Hardware implementation of neural network-based engine model using FPGA

This paper implements an artificial neural network (ANN)-based engine model using the Field Programmable Gate Array (FPGA). The developed (ANN)-based engine model will be used to estimate the engine gas emissions to mitigate the harmful effects of these emissions on human health. Getting reliable an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Alexandria engineering journal Ročník 61; číslo 12; s. 12039 - 12050
Hlavní autoři: Magdy Saady, Marina, Hassan Essai, Mohamed
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2022
Elsevier
Témata:
ISSN:1110-0168
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper implements an artificial neural network (ANN)-based engine model using the Field Programmable Gate Array (FPGA). The developed (ANN)-based engine model will be used to estimate the engine gas emissions to mitigate the harmful effects of these emissions on human health. Getting reliable and robust FPGA-based ANNs implementations depends on the optimal choice of activation function that will provide minimal area occupation on FPGA. This study introduces, implements, and investigates FPGA-based ANN-based engine models using five different activation functions. These implemented engine models were described using MATLAB/Simulink and hardware description language coder and carried out by Spartan -3E-500.CP132 FPGA platform from Xilinx. The performance of the implemented engine models was investigated in terms of area-efficient implementation and the regression values (R) to build a robust ANN-based engine model.
AbstractList This paper implements an artificial neural network (ANN)-based engine model using the Field Programmable Gate Array (FPGA). The developed (ANN)-based engine model will be used to estimate the engine gas emissions to mitigate the harmful effects of these emissions on human health. Getting reliable and robust FPGA-based ANNs implementations depends on the optimal choice of activation function that will provide minimal area occupation on FPGA. This study introduces, implements, and investigates FPGA-based ANN-based engine models using five different activation functions. These implemented engine models were described using MATLAB/Simulink and hardware description language coder and carried out by Spartan -3E-500.CP132 FPGA platform from Xilinx. The performance of the implemented engine models was investigated in terms of area-efficient implementation and the regression values (R) to build a robust ANN-based engine model.
Author Hassan Essai, Mohamed
Magdy Saady, Marina
Author_xml – sequence: 1
  givenname: Marina
  surname: Magdy Saady
  fullname: Magdy Saady, Marina
  email: eng.rena201333@gmail.com
  organization: Electronics & Communications Engineering Department, Higher Institute of Engineering and Technology, Luxor – El Tod, Egypt
– sequence: 2
  givenname: Mohamed
  surname: Hassan Essai
  fullname: Hassan Essai, Mohamed
  organization: Electrical Engineering Department, Faculty of Engineering-Qena, Al-Azhar University, Egypt
BookMark eNp9kLFOwzAQhj2ABJQ-AFteIMGO7TgRE0K0RaoEA8zWxb5UDqmNnJSKt8eliIGht_zSnb5fp--KnPngkZAbRgtGWXXbF4B9UdKyLKgsKJdn5JIxRvN0rC_IfBx7mkaqRjTVJVmuINo9RMzc9mPALfoJJhd8FrrM4y7CkGLah_ietzCizdBvnMdsGywO2W50fpMtXpb31-S8g2HE-W_OyNvi8fVhla-fl08P9-vcCFpNOUNVQsVLy6wyUjZSKMu5VaqDllPLJDVcCEs7mX5uy862phGmlBZrwaqm4TPydOy1AXr9Ed0W4pcO4PTPIsSNhjg5M6DmtK5aUanOgBQgmpobq1hjoEZmbc1SFzt2mRjGMWL318eoPsjUvU4y9UGmplInmYlR_xjjjsamCG44Sd4dSUx6Ph1GPRqH3qB1Ec2U_ncn6G8nU5Gt
CitedBy_id crossref_primary_10_1016_j_jestch_2023_101542
crossref_primary_10_1016_j_engappai_2023_105972
crossref_primary_10_1080_15567036_2024_2305689
crossref_primary_10_1109_TNANO_2025_3565887
Cites_doi 10.1109/TITS.2020.3018054
10.1016/j.compeleceng.2022.107725
10.1016/j.aej.2020.10.012
10.1162/NECO_a_00849
10.1109/TITS.2021.3109846
10.1109/ICITEED.2016.7863293
10.3390/computation7040063
10.1016/j.apenergy.2011.08.027
10.1109/54.953280
10.1007/s40430-020-02666-y
10.1016/j.enconman.2020.112520
ContentType Journal Article
Copyright 2022 THE AUTHORS
Copyright_xml – notice: 2022 THE AUTHORS
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.aej.2022.05.035
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 12050
ExternalDocumentID oai_doaj_org_article_3086b467fca54a4983cd719ca8e1dd81
10_1016_j_aej_2022_05_035
S1110016822003544
GroupedDBID --K
0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
XH2
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c406t-1e72a632d1d7c559547d33d77fab30d150c344d0f5111b2fdbc94c25de8416993
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000812795100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1110-0168
IngestDate Fri Oct 03 12:51:56 EDT 2025
Wed Oct 29 21:24:14 EDT 2025
Tue Nov 18 21:52:55 EST 2025
Sun May 21 07:31:48 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords ANN
FPGA
Activation function
Back-propagation
HDL coder
Engine emissions
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-1e72a632d1d7c559547d33d77fab30d150c344d0f5111b2fdbc94c25de8416993
OpenAccessLink https://doaj.org/article/3086b467fca54a4983cd719ca8e1dd81
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_3086b467fca54a4983cd719ca8e1dd81
crossref_primary_10_1016_j_aej_2022_05_035
crossref_citationtrail_10_1016_j_aej_2022_05_035
elsevier_sciencedirect_doi_10_1016_j_aej_2022_05_035
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Alexandria engineering journal
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Hoffman (b0075) 2009
Mohamed, Ng, Queck, Gan (b0010) 2012; 92
Ashenden (b0060) 2001; 18
K. Pasupa, W. Sunhem, A Comparison between Shallow and Deep Architecture Classifiers on Small Dataset, in: 8th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 2016.
Girau (b0055) 2006
last view 19/3/2021.
Lage, de Morais Hanriot, Zárate (b0110) 2020; 42
A.K. Pandey, R. Iqbal, T. Maniak, C. Karyotis, S. Akuma, V. Palade, Convolution Neural Networks for Pothole Detection of Critical Road Infrastructure, Int. J. Comput. Electr. Eng., Elsevier, Volume 99, 2022, pp. 107725, ISSN 0045-7906, doi.org/10.1016/j.compeleceng.2022.107725.
Kurtgoz, Deniz (b0070) 2018
Mebin Samuel, Gnanamoorthi, Purushothaman, Gurusamy, Devaradjane (b0015) 2021; 3
S. Abrol1, Mrs. Rita. Mahajan, Artificial Neural Networks Implementations on FPGA Chip, Chandigarh, India. Vol. 3, Issue 1, pp: (11-18), 2015.
Guliyev, Ismailov (b0130) 2016; 28
Maniak, Iqbal, Doctor (b0125) July 2021; 22
Moussa, Areibi, Nichols (b0105) 2006
Mekala (b0065) 2012
Hosamani, Abbas Ali, Katti (b0090) 2021; 60
Ahmed, Iqbal, Karyotis, Palade, Amin (b0020) Feb. 2022; 23
Rajeev Jayaraman, Xilinx Inc, 2001
Parra, Camargo (b0035) 2018
Xilinx Spartan-3E FPGA Family datasheet, [online] available on
Salam, Verma (b0005) 2020; 207
Rosero, Gonzalez, Khanna (b0030) 2019; 7
Antonik (b0100) September 2017
last view 1/9/2021.
Pant, Bourai, Rana, Yadav (b0080) 2015; 14
Rapalis, Lebedevas, Mickevičienė (b0025) 2018; 32
Y. Hao, A General Neural Network Hardware Architecture on FPGA, ArXiv, vol. abs/1711.05860, 2017.
T. Xia, FPGA Implementation of a Restricted Boltzmann Machine for Handwriting Recognition, University of Illinois at Urbana-Champaign, Master Thesis, 2015.
Molz, Engel, Moraes (b0045) 2000
Salam (10.1016/j.aej.2022.05.035_b0005) 2020; 207
Mekala (10.1016/j.aej.2022.05.035_b0065) 2012
Kurtgoz (10.1016/j.aej.2022.05.035_b0070) 2018
Lage (10.1016/j.aej.2022.05.035_b0110) 2020; 42
Guliyev (10.1016/j.aej.2022.05.035_b0130) 2016; 28
Ashenden (10.1016/j.aej.2022.05.035_b0060) 2001; 18
10.1016/j.aej.2022.05.035_b0120
10.1016/j.aej.2022.05.035_b0085
10.1016/j.aej.2022.05.035_b0040
Mebin Samuel (10.1016/j.aej.2022.05.035_b0015) 2021; 3
Ahmed (10.1016/j.aej.2022.05.035_b0020) 2022; 23
Molz (10.1016/j.aej.2022.05.035_b0045) 2000
Pant (10.1016/j.aej.2022.05.035_b0080) 2015; 14
Rapalis (10.1016/j.aej.2022.05.035_b0025) 2018; 32
Moussa (10.1016/j.aej.2022.05.035_b0105) 2006
Parra (10.1016/j.aej.2022.05.035_b0035) 2018
10.1016/j.aej.2022.05.035_b0115
Hoffman (10.1016/j.aej.2022.05.035_b0075) 2009
10.1016/j.aej.2022.05.035_b0135
Mohamed (10.1016/j.aej.2022.05.035_b0010) 2012; 92
Hosamani (10.1016/j.aej.2022.05.035_b0090) 2021; 60
10.1016/j.aej.2022.05.035_b0095
10.1016/j.aej.2022.05.035_b0050
Girau (10.1016/j.aej.2022.05.035_b0055) 2006
Maniak (10.1016/j.aej.2022.05.035_b0125) 2021; 22
Rosero (10.1016/j.aej.2022.05.035_b0030) 2019; 7
Antonik (10.1016/j.aej.2022.05.035_b0100) 2017
References_xml – year: September 2017
  ident: b0100
  article-title: Application of FPGA to Real-time Machine Learning: Hardware Reservoir Computers and Software Image Processing
– volume: 14
  start-page: 1
  year: 2015
  end-page: 9
  ident: b0080
  article-title: Conversion of MATLAB code in VHDL using HDL Coder & Implementation of Code on FPGA
  publication-title: HCTL Open Int. J. Technol. Innovat. Res. (IJTIR)
– volume: 32
  start-page: 165
  year: 2018
  end-page: 172
  ident: b0025
  article-title: Mathematical modelling of diesel engine operational performance parameters in transient modes
  publication-title: Sci. J. Maritime Res.
– start-page: 37
  year: 2006
  end-page: 61
  ident: b0105
  article-title: On the Arithmetic Precision for Implementing Back-Propagation Networks on FPGA: A Case Study
  publication-title: FPGA Implementations of Neural Networks
– volume: 22
  start-page: 4131
  year: July 2021
  end-page: 4140
  ident: b0125
  article-title: Hierarchical spatial-temporal state machine for vehicle instrument cluster manufacturing
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: A.K. Pandey, R. Iqbal, T. Maniak, C. Karyotis, S. Akuma, V. Palade, Convolution Neural Networks for Pothole Detection of Critical Road Infrastructure, Int. J. Comput. Electr. Eng., Elsevier, Volume 99, 2022, pp. 107725, ISSN 0045-7906, doi.org/10.1016/j.compeleceng.2022.107725.
– volume: 92
  start-page: 769
  year: 2012
  end-page: 777
  ident: b0010
  article-title: Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends
  publication-title: Appl. Energy
– volume: 28
  start-page: 1289
  year: 2016
  end-page: 1304
  ident: b0130
  article-title: A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function
  publication-title: Neural Comput.
– reference: K. Pasupa, W. Sunhem, A Comparison between Shallow and Deep Architecture Classifiers on Small Dataset, in: 8th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 2016.
– start-page: 133
  year: 2018
  end-page: 148
  ident: b0070
  article-title: Chapter 1.8 - Comparison of ANN, Regression Analysis, and ANFIS Models in Estimation of Global Solar Radiation for Different Climatological Locations
– year: 2009
  ident: b0075
  article-title: High-Speed Dynamic Partial Reconfiguration for Field Programmable Gate Arrays
– volume: 7
  start-page: 63
  year: 2019
  ident: b0030
  article-title: Field programmable gate array applications- a scientometric review
  publication-title: Computation
– reference: Y. Hao, A General Neural Network Hardware Architecture on FPGA, ArXiv, vol. abs/1711.05860, 2017.
– reference: , last view 19/3/2021.
– volume: 18
  start-page: 122
  year: 2001
  end-page: 123
  ident: b0060
  article-title: VHDL Standards
  publication-title: IEEE Des. Test Comput.
– reference: Rajeev Jayaraman, Xilinx Inc, 2001
– volume: 23
  start-page: 1680
  year: Feb. 2022
  end-page: 1688
  ident: b0020
  article-title: Predicting the public adoption of connected and autonomous vehicles
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: T. Xia, FPGA Implementation of a Restricted Boltzmann Machine for Handwriting Recognition, University of Illinois at Urbana-Champaign, Master Thesis, 2015.
– volume: 60
  start-page: 837
  year: 2021
  end-page: 844
  ident: b0090
  article-title: Assessment of performance and exhaust emission quality of different compression ratio engine using two biodiesel mixture: Artificial neural network approach
  publication-title: Alexandria Eng. J.
– reference: , last view 1/9/2021.
– year: 2012
  ident: b0065
  article-title: Field Programmable Gate Array Based Target Detection and Gesture Recognition
– reference: Xilinx Spartan-3E FPGA Family datasheet, [online] available on
– year: 2000
  ident: b0045
  article-title: Codesign to Fully Parallel Neural Network for a Classification Problem
– start-page: 63
  year: 2006
  end-page: 101
  ident: b0055
  publication-title: FPGA Implementations of Neural Networks
– volume: 42
  year: 2020
  ident: b0110
  article-title: Using artificial neural networks to represent a diesel–biodiesel engine
  publication-title: J Braz. Soc. Mech. Sci. Eng.
– volume: 3
  year: 2021
  ident: b0015
  article-title: Prediction efficiency of artificial neural network for CRDI engine output parameters
  publication-title: Transport. Eng.
– start-page: 75
  year: 2018
  end-page: 86
  ident: b0035
  article-title: A systematic literature review of hardware neural networks
  publication-title: IEEE Colombian Conference on Applications in Computational Intelligence ColCACI
– reference: S. Abrol1, Mrs. Rita. Mahajan, Artificial Neural Networks Implementations on FPGA Chip, Chandigarh, India. Vol. 3, Issue 1, pp: (11-18), 2015.
– volume: 207
  start-page: 112520
  year: 2020
  ident: b0005
  article-title: Analysis of significance of variables in IC engine operation: an empirical methodology
  publication-title: Energy Convers. Manage.
– start-page: 63
  year: 2006
  ident: 10.1016/j.aej.2022.05.035_b0055
– volume: 22
  start-page: 4131
  issue: 7
  year: 2021
  ident: 10.1016/j.aej.2022.05.035_b0125
  article-title: Hierarchical spatial-temporal state machine for vehicle instrument cluster manufacturing
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3018054
– ident: 10.1016/j.aej.2022.05.035_b0085
– ident: 10.1016/j.aej.2022.05.035_b0115
– year: 2017
  ident: 10.1016/j.aej.2022.05.035_b0100
– ident: 10.1016/j.aej.2022.05.035_b0120
  doi: 10.1016/j.compeleceng.2022.107725
– volume: 60
  start-page: 837
  issue: 1
  year: 2021
  ident: 10.1016/j.aej.2022.05.035_b0090
  article-title: Assessment of performance and exhaust emission quality of different compression ratio engine using two biodiesel mixture: Artificial neural network approach
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2020.10.012
– volume: 28
  start-page: 1289
  issue: 7
  year: 2016
  ident: 10.1016/j.aej.2022.05.035_b0130
  article-title: A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00849
– volume: 23
  start-page: 1680
  issue: 2
  year: 2022
  ident: 10.1016/j.aej.2022.05.035_b0020
  article-title: Predicting the public adoption of connected and autonomous vehicles
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3109846
– year: 2009
  ident: 10.1016/j.aej.2022.05.035_b0075
– ident: 10.1016/j.aej.2022.05.035_b0095
  doi: 10.1109/ICITEED.2016.7863293
– start-page: 133
  year: 2018
  ident: 10.1016/j.aej.2022.05.035_b0070
– start-page: 75
  year: 2018
  ident: 10.1016/j.aej.2022.05.035_b0035
  article-title: A systematic literature review of hardware neural networks
– volume: 7
  start-page: 63
  issue: 4
  year: 2019
  ident: 10.1016/j.aej.2022.05.035_b0030
  article-title: Field programmable gate array applications- a scientometric review
  publication-title: Computation
  doi: 10.3390/computation7040063
– volume: 92
  start-page: 769
  year: 2012
  ident: 10.1016/j.aej.2022.05.035_b0010
  article-title: Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.08.027
– volume: 18
  start-page: 122
  issue: 5
  year: 2001
  ident: 10.1016/j.aej.2022.05.035_b0060
  article-title: VHDL Standards
  publication-title: IEEE Des. Test Comput.
  doi: 10.1109/54.953280
– year: 2012
  ident: 10.1016/j.aej.2022.05.035_b0065
– ident: 10.1016/j.aej.2022.05.035_b0040
– volume: 42
  issue: 11
  year: 2020
  ident: 10.1016/j.aej.2022.05.035_b0110
  article-title: Using artificial neural networks to represent a diesel–biodiesel engine
  publication-title: J Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-020-02666-y
– ident: 10.1016/j.aej.2022.05.035_b0135
– volume: 14
  start-page: 1
  year: 2015
  ident: 10.1016/j.aej.2022.05.035_b0080
  article-title: Conversion of MATLAB code in VHDL using HDL Coder & Implementation of Code on FPGA
  publication-title: HCTL Open Int. J. Technol. Innovat. Res. (IJTIR)
– start-page: 37
  year: 2006
  ident: 10.1016/j.aej.2022.05.035_b0105
  article-title: On the Arithmetic Precision for Implementing Back-Propagation Networks on FPGA: A Case Study
– volume: 3
  year: 2021
  ident: 10.1016/j.aej.2022.05.035_b0015
  article-title: Prediction efficiency of artificial neural network for CRDI engine output parameters
  publication-title: Transport. Eng.
– volume: 207
  start-page: 112520
  year: 2020
  ident: 10.1016/j.aej.2022.05.035_b0005
  article-title: Analysis of significance of variables in IC engine operation: an empirical methodology
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.112520
– year: 2000
  ident: 10.1016/j.aej.2022.05.035_b0045
– ident: 10.1016/j.aej.2022.05.035_b0050
– volume: 32
  start-page: 165
  year: 2018
  ident: 10.1016/j.aej.2022.05.035_b0025
  article-title: Mathematical modelling of diesel engine operational performance parameters in transient modes
  publication-title: Sci. J. Maritime Res.
SSID ssj0000579496
Score 2.3131921
Snippet This paper implements an artificial neural network (ANN)-based engine model using the Field Programmable Gate Array (FPGA). The developed (ANN)-based engine...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 12039
SubjectTerms Activation function
ANN
Back-propagation
Engine emissions
FPGA
HDL coder
Title Hardware implementation of neural network-based engine model using FPGA
URI https://dx.doi.org/10.1016/j.aej.2022.05.035
https://doaj.org/article/3086b467fca54a4983cd719ca8e1dd81
Volume 61
WOSCitedRecordID wos000812795100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1110-0168
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0000579496
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD4lOUL3lgQopIYqeOx4JomaoOIHWzbJ-NWkGLSoG_z9lJShZgYY38Eb2cde_kl3eEXHoQwf2WJUyCTbjjPDEGXGJ0zqTH_OQzH5tNiNGonEzkuNXqK2jCKnvgCrhrhpzb4Gn2Vhdcc1kyCyKTVpcuA4g_XeepkK1iqnL1xjiLzbnwLAflVa9srjSjuEu7GdaGeR5dO2Ort--kFL37W7mplW8Gu2SnJoq0X73gHtlw832y3bIPPCDDcO3-qZeOTl8aGXjAmS48DT6VOH1eqbyTkKyAujibxu43NCjen-hgPOwfksfB3cPtfVI3Rkgs5t9VkjmR6x7LIQNhsSQouADGQAivDUsBOZ5lnEPqkU1lJvdgrOQ2L8CFS0ZkJEekM1_M3TGhmTSSe7CZLrES0bY0BWdWpDrFysZDr0vSBhlla9fw0LziWTXysJlCMFUAU6WFQjC75Go95bWyzPht8E2Aez0wuF3HBxgDqo4B9VcMdAlvPpaqiUNFCHCp6c97n_zH3qdkKyxZKVzOSGe1fHfnZNN-rKZvy4sYlV9ISeOq
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hardware+implementation+of+neural+network-based+engine+model+using+FPGA&rft.jtitle=Alexandria+engineering+journal&rft.au=Marina+Magdy+Saady&rft.au=Mohamed+Hassan+Essai&rft.date=2022-12-01&rft.pub=Elsevier&rft.issn=1110-0168&rft.volume=61&rft.issue=12&rft.spage=12039&rft.epage=12050&rft_id=info:doi/10.1016%2Fj.aej.2022.05.035&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3086b467fca54a4983cd719ca8e1dd81
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon