Hardware implementation of neural network-based engine model using FPGA
This paper implements an artificial neural network (ANN)-based engine model using the Field Programmable Gate Array (FPGA). The developed (ANN)-based engine model will be used to estimate the engine gas emissions to mitigate the harmful effects of these emissions on human health. Getting reliable an...
Saved in:
| Published in: | Alexandria engineering journal Vol. 61; no. 12; pp. 12039 - 12050 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.12.2022
Elsevier |
| Subjects: | |
| ISSN: | 1110-0168 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper implements an artificial neural network (ANN)-based engine model using the Field Programmable Gate Array (FPGA). The developed (ANN)-based engine model will be used to estimate the engine gas emissions to mitigate the harmful effects of these emissions on human health. Getting reliable and robust FPGA-based ANNs implementations depends on the optimal choice of activation function that will provide minimal area occupation on FPGA. This study introduces, implements, and investigates FPGA-based ANN-based engine models using five different activation functions. These implemented engine models were described using MATLAB/Simulink and hardware description language coder and carried out by Spartan -3E-500.CP132 FPGA platform from Xilinx. The performance of the implemented engine models was investigated in terms of area-efficient implementation and the regression values (R) to build a robust ANN-based engine model. |
|---|---|
| AbstractList | This paper implements an artificial neural network (ANN)-based engine model using the Field Programmable Gate Array (FPGA). The developed (ANN)-based engine model will be used to estimate the engine gas emissions to mitigate the harmful effects of these emissions on human health. Getting reliable and robust FPGA-based ANNs implementations depends on the optimal choice of activation function that will provide minimal area occupation on FPGA. This study introduces, implements, and investigates FPGA-based ANN-based engine models using five different activation functions. These implemented engine models were described using MATLAB/Simulink and hardware description language coder and carried out by Spartan -3E-500.CP132 FPGA platform from Xilinx. The performance of the implemented engine models was investigated in terms of area-efficient implementation and the regression values (R) to build a robust ANN-based engine model. |
| Author | Hassan Essai, Mohamed Magdy Saady, Marina |
| Author_xml | – sequence: 1 givenname: Marina surname: Magdy Saady fullname: Magdy Saady, Marina email: eng.rena201333@gmail.com organization: Electronics & Communications Engineering Department, Higher Institute of Engineering and Technology, Luxor – El Tod, Egypt – sequence: 2 givenname: Mohamed surname: Hassan Essai fullname: Hassan Essai, Mohamed organization: Electrical Engineering Department, Faculty of Engineering-Qena, Al-Azhar University, Egypt |
| BookMark | eNp9kLFOwzAQhj2ABJQ-AFteIMGO7TgRE0K0RaoEA8zWxb5UDqmNnJSKt8eliIGht_zSnb5fp--KnPngkZAbRgtGWXXbF4B9UdKyLKgsKJdn5JIxRvN0rC_IfBx7mkaqRjTVJVmuINo9RMzc9mPALfoJJhd8FrrM4y7CkGLah_ietzCizdBvnMdsGywO2W50fpMtXpb31-S8g2HE-W_OyNvi8fVhla-fl08P9-vcCFpNOUNVQsVLy6wyUjZSKMu5VaqDllPLJDVcCEs7mX5uy862phGmlBZrwaqm4TPydOy1AXr9Ed0W4pcO4PTPIsSNhjg5M6DmtK5aUanOgBQgmpobq1hjoEZmbc1SFzt2mRjGMWL318eoPsjUvU4y9UGmplInmYlR_xjjjsamCG44Sd4dSUx6Ph1GPRqH3qB1Ec2U_ncn6G8nU5Gt |
| CitedBy_id | crossref_primary_10_1016_j_jestch_2023_101542 crossref_primary_10_1016_j_engappai_2023_105972 crossref_primary_10_1080_15567036_2024_2305689 crossref_primary_10_1109_TNANO_2025_3565887 |
| Cites_doi | 10.1109/TITS.2020.3018054 10.1016/j.compeleceng.2022.107725 10.1016/j.aej.2020.10.012 10.1162/NECO_a_00849 10.1109/TITS.2021.3109846 10.1109/ICITEED.2016.7863293 10.3390/computation7040063 10.1016/j.apenergy.2011.08.027 10.1109/54.953280 10.1007/s40430-020-02666-y 10.1016/j.enconman.2020.112520 |
| ContentType | Journal Article |
| Copyright | 2022 THE AUTHORS |
| Copyright_xml | – notice: 2022 THE AUTHORS |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.aej.2022.05.035 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 12050 |
| ExternalDocumentID | oai_doaj_org_article_3086b467fca54a4983cd719ca8e1dd81 10_1016_j_aej_2022_05_035 S1110016822003544 |
| GroupedDBID | --K 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ XH2 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
| ID | FETCH-LOGICAL-c406t-1e72a632d1d7c559547d33d77fab30d150c344d0f5111b2fdbc94c25de8416993 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000812795100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1110-0168 |
| IngestDate | Fri Oct 03 12:51:56 EDT 2025 Wed Oct 29 21:24:14 EDT 2025 Tue Nov 18 21:52:55 EST 2025 Sun May 21 07:31:48 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | ANN FPGA Activation function Back-propagation HDL coder Engine emissions |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-1e72a632d1d7c559547d33d77fab30d150c344d0f5111b2fdbc94c25de8416993 |
| OpenAccessLink | https://doaj.org/article/3086b467fca54a4983cd719ca8e1dd81 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3086b467fca54a4983cd719ca8e1dd81 crossref_primary_10_1016_j_aej_2022_05_035 crossref_citationtrail_10_1016_j_aej_2022_05_035 elsevier_sciencedirect_doi_10_1016_j_aej_2022_05_035 |
| PublicationCentury | 2000 |
| PublicationDate | December 2022 2022-12-00 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Alexandria engineering journal |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Hoffman (b0075) 2009 Mohamed, Ng, Queck, Gan (b0010) 2012; 92 Ashenden (b0060) 2001; 18 K. Pasupa, W. Sunhem, A Comparison between Shallow and Deep Architecture Classifiers on Small Dataset, in: 8th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 2016. Girau (b0055) 2006 last view 19/3/2021. Lage, de Morais Hanriot, Zárate (b0110) 2020; 42 A.K. Pandey, R. Iqbal, T. Maniak, C. Karyotis, S. Akuma, V. Palade, Convolution Neural Networks for Pothole Detection of Critical Road Infrastructure, Int. J. Comput. Electr. Eng., Elsevier, Volume 99, 2022, pp. 107725, ISSN 0045-7906, doi.org/10.1016/j.compeleceng.2022.107725. Kurtgoz, Deniz (b0070) 2018 Mebin Samuel, Gnanamoorthi, Purushothaman, Gurusamy, Devaradjane (b0015) 2021; 3 S. Abrol1, Mrs. Rita. Mahajan, Artificial Neural Networks Implementations on FPGA Chip, Chandigarh, India. Vol. 3, Issue 1, pp: (11-18), 2015. Guliyev, Ismailov (b0130) 2016; 28 Maniak, Iqbal, Doctor (b0125) July 2021; 22 Moussa, Areibi, Nichols (b0105) 2006 Mekala (b0065) 2012 Hosamani, Abbas Ali, Katti (b0090) 2021; 60 Ahmed, Iqbal, Karyotis, Palade, Amin (b0020) Feb. 2022; 23 Rajeev Jayaraman, Xilinx Inc, 2001 Parra, Camargo (b0035) 2018 Xilinx Spartan-3E FPGA Family datasheet, [online] available on Salam, Verma (b0005) 2020; 207 Rosero, Gonzalez, Khanna (b0030) 2019; 7 Antonik (b0100) September 2017 last view 1/9/2021. Pant, Bourai, Rana, Yadav (b0080) 2015; 14 Rapalis, Lebedevas, Mickevičienė (b0025) 2018; 32 Y. Hao, A General Neural Network Hardware Architecture on FPGA, ArXiv, vol. abs/1711.05860, 2017. T. Xia, FPGA Implementation of a Restricted Boltzmann Machine for Handwriting Recognition, University of Illinois at Urbana-Champaign, Master Thesis, 2015. Molz, Engel, Moraes (b0045) 2000 Salam (10.1016/j.aej.2022.05.035_b0005) 2020; 207 Mekala (10.1016/j.aej.2022.05.035_b0065) 2012 Kurtgoz (10.1016/j.aej.2022.05.035_b0070) 2018 Lage (10.1016/j.aej.2022.05.035_b0110) 2020; 42 Guliyev (10.1016/j.aej.2022.05.035_b0130) 2016; 28 Ashenden (10.1016/j.aej.2022.05.035_b0060) 2001; 18 10.1016/j.aej.2022.05.035_b0120 10.1016/j.aej.2022.05.035_b0085 10.1016/j.aej.2022.05.035_b0040 Mebin Samuel (10.1016/j.aej.2022.05.035_b0015) 2021; 3 Ahmed (10.1016/j.aej.2022.05.035_b0020) 2022; 23 Molz (10.1016/j.aej.2022.05.035_b0045) 2000 Pant (10.1016/j.aej.2022.05.035_b0080) 2015; 14 Rapalis (10.1016/j.aej.2022.05.035_b0025) 2018; 32 Moussa (10.1016/j.aej.2022.05.035_b0105) 2006 Parra (10.1016/j.aej.2022.05.035_b0035) 2018 10.1016/j.aej.2022.05.035_b0115 Hoffman (10.1016/j.aej.2022.05.035_b0075) 2009 10.1016/j.aej.2022.05.035_b0135 Mohamed (10.1016/j.aej.2022.05.035_b0010) 2012; 92 Hosamani (10.1016/j.aej.2022.05.035_b0090) 2021; 60 10.1016/j.aej.2022.05.035_b0095 10.1016/j.aej.2022.05.035_b0050 Girau (10.1016/j.aej.2022.05.035_b0055) 2006 Maniak (10.1016/j.aej.2022.05.035_b0125) 2021; 22 Rosero (10.1016/j.aej.2022.05.035_b0030) 2019; 7 Antonik (10.1016/j.aej.2022.05.035_b0100) 2017 |
| References_xml | – year: September 2017 ident: b0100 article-title: Application of FPGA to Real-time Machine Learning: Hardware Reservoir Computers and Software Image Processing – volume: 14 start-page: 1 year: 2015 end-page: 9 ident: b0080 article-title: Conversion of MATLAB code in VHDL using HDL Coder & Implementation of Code on FPGA publication-title: HCTL Open Int. J. Technol. Innovat. Res. (IJTIR) – volume: 32 start-page: 165 year: 2018 end-page: 172 ident: b0025 article-title: Mathematical modelling of diesel engine operational performance parameters in transient modes publication-title: Sci. J. Maritime Res. – start-page: 37 year: 2006 end-page: 61 ident: b0105 article-title: On the Arithmetic Precision for Implementing Back-Propagation Networks on FPGA: A Case Study publication-title: FPGA Implementations of Neural Networks – volume: 22 start-page: 4131 year: July 2021 end-page: 4140 ident: b0125 article-title: Hierarchical spatial-temporal state machine for vehicle instrument cluster manufacturing publication-title: IEEE Trans. Intell. Transp. Syst. – reference: A.K. Pandey, R. Iqbal, T. Maniak, C. Karyotis, S. Akuma, V. Palade, Convolution Neural Networks for Pothole Detection of Critical Road Infrastructure, Int. J. Comput. Electr. Eng., Elsevier, Volume 99, 2022, pp. 107725, ISSN 0045-7906, doi.org/10.1016/j.compeleceng.2022.107725. – volume: 92 start-page: 769 year: 2012 end-page: 777 ident: b0010 article-title: Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends publication-title: Appl. Energy – volume: 28 start-page: 1289 year: 2016 end-page: 1304 ident: b0130 article-title: A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function publication-title: Neural Comput. – reference: K. Pasupa, W. Sunhem, A Comparison between Shallow and Deep Architecture Classifiers on Small Dataset, in: 8th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 2016. – start-page: 133 year: 2018 end-page: 148 ident: b0070 article-title: Chapter 1.8 - Comparison of ANN, Regression Analysis, and ANFIS Models in Estimation of Global Solar Radiation for Different Climatological Locations – year: 2009 ident: b0075 article-title: High-Speed Dynamic Partial Reconfiguration for Field Programmable Gate Arrays – volume: 7 start-page: 63 year: 2019 ident: b0030 article-title: Field programmable gate array applications- a scientometric review publication-title: Computation – reference: Y. Hao, A General Neural Network Hardware Architecture on FPGA, ArXiv, vol. abs/1711.05860, 2017. – reference: , last view 19/3/2021. – volume: 18 start-page: 122 year: 2001 end-page: 123 ident: b0060 article-title: VHDL Standards publication-title: IEEE Des. Test Comput. – reference: Rajeev Jayaraman, Xilinx Inc, 2001 – volume: 23 start-page: 1680 year: Feb. 2022 end-page: 1688 ident: b0020 article-title: Predicting the public adoption of connected and autonomous vehicles publication-title: IEEE Trans. Intell. Transp. Syst. – reference: T. Xia, FPGA Implementation of a Restricted Boltzmann Machine for Handwriting Recognition, University of Illinois at Urbana-Champaign, Master Thesis, 2015. – volume: 60 start-page: 837 year: 2021 end-page: 844 ident: b0090 article-title: Assessment of performance and exhaust emission quality of different compression ratio engine using two biodiesel mixture: Artificial neural network approach publication-title: Alexandria Eng. J. – reference: , last view 1/9/2021. – year: 2012 ident: b0065 article-title: Field Programmable Gate Array Based Target Detection and Gesture Recognition – reference: Xilinx Spartan-3E FPGA Family datasheet, [online] available on – year: 2000 ident: b0045 article-title: Codesign to Fully Parallel Neural Network for a Classification Problem – start-page: 63 year: 2006 end-page: 101 ident: b0055 publication-title: FPGA Implementations of Neural Networks – volume: 42 year: 2020 ident: b0110 article-title: Using artificial neural networks to represent a diesel–biodiesel engine publication-title: J Braz. Soc. Mech. Sci. Eng. – volume: 3 year: 2021 ident: b0015 article-title: Prediction efficiency of artificial neural network for CRDI engine output parameters publication-title: Transport. Eng. – start-page: 75 year: 2018 end-page: 86 ident: b0035 article-title: A systematic literature review of hardware neural networks publication-title: IEEE Colombian Conference on Applications in Computational Intelligence ColCACI – reference: S. Abrol1, Mrs. Rita. Mahajan, Artificial Neural Networks Implementations on FPGA Chip, Chandigarh, India. Vol. 3, Issue 1, pp: (11-18), 2015. – volume: 207 start-page: 112520 year: 2020 ident: b0005 article-title: Analysis of significance of variables in IC engine operation: an empirical methodology publication-title: Energy Convers. Manage. – start-page: 63 year: 2006 ident: 10.1016/j.aej.2022.05.035_b0055 – volume: 22 start-page: 4131 issue: 7 year: 2021 ident: 10.1016/j.aej.2022.05.035_b0125 article-title: Hierarchical spatial-temporal state machine for vehicle instrument cluster manufacturing publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3018054 – ident: 10.1016/j.aej.2022.05.035_b0085 – ident: 10.1016/j.aej.2022.05.035_b0115 – year: 2017 ident: 10.1016/j.aej.2022.05.035_b0100 – ident: 10.1016/j.aej.2022.05.035_b0120 doi: 10.1016/j.compeleceng.2022.107725 – volume: 60 start-page: 837 issue: 1 year: 2021 ident: 10.1016/j.aej.2022.05.035_b0090 article-title: Assessment of performance and exhaust emission quality of different compression ratio engine using two biodiesel mixture: Artificial neural network approach publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2020.10.012 – volume: 28 start-page: 1289 issue: 7 year: 2016 ident: 10.1016/j.aej.2022.05.035_b0130 article-title: A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function publication-title: Neural Comput. doi: 10.1162/NECO_a_00849 – volume: 23 start-page: 1680 issue: 2 year: 2022 ident: 10.1016/j.aej.2022.05.035_b0020 article-title: Predicting the public adoption of connected and autonomous vehicles publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3109846 – year: 2009 ident: 10.1016/j.aej.2022.05.035_b0075 – ident: 10.1016/j.aej.2022.05.035_b0095 doi: 10.1109/ICITEED.2016.7863293 – start-page: 133 year: 2018 ident: 10.1016/j.aej.2022.05.035_b0070 – start-page: 75 year: 2018 ident: 10.1016/j.aej.2022.05.035_b0035 article-title: A systematic literature review of hardware neural networks – volume: 7 start-page: 63 issue: 4 year: 2019 ident: 10.1016/j.aej.2022.05.035_b0030 article-title: Field programmable gate array applications- a scientometric review publication-title: Computation doi: 10.3390/computation7040063 – volume: 92 start-page: 769 year: 2012 ident: 10.1016/j.aej.2022.05.035_b0010 article-title: Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.08.027 – volume: 18 start-page: 122 issue: 5 year: 2001 ident: 10.1016/j.aej.2022.05.035_b0060 article-title: VHDL Standards publication-title: IEEE Des. Test Comput. doi: 10.1109/54.953280 – year: 2012 ident: 10.1016/j.aej.2022.05.035_b0065 – ident: 10.1016/j.aej.2022.05.035_b0040 – volume: 42 issue: 11 year: 2020 ident: 10.1016/j.aej.2022.05.035_b0110 article-title: Using artificial neural networks to represent a diesel–biodiesel engine publication-title: J Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-020-02666-y – ident: 10.1016/j.aej.2022.05.035_b0135 – volume: 14 start-page: 1 year: 2015 ident: 10.1016/j.aej.2022.05.035_b0080 article-title: Conversion of MATLAB code in VHDL using HDL Coder & Implementation of Code on FPGA publication-title: HCTL Open Int. J. Technol. Innovat. Res. (IJTIR) – start-page: 37 year: 2006 ident: 10.1016/j.aej.2022.05.035_b0105 article-title: On the Arithmetic Precision for Implementing Back-Propagation Networks on FPGA: A Case Study – volume: 3 year: 2021 ident: 10.1016/j.aej.2022.05.035_b0015 article-title: Prediction efficiency of artificial neural network for CRDI engine output parameters publication-title: Transport. Eng. – volume: 207 start-page: 112520 year: 2020 ident: 10.1016/j.aej.2022.05.035_b0005 article-title: Analysis of significance of variables in IC engine operation: an empirical methodology publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.112520 – year: 2000 ident: 10.1016/j.aej.2022.05.035_b0045 – ident: 10.1016/j.aej.2022.05.035_b0050 – volume: 32 start-page: 165 year: 2018 ident: 10.1016/j.aej.2022.05.035_b0025 article-title: Mathematical modelling of diesel engine operational performance parameters in transient modes publication-title: Sci. J. Maritime Res. |
| SSID | ssj0000579496 |
| Score | 2.3131921 |
| Snippet | This paper implements an artificial neural network (ANN)-based engine model using the Field Programmable Gate Array (FPGA). The developed (ANN)-based engine... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 12039 |
| SubjectTerms | Activation function ANN Back-propagation Engine emissions FPGA HDL coder |
| Title | Hardware implementation of neural network-based engine model using FPGA |
| URI | https://dx.doi.org/10.1016/j.aej.2022.05.035 https://doaj.org/article/3086b467fca54a4983cd719ca8e1dd81 |
| Volume | 61 |
| WOSCitedRecordID | wos000812795100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1110-0168 databaseCode: DOA dateStart: 20100101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0000579496 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD4lOUL3lgQopIYidOxoJomaoOIHWzbJ-NWkGKSoG_z9lJShZgYY1sJ3o-697JL-8IueRC506bONIJQIRBAVHJlY4yh2y9ACZYDqHZhBiPi-m0nHRafXlNWG0PXAN3zZBzazzNzqiMK14WzIBISqMKi6uHn65TZD2dYqp29cY4C8258Cx75VVetFeaQdyl7BxrwzQNrp2h1dt3Ugre_Z3c1Mk3w12y0xBFOqg_cI9s2GqfbHfsAw_IyF-7f6qlpbOXVgbucaYLR71PJU6vapV35JMVUBtm09D9hnrF-xMdTkaDQ_I4vHu4vY-axgiRwfy7ihIrUpWzFBIQBkuCjAtgDIRwSrMYkOMZxjnEDtlUolMH2pTc4D5Yf8mIjOSI9KpFZY8JTZzTODKB2GKtAE4ryDPuuDIpZrec9UncIiNN4xrum1c8y1YeNpcIpvRgyjiTCGafXK2nvNaWGb8NvvFwrwd6t-vwAGNANjEg_4qBPuHtZsmGONSEAJea_fzuk_949ynZ8kvWCpcz0lst3-052TQfq9nb8iJE5RcfB-PC |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hardware+implementation+of+neural+network-based+engine+model+using+FPGA&rft.jtitle=Alexandria+engineering+journal&rft.au=Marina+Magdy+Saady&rft.au=Mohamed+Hassan+Essai&rft.date=2022-12-01&rft.pub=Elsevier&rft.issn=1110-0168&rft.volume=61&rft.issue=12&rft.spage=12039&rft.epage=12050&rft_id=info:doi/10.1016%2Fj.aej.2022.05.035&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3086b467fca54a4983cd719ca8e1dd81 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon |