Comparison of Machine Learning-based Approaches to Predict the Conversion to Alzheimer’s Disease from Mild Cognitive Impairment

•Psychological and AD-related biomarkers reach the highest accuracy in AD prediction.•Clinical and biological data are helpful in machine learning algorithms’ performances.•Multiple machine learning algorithms make more accurate and solid AD predictions. In Mild Cognitive Impairment (MCI), identifyi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neuroscience Ročník 514; s. 143 - 152
Hlavní autoři: Franciotti, Raffaella, Nardini, Davide, Russo, Mirella, Onofrj, Marco, Sensi, Stefano L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 15.03.2023
Témata:
ISSN:0306-4522, 1873-7544, 1873-7544
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Psychological and AD-related biomarkers reach the highest accuracy in AD prediction.•Clinical and biological data are helpful in machine learning algorithms’ performances.•Multiple machine learning algorithms make more accurate and solid AD predictions. In Mild Cognitive Impairment (MCI), identifying a high risk of conversion to Alzheimer’s Disease Dementia (AD) is a primary goal for patient management. Machine Learning (ML) algorithms are widely employed to pursue data-driven diagnostic and prognostic goals. An agreement on the stability of these algorithms –when applied to different biomarkers and other conditions– is far from being reached. In this study, we compared the different prognostic performances of three supervised ML algorithms fed with multimodal biomarkers of MCI subjects obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Random Forest, Gradient Boosting, and eXtreme Gradient Boosting algorithms predict MCI conversion to AD. They can also be simultaneously employed –with the voting procedure– to improve predictivity. AD prediction accuracy is influenced by the nature of the data (i.e., neuropsychological test scores, cerebrospinal fluid AD-related proteins and APOE ε4, cerebral structural MRI (sMRI) data). In our study, independent of the applied ML algorithms, sMRI data showed the lowest accuracy (0.79) compared to other classes. Multimodal data were helpful in the algorithms’ performances by combining clinical and biological measures. Accordingly, using the three ML algorithms, the highest accuracy (0.90) was reached by employing neuropsychological and AD-related biomarkers. Finally, the feature selection procedure indicated that the most critical variables in the respective classes were the ADAS-Cog-13 scale, the medial temporal lobe and hippocampus atrophy, and the ratio between phosphorylated Tau and Aβ42 proteins. In conclusion, our data support the notion that using multiple ML algorithms and multimodal biomarkers helps make more accurate and solid predictions.
AbstractList In Mild Cognitive Impairment (MCI), identifying a high risk of conversion to Alzheimer's Disease Dementia (AD) is a primary goal for patient management. Machine Learning (ML) algorithms are widely employed to pursue data-driven diagnostic and prognostic goals. An agreement on the stability of these algorithms -when applied to different biomarkers and other conditions- is far from being reached. In this study, we compared the different prognostic performances of three supervised ML algorithms fed with multimodal biomarkers of MCI subjects obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Random Forest, Gradient Boosting, and eXtreme Gradient Boosting algorithms predict MCI conversion to AD. They can also be simultaneously employed -with the voting procedure- to improve predictivity. AD prediction accuracy is influenced by the nature of the data (i.e., neuropsychological test scores, cerebrospinal fluid AD-related proteins and APOE ε4, cerebral structural MRI (sMRI) data). In our study, independent of the applied ML algorithms, sMRI data showed the lowest accuracy (0.79) compared to other classes. Multimodal data were helpful in the algorithms' performances by combining clinical and biological measures. Accordingly, using the three ML algorithms, the highest accuracy (0.90) was reached by employing neuropsychological and AD-related biomarkers. Finally, the feature selection procedure indicated that the most critical variables in the respective classes were the ADAS-Cog-13 scale, the medial temporal lobe and hippocampus atrophy, and the ratio between phosphorylated Tau and Aβ42 proteins. In conclusion, our data support the notion that using multiple ML algorithms and multimodal biomarkers helps make more accurate and solid predictions.
•Psychological and AD-related biomarkers reach the highest accuracy in AD prediction.•Clinical and biological data are helpful in machine learning algorithms’ performances.•Multiple machine learning algorithms make more accurate and solid AD predictions. In Mild Cognitive Impairment (MCI), identifying a high risk of conversion to Alzheimer’s Disease Dementia (AD) is a primary goal for patient management. Machine Learning (ML) algorithms are widely employed to pursue data-driven diagnostic and prognostic goals. An agreement on the stability of these algorithms –when applied to different biomarkers and other conditions– is far from being reached. In this study, we compared the different prognostic performances of three supervised ML algorithms fed with multimodal biomarkers of MCI subjects obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Random Forest, Gradient Boosting, and eXtreme Gradient Boosting algorithms predict MCI conversion to AD. They can also be simultaneously employed –with the voting procedure– to improve predictivity. AD prediction accuracy is influenced by the nature of the data (i.e., neuropsychological test scores, cerebrospinal fluid AD-related proteins and APOE ε4, cerebral structural MRI (sMRI) data). In our study, independent of the applied ML algorithms, sMRI data showed the lowest accuracy (0.79) compared to other classes. Multimodal data were helpful in the algorithms’ performances by combining clinical and biological measures. Accordingly, using the three ML algorithms, the highest accuracy (0.90) was reached by employing neuropsychological and AD-related biomarkers. Finally, the feature selection procedure indicated that the most critical variables in the respective classes were the ADAS-Cog-13 scale, the medial temporal lobe and hippocampus atrophy, and the ratio between phosphorylated Tau and Aβ42 proteins. In conclusion, our data support the notion that using multiple ML algorithms and multimodal biomarkers helps make more accurate and solid predictions.
In Mild Cognitive Impairment (MCI), identifying a high risk of conversion to Alzheimer's Disease Dementia (AD) is a primary goal for patient management. Machine Learning (ML) algorithms are widely employed to pursue data-driven diagnostic and prognostic goals. An agreement on the stability of these algorithms -when applied to different biomarkers and other conditions- is far from being reached. In this study, we compared the different prognostic performances of three supervised ML algorithms fed with multimodal biomarkers of MCI subjects obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Random Forest, Gradient Boosting, and eXtreme Gradient Boosting algorithms predict MCI conversion to AD. They can also be simultaneously employed -with the voting procedure- to improve predictivity. AD prediction accuracy is influenced by the nature of the data (i.e., neuropsychological test scores, cerebrospinal fluid AD-related proteins and APOE ε4, cerebral structural MRI (sMRI) data). In our study, independent of the applied ML algorithms, sMRI data showed the lowest accuracy (0.79) compared to other classes. Multimodal data were helpful in the algorithms' performances by combining clinical and biological measures. Accordingly, using the three ML algorithms, the highest accuracy (0.90) was reached by employing neuropsychological and AD-related biomarkers. Finally, the feature selection procedure indicated that the most critical variables in the respective classes were the ADAS-Cog-13 scale, the medial temporal lobe and hippocampus atrophy, and the ratio between phosphorylated Tau and Aβ42 proteins. In conclusion, our data support the notion that using multiple ML algorithms and multimodal biomarkers helps make more accurate and solid predictions.In Mild Cognitive Impairment (MCI), identifying a high risk of conversion to Alzheimer's Disease Dementia (AD) is a primary goal for patient management. Machine Learning (ML) algorithms are widely employed to pursue data-driven diagnostic and prognostic goals. An agreement on the stability of these algorithms -when applied to different biomarkers and other conditions- is far from being reached. In this study, we compared the different prognostic performances of three supervised ML algorithms fed with multimodal biomarkers of MCI subjects obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Random Forest, Gradient Boosting, and eXtreme Gradient Boosting algorithms predict MCI conversion to AD. They can also be simultaneously employed -with the voting procedure- to improve predictivity. AD prediction accuracy is influenced by the nature of the data (i.e., neuropsychological test scores, cerebrospinal fluid AD-related proteins and APOE ε4, cerebral structural MRI (sMRI) data). In our study, independent of the applied ML algorithms, sMRI data showed the lowest accuracy (0.79) compared to other classes. Multimodal data were helpful in the algorithms' performances by combining clinical and biological measures. Accordingly, using the three ML algorithms, the highest accuracy (0.90) was reached by employing neuropsychological and AD-related biomarkers. Finally, the feature selection procedure indicated that the most critical variables in the respective classes were the ADAS-Cog-13 scale, the medial temporal lobe and hippocampus atrophy, and the ratio between phosphorylated Tau and Aβ42 proteins. In conclusion, our data support the notion that using multiple ML algorithms and multimodal biomarkers helps make more accurate and solid predictions.
Author Sensi, Stefano L.
Franciotti, Raffaella
Russo, Mirella
Nardini, Davide
Onofrj, Marco
Author_xml – sequence: 1
  givenname: Raffaella
  surname: Franciotti
  fullname: Franciotti, Raffaella
  email: raffaella.franciotti@unich.it
  organization: Department of Neuroscience, Imaging, and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Italy
– sequence: 2
  givenname: Davide
  surname: Nardini
  fullname: Nardini, Davide
  organization: Biomedical Unit, ASC27 s.r.l., Rome, Italy
– sequence: 3
  givenname: Mirella
  surname: Russo
  fullname: Russo, Mirella
  organization: Department of Neuroscience, Imaging, and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Italy
– sequence: 4
  givenname: Marco
  surname: Onofrj
  fullname: Onofrj, Marco
  organization: Department of Neuroscience, Imaging, and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Italy
– sequence: 5
  givenname: Stefano L.
  surname: Sensi
  fullname: Sensi, Stefano L.
  email: ssensi@unich.it
  organization: Department of Neuroscience, Imaging, and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36736612$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1uEzEUhS3UiqaFV0AWKzYz-Gd-MqxIU0orpYIFrC2P505zw4wdbCdSWcFj9PX6JHWVgFBX8eJa8v3OufI9p-TIOguEvOUs54xX71e5hY13wSBYA7lgQuaM50w0L8iET2uZ1WVRHJEJk6zKilKIE3IawoqlUxbyJTmRVS2riosJ-TN341p7DM5S19MbbZZogS5Ae4v2Nmt1gI7O1mvvUgsCjY5-9dChiTQugc6d3YIPmOSpMxt-LQFH8A-_7wO9wABJTnvvRnqDQ5foW4sRt0Cv01T0I9j4ihz3egjwen-fke-Xn77Nr7LFl8_X89kiMwWrmqySZSka0YqmrIWBkk-rac81a_qm7QGEkVo2pUhPOlXQdd-zVOpaQiubqZBn5N3ON33l5wZCVCMGA8OgLbhNUCKhnFeS8YS-2aObdoROrT2O2t-pv2tLwIcdYFIMwUP_D-FMPWWkVur_jNRTRopxlTJK4o_PxAajjmmF0WscDrO42FlAWtgWwas91aEHE1Xn8DCb82c2ZkCLRg8_4O5Qk0epwNBY
CitedBy_id crossref_primary_10_3233_JAD_230620
crossref_primary_10_1093_cercor_bhaf140
crossref_primary_10_1093_cercor_bhae195
crossref_primary_10_1016_j_health_2024_100362
crossref_primary_10_1080_23279095_2023_2236742
crossref_primary_10_3389_fnhum_2023_1328713
crossref_primary_10_1109_JBHI_2024_3373703
crossref_primary_10_1016_j_arr_2024_102417
crossref_primary_10_1002_alz_14398
crossref_primary_10_1007_s44248_025_00068_w
crossref_primary_10_1186_s12911_024_02663_4
crossref_primary_10_3390_bios14070356
crossref_primary_10_1002_alz_70069
crossref_primary_10_1186_s13195_024_01533_5
crossref_primary_10_1007_s10044_025_01447_4
crossref_primary_10_3389_fnagi_2024_1513930
crossref_primary_10_1038_s41598_024_63301_7
crossref_primary_10_3389_fneur_2025_1596632
crossref_primary_10_1016_j_compbiomed_2024_108955
crossref_primary_10_1038_s41598_024_60134_2
crossref_primary_10_3389_fnagi_2024_1356745
crossref_primary_10_1097_JCMA_0000000000001188
crossref_primary_10_7717_peerj_cs_2437
crossref_primary_10_3389_fphys_2025_1515881
crossref_primary_10_1016_j_neuroscience_2024_03_007
crossref_primary_10_3233_JAD_240280
crossref_primary_10_1007_s11517_024_03097_w
crossref_primary_10_1002_alz_13390
crossref_primary_10_1186_s43067_024_00150_4
crossref_primary_10_1007_s41939_025_00931_y
crossref_primary_10_1080_13854046_2025_2513446
Cites_doi 10.1001/archneur.63.5.693
10.30534/ijatcse/2019/0581.42019
10.1177/0020720921989015
10.1016/j.jalz.2011.03.008
10.1186/s40537-020-00327-4
10.1002/alz.12645
10.1016/j.pscychresns.2011.06.014
10.1007/s00521-016-2416-3
10.1038/s41746-022-00592-y
10.1108/03684921311295547
10.1023/A:1010933404324
10.3233/JAD-210573
10.1016/j.neurobiolaging.2018.10.004
10.1016/j.neuroimage.2006.01.021
10.1111/j.1742-4658.2011.08228.x
10.1007/s12525-021-00475-2
10.1016/j.mayocp.2014.06.019
10.1212/WNL.0000000000004569
10.1186/1750-1326-9-53
10.1016/j.trci.2019.11.002
10.1186/s12883-020-01728-x
10.1016/j.nicl.2017.10.009
10.1016/j.neuron.2014.05.004
10.1111/joim.12190
10.3389/fnagi.2013.00058
10.3389/fneur.2020.576029
10.3390/informatics8040079
10.3390/rs14153547
10.1016/j.tins.2018.09.009
10.18632/aging.101719
10.1007/s00500-020-05292-x
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023 IBRO. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023 IBRO. Published by Elsevier Ltd. All rights reserved.
CorporateAuthor for the Alzheimer's Disease Neuroimaging Initiative
the Alzheimer's Disease Metabolomics Consortium ADMC
Alzheimer's Disease Metabolomics Consortium ADMC
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: the Alzheimer's Disease Metabolomics Consortium ADMC
– name: for the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Metabolomics Consortium ADMC
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neuroscience.2023.01.029
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-7544
EndPage 152
ExternalDocumentID 36736612
10_1016_j_neuroscience_2023_01_029
S0306452223000477
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: CIHR
– fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5RE
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABTEW
ACDAQ
ACGFO
ACGFS
ACIUM
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMQ
IHE
J1W
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
UNMZH
Z5R
~G-
~HD
6I.
AACTN
AADPK
AAFTH
AAIAV
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
SEW
.55
.GJ
29N
53G
5VS
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AGHFR
AGQPQ
AHHHB
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SNS
WUQ
X7M
YYP
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4069-6355292b29572ce51868f1a09f9bfee2c3a3952f1aa52fea7ff0a7f773eb39823
ISSN 0306-4522
1873-7544
IngestDate Thu Oct 02 06:13:55 EDT 2025
Wed Feb 19 02:24:08 EST 2025
Tue Nov 18 22:31:05 EST 2025
Sat Nov 29 07:22:19 EST 2025
Fri Feb 23 02:35:04 EST 2024
Tue Oct 14 19:30:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ADNI
c-MCI
ABETA
sMRI
artificial intelligence
random forest (RF)
NPV
PPV
t-Tau
GB
LM-DEL
PTAU
ML
machine learning (ML) algorithms
RAVLT-DEL and -IMM
SHAP
AD
mild cognitive impairment (MCI)
p-Tau
ADAS-Cog-11 and 13
Alzheimer’s disease dementia (AD) prediction
AdaBoost
MCI
XGB
gradient boosting
s-MCI
RF
FAQ
Language English
License This is an open access article under the CC BY license.
Copyright © 2023 IBRO. Published by Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4069-6355292b29572ce51868f1a09f9bfee2c3a3952f1aa52fea7ff0a7f773eb39823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.neuroscience.2023.01.029
PMID 36736612
PQID 2773116301
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2773116301
pubmed_primary_36736612
crossref_primary_10_1016_j_neuroscience_2023_01_029
crossref_citationtrail_10_1016_j_neuroscience_2023_01_029
elsevier_sciencedirect_doi_10_1016_j_neuroscience_2023_01_029
elsevier_clinicalkey_doi_10_1016_j_neuroscience_2023_01_029
PublicationCentury 2000
PublicationDate 2023-03-15
PublicationDateYYYYMMDD 2023-03-15
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuroscience
PublicationTitleAlternate Neuroscience
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Schapire, Freund (b0155) 2013
Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (b0060) 2006; 31
Brem, Sensi (b0025) 2018; 41
Poil, de Haan, van der Flier, Mansvelder, Scheltens, Linkenkaer-Hansen (b0135) 2013; 5
Shree, Sheshadri (b0160) 2018; 29
Casaletto, Elahi, Bettcher, Neuhaus, Bendlin, Asthana (b0035) 2017; 89
Natras, Soja, Schmidt (b0125) 2022; 14
Spires-Jones, Hyman (b0165) 2014; 82
Massetti, Russo, Franciotti, Nardini, Mandolini, Granzotto, Bomba, Delli Pizzi, Mosca, Scherer, Onofrj, Sensi, Alzheimer’s Disease Neuroimaging Initiative (ADNI); Alzheimer’s Disease Metabolomics Consortium (ADMC) (b0110) 2022; 85
Faouri, AlBashayreh, Azzeh (b0075) 2022; 333–346
Williams, Serpell (b0190) 2011; 278
Delli Pizzi, Punzi, Sensi, Initiative (b0055) 2019; 74
Apostolova, Dutton, Dinov, Hayashi, Toga, Cummings, Thompson (b0010) 2006; 63
Syaifullah, Shiino, Kitahara, Ito, Ishida, Tanigaki (b0170) 2021; 11
Brinkmalm, Brinkmalm, Honer, Fr€olich, Hausner, Minthon, Hansson, Wallin, Zetterberg, Blennow, Öhrfelt (b0030) 2014; 9
Vozella, Basit, Piras, Realini, Armirotti, Bossù, Assogna, Sensi, Spalletta, Piomelli (b0185) 2019; 11
Chen, Dewi, Huang, Caraka (b0040) 2020; 7
Dinu, Ganesan (b0065) 2019; 8
Cox, Li, Darlington (b0050) 2001; 49
Petersen, Caracciolo, Brayne, Gauthier, Jelic, Fratiglioni (b0130) 2014; 275
Chen, Guestrin (b0045) 2016
Fernández-Delgado, Cernadas, Barro, Amorim (b0080) 2014; 15
Poulin, Dautoff, Morris, Barrett, Dickerson, Initiative (b0140) 2011; 194
Rohini, Surendran (b9000) 2021; 25
Janiesch, Zschech, Heinrich (b0095) 2021; 31
Galasko, Xiao, Xu, Smirnov, Salmon, Dewit, Vanbrabant, Jacobs, Vanderstichele, Vanmechelen, Initiative, ADNI, Worley (b0090) 2019; 5
Mazaheri, Segaert, Olichney, Yang, Niu, Shapiro, Bowman (b0115) 2018; 17
Bergstra, Bengio (b0015) 2012; 13
Albert, DeKosky, Dickson, Dubois, Feldman, Fox, Gamst, Holtzman, Jagust, Petersen, Snyder, Carrillo, Thies, Phelps (b0005) 2011; 7
Rossini, Miraglia, Vecchio (b0150) 2022; 18
Friedman (b0085) 2001
Mishra, Mallick, Tripathy, Jena, Chae (b0120) 2021
Knopman, Petersen (b0100) 2014; 89
Qi (b0145) 2012
Teng, Li, Zhao, Hu, Zhang, Yao, Hu, Alzheimer’ s Disease Neuroimaging Initiative (ADNI) (b0175) 2020; 20
Elgeldawi, Sayed, Galal, Zaki (b0070) 2021; 8
Breiman (b0020) 2001; 45
Lundberg, Lee (b0105) 2017; 30
Varoquaux, Cheplygina (b0180) 2022; 5
Delli Pizzi (10.1016/j.neuroscience.2023.01.029_b0055) 2019; 74
Qi (10.1016/j.neuroscience.2023.01.029_b0145) 2012
Faouri (10.1016/j.neuroscience.2023.01.029_b0075) 2022; 333–346
Albert (10.1016/j.neuroscience.2023.01.029_b0005) 2011; 7
Breiman (10.1016/j.neuroscience.2023.01.029_b0020) 2001; 45
Vozella (10.1016/j.neuroscience.2023.01.029_b0185) 2019; 11
Brem (10.1016/j.neuroscience.2023.01.029_b0025) 2018; 41
Brinkmalm (10.1016/j.neuroscience.2023.01.029_b0030) 2014; 9
Massetti (10.1016/j.neuroscience.2023.01.029_b0110) 2022; 85
Rossini (10.1016/j.neuroscience.2023.01.029_b0150) 2022; 18
Fernández-Delgado (10.1016/j.neuroscience.2023.01.029_b0080) 2014; 15
Dinu (10.1016/j.neuroscience.2023.01.029_b0065) 2019; 8
Poil (10.1016/j.neuroscience.2023.01.029_b0135) 2013; 5
Bergstra (10.1016/j.neuroscience.2023.01.029_b0015) 2012; 13
Poulin (10.1016/j.neuroscience.2023.01.029_b0140) 2011; 194
Desikan (10.1016/j.neuroscience.2023.01.029_b0060) 2006; 31
Shree (10.1016/j.neuroscience.2023.01.029_b0160) 2018; 29
Mazaheri (10.1016/j.neuroscience.2023.01.029_b0115) 2018; 17
Schapire (10.1016/j.neuroscience.2023.01.029_b0155) 2013
Lundberg (10.1016/j.neuroscience.2023.01.029_b0105) 2017; 30
Rohini (10.1016/j.neuroscience.2023.01.029_b9000) 2021; 25
Chen (10.1016/j.neuroscience.2023.01.029_b0045) 2016
Natras (10.1016/j.neuroscience.2023.01.029_b0125) 2022; 14
Cox (10.1016/j.neuroscience.2023.01.029_b0050) 2001; 49
Williams (10.1016/j.neuroscience.2023.01.029_b0190) 2011; 278
Galasko (10.1016/j.neuroscience.2023.01.029_b0090) 2019; 5
Janiesch (10.1016/j.neuroscience.2023.01.029_b0095) 2021; 31
Apostolova (10.1016/j.neuroscience.2023.01.029_b0010) 2006; 63
Casaletto (10.1016/j.neuroscience.2023.01.029_b0035) 2017; 89
Friedman (10.1016/j.neuroscience.2023.01.029_b0085) 2001
Mishra (10.1016/j.neuroscience.2023.01.029_b0120) 2021
Petersen (10.1016/j.neuroscience.2023.01.029_b0130) 2014; 275
Knopman (10.1016/j.neuroscience.2023.01.029_b0100) 2014; 89
Varoquaux (10.1016/j.neuroscience.2023.01.029_b0180) 2022; 5
Chen (10.1016/j.neuroscience.2023.01.029_b0040) 2020; 7
Spires-Jones (10.1016/j.neuroscience.2023.01.029_b0165) 2014; 82
Teng (10.1016/j.neuroscience.2023.01.029_b0175) 2020; 20
Elgeldawi (10.1016/j.neuroscience.2023.01.029_b0070) 2021; 8
Syaifullah (10.1016/j.neuroscience.2023.01.029_b0170) 2021; 11
36592944 - Neuroscience. 2023 Mar 15;514:141-142
References_xml – volume: 11
  start-page: 73
  year: 2019
  end-page: 88
  ident: b0185
  article-title: Elevated plasma ceramide levels in post-menopausal women: a crosssectional study
  publication-title: Aging (Albany NY)
– volume: 5
  start-page: 48
  year: 2022
  ident: b0180
  article-title: Machine learning for medical imaging: methodological failures and recommendations for the future
  publication-title: npj Digit Med
– volume: 17
  start-page: 188
  year: 2018
  end-page: 197
  ident: b0115
  article-title: EEG oscillations during word processing predict MCI conversion to Alzheimer’s disease
  publication-title: NeuroImage: Clin
– volume: 333–346
  year: 2022
  ident: b0075
  article-title: Examining stability of machine learning methods for predicting dementia at early phases of the disease
  publication-title: Decis Sci Lett
– volume: 194
  start-page: 7
  year: 2011
  end-page: 13
  ident: b0140
  article-title: Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity
  publication-title: Psychiatry Res Neuroimaging
– volume: 8
  year: 2021
  ident: b0070
  article-title: Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis
  publication-title: Informatics
– volume: 85
  start-page: 1639
  year: 2022
  end-page: 1655
  ident: b0110
  article-title: A Machine Learning-Based Holistic Approach to Predict the Clinical Course of Patients within the Alzheimer’s Disease Spectrum
  publication-title: J Alzheimer’s Dis
– volume: 11
  year: 2021
  ident: b0170
  article-title: Machine Learning for Diagnosis of AD and Prediction of MCI Progression From Brain MRI Using Brain Anatomical Analysis Using Diffeomorphic Deformation
  publication-title: Front Neurol
– start-page: 307
  year: 2012
  end-page: 323
  ident: b0145
  article-title: Random Forest for Bioinformatics
  publication-title: Ensemble Machine Learning
– volume: 63
  start-page: 693
  year: 2006
  end-page: 699
  ident: b0010
  article-title: Conversion of Mild Cognitive Impairment to Alzheimer Disease Predicted by Hippocampal Atrophy Maps
  publication-title: Arch Neurol
– volume: 14
  start-page: 3547
  year: 2022
  ident: b0125
  article-title: Ensemble Machine Learning of Random Forest, AdaBoost and XGBoost for Vertical Total Electron Content Forecasting
  publication-title: Remote Sens
– volume: 275
  start-page: 214
  year: 2014
  end-page: 228
  ident: b0130
  article-title: Mild cognitive impairment: a concept in evolution
  publication-title: J Intern Med
– volume: 89
  start-page: 1782
  year: 2017
  end-page: 1788
  ident: b0035
  article-title: Neurogranin, a synaptic protein, is associated with memory independent of Alzheimer biomarkers
  publication-title: Neurology
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  ident: b0060
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
– volume: 7
  start-page: 270
  year: 2011
  end-page: 279
  ident: b0005
  article-title: The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimers Dement
– volume: 8
  start-page: 29
  year: 2019
  end-page: 37
  ident: b0065
  article-title: Early detection of Alzheimer’s disease using predictive k-NN instance based approach and T-Test Method
  publication-title: Int J Adv Trends Comput Sci Eng
– volume: 15
  start-page: 3133
  year: 2014
  end-page: 3181
  ident: b0080
  article-title: Do we need hundreds of classifiers to solve real-world classification problems?
  publication-title: J Mach Learn Res
– volume: 49
  start-page: 219
  year: 2001
  end-page: 230
  ident: b0050
  article-title: Extracting room reverberation time from speech using artificial neural networks
  publication-title: J audio Eng. Soc
– volume: 20
  start-page: 148
  year: 2020
  ident: b0175
  article-title: Predicting MCI progression with FDG-PET and cognitive scores: a longitudinal study
  publication-title: BMC Neurol
– start-page: 1189
  year: 2001
  end-page: 1232
  ident: b0085
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
– year: 2013
  ident: b0155
  article-title: Boosting: Foundations and algorithms
  publication-title: Kybernetes.
– volume: 29
  start-page: 123
  year: 2018
  end-page: 132
  ident: b0160
  article-title: Diagnosis of Alzheimer’s disease using Naive Bayesian Classifiers
  publication-title: Neural Comput & Applic
– volume: 25
  start-page: 2589
  year: 2021
  end-page: 2597
  ident: b9000
  article-title: Toward Alzheimer’s disease classification through machine learning
  publication-title: Soft Comput
– volume: 7
  start-page: 1
  year: 2020
  end-page: 26
  ident: b0040
  article-title: Selecting critical features for data classification based on machine learning methods
  publication-title: J Big Data
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: b0015
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
– volume: 89
  start-page: 1452
  year: 2014
  end-page: 1459
  ident: b0100
  article-title: Mild Cognitive Impairment and Mild Dementia: A Clinical Perspective
  publication-title: Mayo Clin Proc
– volume: 18
  start-page: 2699
  year: 2022
  end-page: 2706
  ident: b0150
  article-title: Early dementia diagnosis, MCI-to-dementia risk prediction, and the role of machine learningmethods for feature extraction from integrated biomarkers, in particular for EEG signal analysis
  publication-title: Alzheimer’s Dement
– volume: 5
  start-page: 58
  year: 2013
  ident: b0135
  article-title: Integrative EEG biomarkers predict progression to Alzheimer’s disease at the MCI stage
  publication-title: Front Aging Neurosci
– volume: 31
  start-page: 685
  year: 2021
  end-page: 695
  ident: b0095
  article-title: Machine learning and deep learning
  publication-title: Electronic Markets
– year: 2021
  ident: b0120
  article-title: Stacked KNN with hard voting predictive approach to assist the hiring process in IT organizations
  publication-title: Int J Electr Eng Educ
– volume: 5
  start-page: 871
  year: 2019
  end-page: 882
  ident: b0090
  article-title: Synaptic biomarkers in CSF aid in diagnosis, correlate with cognition and predict progression in MCI and Alzheimer’s disease
  publication-title: Alzheimers Dement (N Y)
– volume: 41
  start-page: 885
  year: 2018
  end-page: 897
  ident: b0025
  article-title: Towards Combinatorial Approaches for Preserving Cognitive Fitness in Aging
  publication-title: Trends Neurosci
– volume: 74
  start-page: 21
  year: 2019
  end-page: 37
  ident: b0055
  article-title: Functional signature of conversion of patients with mild cognitive impairment
  publication-title: Neurobiol Aging
– volume: 278
  start-page: 3905
  year: 2011
  end-page: 3917
  ident: b0190
  article-title: Membrane and surface interactions of the Alzheimer’s A! peptide: Insights into the mechanism of cytotoxicity
  publication-title: FEBS J
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0020
  article-title: Random Forests
  publication-title: Mach Learn
– volume: 30
  year: 2017
  ident: b0105
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv Neural Inf Process Syst
– year: 2016
  ident: b0045
  article-title: XGBoost
  publication-title: in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (ACM)
– volume: 9
  start-page: 53
  year: 2014
  ident: b0030
  article-title: SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer’s disease
  publication-title: Mol Neurodegener
– volume: 82
  start-page: 756
  year: 2014
  end-page: 771
  ident: b0165
  article-title: The intersection of amyloid beta and tau at synapses in Alzheimer’s disease
  publication-title: Neuron
– volume: 63
  start-page: 693
  year: 2006
  ident: 10.1016/j.neuroscience.2023.01.029_b0010
  article-title: Conversion of Mild Cognitive Impairment to Alzheimer Disease Predicted by Hippocampal Atrophy Maps
  publication-title: Arch Neurol
  doi: 10.1001/archneur.63.5.693
– volume: 8
  start-page: 29
  year: 2019
  ident: 10.1016/j.neuroscience.2023.01.029_b0065
  article-title: Early detection of Alzheimer’s disease using predictive k-NN instance based approach and T-Test Method
  publication-title: Int J Adv Trends Comput Sci Eng
  doi: 10.30534/ijatcse/2019/0581.42019
– year: 2021
  ident: 10.1016/j.neuroscience.2023.01.029_b0120
  article-title: Stacked KNN with hard voting predictive approach to assist the hiring process in IT organizations
  publication-title: Int J Electr Eng Educ
  doi: 10.1177/0020720921989015
– volume: 7
  start-page: 270
  year: 2011
  ident: 10.1016/j.neuroscience.2023.01.029_b0005
  article-title: The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.008
– volume: 30
  year: 2017
  ident: 10.1016/j.neuroscience.2023.01.029_b0105
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv Neural Inf Process Syst
– volume: 7
  start-page: 1
  year: 2020
  ident: 10.1016/j.neuroscience.2023.01.029_b0040
  article-title: Selecting critical features for data classification based on machine learning methods
  publication-title: J Big Data
  doi: 10.1186/s40537-020-00327-4
– volume: 18
  start-page: 2699
  year: 2022
  ident: 10.1016/j.neuroscience.2023.01.029_b0150
  article-title: Early dementia diagnosis, MCI-to-dementia risk prediction, and the role of machine learningmethods for feature extraction from integrated biomarkers, in particular for EEG signal analysis
  publication-title: Alzheimer’s Dement
  doi: 10.1002/alz.12645
– volume: 194
  start-page: 7
  year: 2011
  ident: 10.1016/j.neuroscience.2023.01.029_b0140
  article-title: Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity
  publication-title: Psychiatry Res Neuroimaging
  doi: 10.1016/j.pscychresns.2011.06.014
– volume: 29
  start-page: 123
  year: 2018
  ident: 10.1016/j.neuroscience.2023.01.029_b0160
  article-title: Diagnosis of Alzheimer’s disease using Naive Bayesian Classifiers
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-016-2416-3
– volume: 5
  start-page: 48
  year: 2022
  ident: 10.1016/j.neuroscience.2023.01.029_b0180
  article-title: Machine learning for medical imaging: methodological failures and recommendations for the future
  publication-title: npj Digit Med
  doi: 10.1038/s41746-022-00592-y
– year: 2013
  ident: 10.1016/j.neuroscience.2023.01.029_b0155
  article-title: Boosting: Foundations and algorithms
  publication-title: Kybernetes.
  doi: 10.1108/03684921311295547
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.neuroscience.2023.01.029_b0020
  article-title: Random Forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 15
  start-page: 3133
  year: 2014
  ident: 10.1016/j.neuroscience.2023.01.029_b0080
  article-title: Do we need hundreds of classifiers to solve real-world classification problems?
  publication-title: J Mach Learn Res
– volume: 85
  start-page: 1639
  year: 2022
  ident: 10.1016/j.neuroscience.2023.01.029_b0110
  article-title: A Machine Learning-Based Holistic Approach to Predict the Clinical Course of Patients within the Alzheimer’s Disease Spectrum
  publication-title: J Alzheimer’s Dis
  doi: 10.3233/JAD-210573
– volume: 74
  start-page: 21
  year: 2019
  ident: 10.1016/j.neuroscience.2023.01.029_b0055
  article-title: Functional signature of conversion of patients with mild cognitive impairment
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2018.10.004
– volume: 31
  start-page: 968
  year: 2006
  ident: 10.1016/j.neuroscience.2023.01.029_b0060
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 49
  start-page: 219
  year: 2001
  ident: 10.1016/j.neuroscience.2023.01.029_b0050
  article-title: Extracting room reverberation time from speech using artificial neural networks
  publication-title: J audio Eng. Soc
– volume: 278
  start-page: 3905
  year: 2011
  ident: 10.1016/j.neuroscience.2023.01.029_b0190
  article-title: Membrane and surface interactions of the Alzheimer’s A! peptide: Insights into the mechanism of cytotoxicity
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2011.08228.x
– volume: 31
  start-page: 685
  year: 2021
  ident: 10.1016/j.neuroscience.2023.01.029_b0095
  article-title: Machine learning and deep learning
  publication-title: Electronic Markets
  doi: 10.1007/s12525-021-00475-2
– start-page: 1189
  year: 2001
  ident: 10.1016/j.neuroscience.2023.01.029_b0085
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
– volume: 89
  start-page: 1452
  year: 2014
  ident: 10.1016/j.neuroscience.2023.01.029_b0100
  article-title: Mild Cognitive Impairment and Mild Dementia: A Clinical Perspective
  publication-title: Mayo Clin Proc
  doi: 10.1016/j.mayocp.2014.06.019
– volume: 89
  start-page: 1782
  year: 2017
  ident: 10.1016/j.neuroscience.2023.01.029_b0035
  article-title: Neurogranin, a synaptic protein, is associated with memory independent of Alzheimer biomarkers
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000004569
– volume: 9
  start-page: 53
  year: 2014
  ident: 10.1016/j.neuroscience.2023.01.029_b0030
  article-title: SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer’s disease
  publication-title: Mol Neurodegener
  doi: 10.1186/1750-1326-9-53
– volume: 5
  start-page: 871
  year: 2019
  ident: 10.1016/j.neuroscience.2023.01.029_b0090
  article-title: Synaptic biomarkers in CSF aid in diagnosis, correlate with cognition and predict progression in MCI and Alzheimer’s disease
  publication-title: Alzheimers Dement (N Y)
  doi: 10.1016/j.trci.2019.11.002
– year: 2016
  ident: 10.1016/j.neuroscience.2023.01.029_b0045
  article-title: XGBoost
– volume: 20
  start-page: 148
  year: 2020
  ident: 10.1016/j.neuroscience.2023.01.029_b0175
  article-title: Predicting MCI progression with FDG-PET and cognitive scores: a longitudinal study
  publication-title: BMC Neurol
  doi: 10.1186/s12883-020-01728-x
– start-page: 307
  year: 2012
  ident: 10.1016/j.neuroscience.2023.01.029_b0145
  article-title: Random Forest for Bioinformatics
– volume: 17
  start-page: 188
  year: 2018
  ident: 10.1016/j.neuroscience.2023.01.029_b0115
  article-title: EEG oscillations during word processing predict MCI conversion to Alzheimer’s disease
  publication-title: NeuroImage: Clin
  doi: 10.1016/j.nicl.2017.10.009
– volume: 82
  start-page: 756
  year: 2014
  ident: 10.1016/j.neuroscience.2023.01.029_b0165
  article-title: The intersection of amyloid beta and tau at synapses in Alzheimer’s disease
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.05.004
– volume: 333–346
  year: 2022
  ident: 10.1016/j.neuroscience.2023.01.029_b0075
  article-title: Examining stability of machine learning methods for predicting dementia at early phases of the disease
  publication-title: Decis Sci Lett
– volume: 275
  start-page: 214
  year: 2014
  ident: 10.1016/j.neuroscience.2023.01.029_b0130
  article-title: Mild cognitive impairment: a concept in evolution
  publication-title: J Intern Med
  doi: 10.1111/joim.12190
– volume: 5
  start-page: 58
  year: 2013
  ident: 10.1016/j.neuroscience.2023.01.029_b0135
  article-title: Integrative EEG biomarkers predict progression to Alzheimer’s disease at the MCI stage
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2013.00058
– volume: 11
  year: 2021
  ident: 10.1016/j.neuroscience.2023.01.029_b0170
  article-title: Machine Learning for Diagnosis of AD and Prediction of MCI Progression From Brain MRI Using Brain Anatomical Analysis Using Diffeomorphic Deformation
  publication-title: Front Neurol
  doi: 10.3389/fneur.2020.576029
– volume: 8
  year: 2021
  ident: 10.1016/j.neuroscience.2023.01.029_b0070
  article-title: Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis
  publication-title: Informatics
  doi: 10.3390/informatics8040079
– volume: 14
  start-page: 3547
  year: 2022
  ident: 10.1016/j.neuroscience.2023.01.029_b0125
  article-title: Ensemble Machine Learning of Random Forest, AdaBoost and XGBoost for Vertical Total Electron Content Forecasting
  publication-title: Remote Sens
  doi: 10.3390/rs14153547
– volume: 41
  start-page: 885
  year: 2018
  ident: 10.1016/j.neuroscience.2023.01.029_b0025
  article-title: Towards Combinatorial Approaches for Preserving Cognitive Fitness in Aging
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2018.09.009
– volume: 13
  start-page: 281
  year: 2012
  ident: 10.1016/j.neuroscience.2023.01.029_b0015
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
– volume: 11
  start-page: 73
  year: 2019
  ident: 10.1016/j.neuroscience.2023.01.029_b0185
  article-title: Elevated plasma ceramide levels in post-menopausal women: a crosssectional study
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.101719
– volume: 25
  start-page: 2589
  year: 2021
  ident: 10.1016/j.neuroscience.2023.01.029_b9000
  article-title: Toward Alzheimer’s disease classification through machine learning
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05292-x
– reference: 36592944 - Neuroscience. 2023 Mar 15;514:141-142
SSID ssj0000543
Score 2.4304955
Snippet •Psychological and AD-related biomarkers reach the highest accuracy in AD prediction.•Clinical and biological data are helpful in machine learning algorithms’...
In Mild Cognitive Impairment (MCI), identifying a high risk of conversion to Alzheimer's Disease Dementia (AD) is a primary goal for patient management....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 143
SubjectTerms Alzheimer Disease - cerebrospinal fluid
Alzheimer Disease - diagnostic imaging
Alzheimer’s disease dementia (AD) prediction
artificial intelligence
Biomarkers - cerebrospinal fluid
Cognitive Dysfunction - cerebrospinal fluid
Cognitive Dysfunction - diagnosis
Disease Progression
gradient boosting
Humans
Machine Learning
machine learning (ML) algorithms
Magnetic Resonance Imaging - methods
mild cognitive impairment (MCI)
random forest (RF)
Title Comparison of Machine Learning-based Approaches to Predict the Conversion to Alzheimer’s Disease from Mild Cognitive Impairment
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0306452223000477
https://dx.doi.org/10.1016/j.neuroscience.2023.01.029
https://www.ncbi.nlm.nih.gov/pubmed/36736612
https://www.proquest.com/docview/2773116301
Volume 514
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7544
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000543
  issn: 0306-4522
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLa6jQtuEDB-ys9kJMRdUGI3cy3ERTUNMQRjGgP1LnJSm7UqyZSm1eAKHoOX4WF4Es6JHScIVSpC3FhVotP8nC_2sf2d7xDyOKpFylUYDLQ2AeZKBhLi5kArhWmcPFI1GfPDa3F8PByP5Umv96PJhVnNRZ4PLy_lxX91NRwDZ2Pq7F-42_8pHIDf4HRowe3QbuT4g25lQSwsdI6BpNNR_RjgsDXB4LNOpbICDyclbtfUWY2YAriya2h4ZjT_cq6nWGHFkSLkAgU7cU_HZqa8mc4nYNNwkI7g2tPSs2lmjTaUF830OLIVPYrK0glOlTFK2wJIdnEakZtPPe3e250u4f1Zwn_ZNXibF6acufSjrOiuZjCOdC6bz2mX2Jo0m5bTVKd2hfsBSr_bQcv21EPBA1Tv63blcTTodMaRFYBy43pklXL_GDLs6sXsaUc_FOVTGbdyrrIdKD198R3eEN4PzN9QblNskR0mYgm96s7o6HD8qo0FYsvbbB6gkb2tGYbrrrguRFo3BapDobPr5Jqbw9CRxd4N0tP5TbI7ylVVfPpMn9CaVVxv1-ySby0caWGogyP9HY60hSOtCurgSAGOtIUjnvFw_Pn1-4I6IFIEIkUgUg9E2gLxFnn_4vDs4GXgyn4EGaZhBxgCM8lSJmPBMh1jQQcTqVAamRqtWcYVlzGDQwparYQxITRCcJ1yOWT8NtnOi1zfJVSkWhkVqzTcNwOUVRpoGcZhmE5kNhEs7hPZvOkkc5r4WJplnjTkx1nS9VKCXkrCKAEv9Qn3thdWGWYjq2eNQ5Mm9xlG6wTQuJH1c2_tTtvId2P7Rw2GEhhGcG9Q5bpYLhIGry-CuVkY9ckdCy7_VBy5nzATuvePV79Prraf_AOyXZVL_ZBcyVbVdFHukS0xHu65D-gXPVcCAg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Machine+Learning-based+Approaches+to+Predict+the+Conversion+to+Alzheimer%E2%80%99s+Disease+from+Mild+Cognitive+Impairment&rft.jtitle=Neuroscience&rft.au=Franciotti%2C+Raffaella&rft.au=Nardini%2C+Davide&rft.au=Russo%2C+Mirella&rft.au=Onofrj%2C+Marco&rft.date=2023-03-15&rft.pub=Elsevier+Ltd&rft.issn=0306-4522&rft.eissn=1873-7544&rft.volume=514&rft.spage=143&rft.epage=152&rft_id=info:doi/10.1016%2Fj.neuroscience.2023.01.029&rft.externalDocID=S0306452223000477
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4522&client=summon