Design of high-temperature f -block molecular nanomagnets through the control of vibration-induced spin relaxation

One of the main roadblocks that still hamper the practical use of molecular nanomagnets is their cryogenic working temperature. In the pursuit of rational strategies to design new molecular nanomagnets with increasing blocking temperature, ab initio methodologies play an important role by guiding sy...

Full description

Saved in:
Bibliographic Details
Published in:Chemical science (Cambridge) Vol. 11; no. 6; pp. 1593 - 1598
Main Authors: Escalera-Moreno, Luis, Baldoví, José J., Gaita-Ariño, Alejandro, Coronado, Eugenio
Format: Journal Article
Language:English
Published: England Royal Society of Chemistry 14.02.2020
Subjects:
ISSN:2041-6520, 2041-6539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One of the main roadblocks that still hamper the practical use of molecular nanomagnets is their cryogenic working temperature. In the pursuit of rational strategies to design new molecular nanomagnets with increasing blocking temperature, ab initio methodologies play an important role by guiding synthetic efforts at the lab stage. Nevertheless, when evaluating vibration-induced spin relaxation, these methodologies are still far from being computationally fast enough to provide a useful predictive framework. Herein, we present an inexpensive first-principles method devoted to evaluating vibration-induced spin relaxation in molecular f -block single-ion magnets, with the important advantage of requiring only one CASSCF calculation. The method is illustrated using two case studies based on uranium as the magnetic centre. Finally, we propose chemical modifications in the ligand environment with the aim of suppressing spin relaxation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-6520
2041-6539
DOI:10.1039/C9SC03133B