Hardware implementation of neural network-based engine model using FPGA

This paper implements an artificial neural network (ANN)-based engine model using the Field Programmable Gate Array (FPGA). The developed (ANN)-based engine model will be used to estimate the engine gas emissions to mitigate the harmful effects of these emissions on human health. Getting reliable an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Alexandria engineering journal Ročník 61; číslo 12; s. 12039 - 12050
Hlavní autoři: Magdy Saady, Marina, Hassan Essai, Mohamed
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2022
Elsevier
Témata:
ISSN:1110-0168
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper implements an artificial neural network (ANN)-based engine model using the Field Programmable Gate Array (FPGA). The developed (ANN)-based engine model will be used to estimate the engine gas emissions to mitigate the harmful effects of these emissions on human health. Getting reliable and robust FPGA-based ANNs implementations depends on the optimal choice of activation function that will provide minimal area occupation on FPGA. This study introduces, implements, and investigates FPGA-based ANN-based engine models using five different activation functions. These implemented engine models were described using MATLAB/Simulink and hardware description language coder and carried out by Spartan -3E-500.CP132 FPGA platform from Xilinx. The performance of the implemented engine models was investigated in terms of area-efficient implementation and the regression values (R) to build a robust ANN-based engine model.
ISSN:1110-0168
DOI:10.1016/j.aej.2022.05.035