aluminum coatings via kinetic spray with relatively large powder particles publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(02)00018-X – volume: 25 start-page: 725 year: 2016 ident: 10.1016/j.surfcoat.2018.06.080_bb0110 article-title: Characterization of cold-sprayed IN625 and NiCr coatings publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-016-0382-z – volume: 52 start-page: 3191 year: 2010 ident: 10.1016/j.surfcoat.2018.06.080_bb0115 article-title: Microstructure and corrosion performance of a cold sprayed aluminium coating on AZ91D magnesium alloy publication-title: Corros. Sci. doi: 10.1016/j.corsci.2010.05.023 – year: 2013 ident: 10.1016/j.surfcoat.2018.06.080_bb0105 – volume: 3 start-page: 109 year: 1965 ident: 10.1016/j.surfcoat.2018.06.080_bb0250 article-title: Variables in plasma spraying publication-title: Electr. Technol. – volume: 5 start-page: 401 year: 1996 ident: 10.1016/j.surfcoat.2018.06.080_bb0265 article-title: Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work publication-title: J. Therm. Spray Technol. doi: 10.1007/BF02645271 – year: 2006 ident: 10.1016/j.surfcoat.2018.06.080_bb0160 article-title: Comparison of the microstructure of cold sprayed and thermally sprayed In718 coatings – volume: 42 start-page: 2823 year: 1994 ident: 10.1016/j.surfcoat.2018.06.080_bb0255 article-title: The effect of residual stresses on the debonding of coatings, part I: a model for delamination at a biomaterial Interface publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(94)90223-2 – volume: A364 start-page: 216 year: 2004 ident: 10.1016/j.surfcoat.2018.06.080_bb0070 article-title: Role of thermal spray processing method on the microstructure, residual stress and properties of coatings: an integrated study for Ni-5 wt.%Al bond coats publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2003.08.023 – volume: 18 start-page: 75 year: 2009 ident: 10.1016/j.surfcoat.2018.06.080_bb0145 article-title: Corrosion properties of cold-sprayed tantalum coatings publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-008-9281-2 – start-page: 91 year: 2003 ident: 10.1016/j.surfcoat.2018.06.080_bb0125 article-title: Effect of spray angle on deposition characteristics in cold spraying, thermal spray 2003: advancing the science and applying the publication-title: Technology – volume: 58 start-page: 1317 year: 2004 ident: 10.1016/j.surfcoat.2018.06.080_bb0120 article-title: Analysis of cold gas dynamically sprayed aluminium deposits publication-title: Mater. Lett. doi: 10.1016/j.matlet.2003.09.048 – start-page: 117 year: 2003 ident: 10.1016/j.surfcoat.2018.06.080_bb0155 article-title: Cold spray technology: an industrial perspective – volume: 55 start-page: 5089 year: 2007 ident: 10.1016/j.surfcoat.2018.06.080_bb0075 article-title: Residual stresses in high-velocity oxy-fuel thermally sprayed coatings-modelling the effect of particle velocity and temperature during the spraying process publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.05.031 – volume: 23 start-page: 84 year: 2014 ident: 10.1016/j.surfcoat.2018.06.080_bb0100 article-title: Analysis of thermal history and residual stress in cold-sprayed coatings publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-013-9976-x – year: 2016 ident: 10.1016/j.surfcoat.2018.06.080_bb0185 – volume: 49 start-page: 1993 year: 2001 ident: 10.1016/j.surfcoat.2018.06.080_bb0080 article-title: Intrinsic residual stresses in single splats produced by thermal spray processes publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00099-4 – volume: 206 start-page: 4249 year: 2012 ident: 10.1016/j.surfcoat.2018.06.080_bb0040 article-title: Residual stresses in cold spray Al coatings: the effect of alloying and of process parameters publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2012.04.034 – volume: 59 start-page: 1259 year: 2011 ident: 10.1016/j.surfcoat.2018.06.080_bb0090 article-title: Residual stress and thermo-mechanical properties of cold spray metal coatings publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.10.058 – volume: 15 start-page: 507 year: 2006 ident: 10.1016/j.surfcoat.2018.06.080_bb0135 article-title: Effect of cold spray deposition of a titanium coating on fatigue behavior of a titanium alloy publication-title: J. Therm. Spray Technol. doi: 10.1361/105996306X147108 – volume: 3 start-page: 371 year: 1914 ident: 10.1016/j.surfcoat.2018.06.080_bb0245 article-title: Effects of coating thickness and residual stresses on the bond strength of ASTM C633-79 thermal spray coating test specimens publication-title: J. Therm. Spray Technol. doi: 10.1007/BF02658982 – volume: 54 start-page: 1 year: 1995 ident: 10.1016/j.surfcoat.2018.06.080_bb0190 publication-title: Br. Ceram. Proc. – volume: 18 start-page: 75 year: 2009 ident: 10.1016/j.surfcoat.2018.06.080_bb0050 article-title: Corrosion properties of cold-sprayed tantalum coatings publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-008-9281-2 – volume: 147 start-page: 167 year: 1991 ident: 10.1016/j.surfcoat.2018.06.080_bb0215 article-title: Mechanical approach to the residual stress field induced by shot peening publication-title: Mater. Sci. Eng. A doi: 10.1016/0921-5093(91)90843-C – volume: 54 start-page: 269 year: 1992 ident: 10.1016/j.surfcoat.2018.06.080_bb0260 article-title: On the analysis of mixed mode failure publication-title: Int. J. Fract. doi: 10.1007/BF00035361 – volume: 7 start-page: 205 year: 1998 ident: 10.1016/j.surfcoat.2018.06.080_bb0020 article-title: Gas dynamic principle of cold spray publication-title: J. Therm. Spray Technol. doi: 10.1361/105996398770350945 |
| SSID | ssj0001794 |
| Score | 2.5651379 |
| Snippet | In the cold spray process, deposition of particles takes place through intensive plastic deformation upon impact in a solid state at the temperatures well... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 64 |
| SubjectTerms | Adhesion tests Adhesion-strength Adhesive strength Bending Chemical composition Coating effects Cold spray Cold spraying Composition Compressive properties Deformation mechanisms Deposition Engine components Impact velocity Inconel 718 Melting points Nickel base alloys Organic chemistry Particle impact Peening Plastic deformation Process parameters Residual stress Residual stresses Stress concentration Studies Substrates Superalloys Velocity |
| Title | Influence of coating thickness on residual stress and adhesion-strength of cold-sprayed Inconel 718 coatings |
| URI | https://dx.doi.org/10.1016/j.surfcoat.2018.06.080 https://www.proquest.com/docview/2116837180 |
| Volume | 350 |
| WOSCitedRecordID | wos000444660500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1879-3347 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001794 issn: 0257-8972 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFgk4ICggCgXtgVu1xY-1d32sqgLtoUK0SLlZ9u6apFhOZLtV-Sf8XGZfdtoApQcuVjTJbmzPl5nxZOYbhN6VJQO3HMckLQUlVJacFEGlSExlVFEmWVoUZtgEOznh02n2eTL56XthLmvWNPzqKlv-V1WDDJStW2fvoO5hUxDAa1A6HEHtcPwnxR_5sSO2YrywkyBmc_HdWLWF7l_pbAuWaxQxfK1ypnTijGhZ862f2dW1JN2yLX4oXTQMj86q3gU347ftVkPb04u2KoQyWPLv7_ZrmftTkJtUzpe98U-gWXuhCW9NKnYQj0ySo-zjHNz33H7yeG81ZRGa-grb3uwsG9gJwjN2zQzHloDWGVJLbe5csh12smbsbd7hHLxMW-nr0oV6lo3VDoe6zq59w-sNtYi-zO089_vkep9c1_vx4B7ajFiSgb3c3D86nB4PXl4bMpO_c5ey0n3--zP6U-BzIwQwcc3ZE_TYPZDgfQukp2iimi304MDPAdxCj1YoK5-heoAXXlTY6RkP8MKLBnt4YQsvDPDCa_Cyq0d4YQcvDPDy23bP0dcPh2cHn4ib2EEEBIY9CVUVUCmFkCnV3H8yE1kV8ZJXlCqhZ2KVaaBkFDA7sIpzmQRBoSRE7VUCruIF2mjgy14irGjBEhUXEEGVlAUlB-uRaCYmzWVbRuE2SvztzIWjs9dTVer87wrdRu-HdUtL6HLrisxrK3dhqQ03cwDirWt3vHpzZyO6PArDlMdwO4NXdz6Z1-jh-IvaQRs9_D7foPvisp937VsH0l8yHL57 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+coating+thickness+on+residual+stress+and+adhesion-strength+of+cold-sprayed+Inconel+718+coatings&rft.jtitle=Surface+%26+coatings+technology&rft.au=Singh%2C+R.&rft.au=Schruefer%2C+S.&rft.au=Wilson%2C+S.&rft.au=Gibmeier%2C+J.&rft.date=2018-09-25&rft.issn=0257-8972&rft.volume=350&rft.spage=64&rft.epage=73&rft_id=info:doi/10.1016%2Fj.surfcoat.2018.06.080&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_surfcoat_2018_06_080 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon |