Comparison of Machine Learning-based Approaches to Predict the Conversion to Alzheimer’s Disease from Mild Cognitive Impairment
•Psychological and AD-related biomarkers reach the highest accuracy in AD prediction.•Clinical and biological data are helpful in machine learning algorithms’ performances.•Multiple machine learning algorithms make more accurate and solid AD predictions. In Mild Cognitive Impairment (MCI), identifyi...
Uloženo v:
| Vydáno v: | Neuroscience Ročník 514; s. 143 - 152 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Ltd
15.03.2023
|
| Témata: | |
| ISSN: | 0306-4522, 1873-7544, 1873-7544 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Psychological and AD-related biomarkers reach the highest accuracy in AD prediction.•Clinical and biological data are helpful in machine learning algorithms’ performances.•Multiple machine learning algorithms make more accurate and solid AD predictions.
In Mild Cognitive Impairment (MCI), identifying a high risk of conversion to Alzheimer’s Disease Dementia (AD) is a primary goal for patient management. Machine Learning (ML) algorithms are widely employed to pursue data-driven diagnostic and prognostic goals. An agreement on the stability of these algorithms –when applied to different biomarkers and other conditions– is far from being reached. In this study, we compared the different prognostic performances of three supervised ML algorithms fed with multimodal biomarkers of MCI subjects obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Random Forest, Gradient Boosting, and eXtreme Gradient Boosting algorithms predict MCI conversion to AD. They can also be simultaneously employed –with the voting procedure– to improve predictivity. AD prediction accuracy is influenced by the nature of the data (i.e., neuropsychological test scores, cerebrospinal fluid AD-related proteins and APOE ε4, cerebral structural MRI (sMRI) data). In our study, independent of the applied ML algorithms, sMRI data showed the lowest accuracy (0.79) compared to other classes. Multimodal data were helpful in the algorithms’ performances by combining clinical and biological measures. Accordingly, using the three ML algorithms, the highest accuracy (0.90) was reached by employing neuropsychological and AD-related biomarkers. Finally, the feature selection procedure indicated that the most critical variables in the respective classes were the ADAS-Cog-13 scale, the medial temporal lobe and hippocampus atrophy, and the ratio between phosphorylated Tau and Aβ42 proteins. In conclusion, our data support the notion that using multiple ML algorithms and multimodal biomarkers helps make more accurate and solid predictions. |
|---|---|
| AbstractList | In Mild Cognitive Impairment (MCI), identifying a high risk of conversion to Alzheimer's Disease Dementia (AD) is a primary goal for patient management. Machine Learning (ML) algorithms are widely employed to pursue data-driven diagnostic and prognostic goals. An agreement on the stability of these algorithms -when applied to different biomarkers and other conditions- is far from being reached. In this study, we compared the different prognostic performances of three supervised ML algorithms fed with multimodal biomarkers of MCI subjects obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Random Forest, Gradient Boosting, and eXtreme Gradient Boosting algorithms predict MCI conversion to AD. They can also be simultaneously employed -with the voting procedure- to improve predictivity. AD prediction accuracy is influenced by the nature of the data (i.e., neuropsychological test scores, cerebrospinal fluid AD-related proteins and APOE ε4, cerebral structural MRI (sMRI) data). In our study, independent of the applied ML algorithms, sMRI data showed the lowest accuracy (0.79) compared to other classes. Multimodal data were helpful in the algorithms' performances by combining clinical and biological measures. Accordingly, using the three ML algorithms, the highest accuracy (0.90) was reached by employing neuropsychological and AD-related biomarkers. Finally, the feature selection procedure indicated that the most critical variables in the respective classes were the ADAS-Cog-13 scale, the medial temporal lobe and hippocampus atrophy, and the ratio between phosphorylated Tau and Aβ42 proteins. In conclusion, our data support the notion that using multiple ML algorithms and multimodal biomarkers helps make more accurate and solid predictions. •Psychological and AD-related biomarkers reach the highest accuracy in AD prediction.•Clinical and biological data are helpful in machine learning algorithms’ performances.•Multiple machine learning algorithms make more accurate and solid AD predictions. In Mild Cognitive Impairment (MCI), identifying a high risk of conversion to Alzheimer’s Disease Dementia (AD) is a primary goal for patient management. Machine Learning (ML) algorithms are widely employed to pursue data-driven diagnostic and prognostic goals. An agreement on the stability of these algorithms –when applied to different biomarkers and other conditions– is far from being reached. In this study, we compared the different prognostic performances of three supervised ML algorithms fed with multimodal biomarkers of MCI subjects obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Random Forest, Gradient Boosting, and eXtreme Gradient Boosting algorithms predict MCI conversion to AD. They can also be simultaneously employed –with the voting procedure– to improve predictivity. AD prediction accuracy is influenced by the nature of the data (i.e., neuropsychological test scores, cerebrospinal fluid AD-related proteins and APOE ε4, cerebral structural MRI (sMRI) data). In our study, independent of the applied ML algorithms, sMRI data showed the lowest accuracy (0.79) compared to other classes. Multimodal data were helpful in the algorithms’ performances by combining clinical and biological measures. Accordingly, using the three ML algorithms, the highest accuracy (0.90) was reached by employing neuropsychological and AD-related biomarkers. Finally, the feature selection procedure indicated that the most critical variables in the respective classes were the ADAS-Cog-13 scale, the medial temporal lobe and hippocampus atrophy, and the ratio between phosphorylated Tau and Aβ42 proteins. In conclusion, our data support the notion that using multiple ML algorithms and multimodal biomarkers helps make more accurate and solid predictions. In Mild Cognitive Impairment (MCI), identifying a high risk of conversion to Alzheimer's Disease Dementia (AD) is a primary goal for patient management. Machine Learning (ML) algorithms are widely employed to pursue data-driven diagnostic and prognostic goals. An agreement on the stability of these algorithms -when applied to different biomarkers and other conditions- is far from being reached. In this study, we compared the different prognostic performances of three supervised ML algorithms fed with multimodal biomarkers of MCI subjects obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Random Forest, Gradient Boosting, and eXtreme Gradient Boosting algorithms predict MCI conversion to AD. They can also be simultaneously employed -with the voting procedure- to improve predictivity. AD prediction accuracy is influenced by the nature of the data (i.e., neuropsychological test scores, cerebrospinal fluid AD-related proteins and APOE ε4, cerebral structural MRI (sMRI) data). In our study, independent of the applied ML algorithms, sMRI data showed the lowest accuracy (0.79) compared to other classes. Multimodal data were helpful in the algorithms' performances by combining clinical and biological measures. Accordingly, using the three ML algorithms, the highest accuracy (0.90) was reached by employing neuropsychological and AD-related biomarkers. Finally, the feature selection procedure indicated that the most critical variables in the respective classes were the ADAS-Cog-13 scale, the medial temporal lobe and hippocampus atrophy, and the ratio between phosphorylated Tau and Aβ42 proteins. In conclusion, our data support the notion that using multiple ML algorithms and multimodal biomarkers helps make more accurate and solid predictions.In Mild Cognitive Impairment (MCI), identifying a high risk of conversion to Alzheimer's Disease Dementia (AD) is a primary goal for patient management. Machine Learning (ML) algorithms are widely employed to pursue data-driven diagnostic and prognostic goals. An agreement on the stability of these algorithms -when applied to different biomarkers and other conditions- is far from being reached. In this study, we compared the different prognostic performances of three supervised ML algorithms fed with multimodal biomarkers of MCI subjects obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Random Forest, Gradient Boosting, and eXtreme Gradient Boosting algorithms predict MCI conversion to AD. They can also be simultaneously employed -with the voting procedure- to improve predictivity. AD prediction accuracy is influenced by the nature of the data (i.e., neuropsychological test scores, cerebrospinal fluid AD-related proteins and APOE ε4, cerebral structural MRI (sMRI) data). In our study, independent of the applied ML algorithms, sMRI data showed the lowest accuracy (0.79) compared to other classes. Multimodal data were helpful in the algorithms' performances by combining clinical and biological measures. Accordingly, using the three ML algorithms, the highest accuracy (0.90) was reached by employing neuropsychological and AD-related biomarkers. Finally, the feature selection procedure indicated that the most critical variables in the respective classes were the ADAS-Cog-13 scale, the medial temporal lobe and hippocampus atrophy, and the ratio between phosphorylated Tau and Aβ42 proteins. In conclusion, our data support the notion that using multiple ML algorithms and multimodal biomarkers helps make more accurate and solid predictions. |
| Author | Sensi, Stefano L. Franciotti, Raffaella Russo, Mirella Nardini, Davide Onofrj, Marco |
| Author_xml | – sequence: 1 givenname: Raffaella surname: Franciotti fullname: Franciotti, Raffaella email: raffaella.franciotti@unich.it organization: Department of Neuroscience, Imaging, and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Italy – sequence: 2 givenname: Davide surname: Nardini fullname: Nardini, Davide organization: Biomedical Unit, ASC27 s.r.l., Rome, Italy – sequence: 3 givenname: Mirella surname: Russo fullname: Russo, Mirella organization: Department of Neuroscience, Imaging, and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Italy – sequence: 4 givenname: Marco surname: Onofrj fullname: Onofrj, Marco organization: Department of Neuroscience, Imaging, and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Italy – sequence: 5 givenname: Stefano L. surname: Sensi fullname: Sensi, Stefano L. email: ssensi@unich.it organization: Department of Neuroscience, Imaging, and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, Italy |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36736612$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1uEzEUhS3UiqaFV0AWKzYz-Gd-MqxIU0orpYIFrC2P505zw4wdbCdSWcFj9PX6JHWVgFBX8eJa8v3OufI9p-TIOguEvOUs54xX71e5hY13wSBYA7lgQuaM50w0L8iET2uZ1WVRHJEJk6zKilKIE3IawoqlUxbyJTmRVS2riosJ-TN341p7DM5S19MbbZZogS5Ae4v2Nmt1gI7O1mvvUgsCjY5-9dChiTQugc6d3YIPmOSpMxt-LQFH8A-_7wO9wABJTnvvRnqDQ5foW4sRt0Cv01T0I9j4ihz3egjwen-fke-Xn77Nr7LFl8_X89kiMwWrmqySZSka0YqmrIWBkk-rac81a_qm7QGEkVo2pUhPOlXQdd-zVOpaQiubqZBn5N3ON33l5wZCVCMGA8OgLbhNUCKhnFeS8YS-2aObdoROrT2O2t-pv2tLwIcdYFIMwUP_D-FMPWWkVur_jNRTRopxlTJK4o_PxAajjmmF0WscDrO42FlAWtgWwas91aEHE1Xn8DCb82c2ZkCLRg8_4O5Qk0epwNBY |
| CitedBy_id | crossref_primary_10_3233_JAD_230620 crossref_primary_10_1093_cercor_bhaf140 crossref_primary_10_1093_cercor_bhae195 crossref_primary_10_1016_j_health_2024_100362 crossref_primary_10_1080_23279095_2023_2236742 crossref_primary_10_3389_fnhum_2023_1328713 crossref_primary_10_1109_JBHI_2024_3373703 crossref_primary_10_1016_j_arr_2024_102417 crossref_primary_10_1002_alz_14398 crossref_primary_10_1007_s44248_025_00068_w crossref_primary_10_1186_s12911_024_02663_4 crossref_primary_10_3390_bios14070356 crossref_primary_10_1002_alz_70069 crossref_primary_10_1186_s13195_024_01533_5 crossref_primary_10_1007_s10044_025_01447_4 crossref_primary_10_3389_fnagi_2024_1513930 crossref_primary_10_1038_s41598_024_63301_7 crossref_primary_10_3389_fneur_2025_1596632 crossref_primary_10_1016_j_compbiomed_2024_108955 crossref_primary_10_1038_s41598_024_60134_2 crossref_primary_10_3389_fnagi_2024_1356745 crossref_primary_10_1097_JCMA_0000000000001188 crossref_primary_10_7717_peerj_cs_2437 crossref_primary_10_3389_fphys_2025_1515881 crossref_primary_10_1016_j_neuroscience_2024_03_007 crossref_primary_10_3233_JAD_240280 crossref_primary_10_1007_s11517_024_03097_w crossref_primary_10_1002_alz_13390 crossref_primary_10_1186_s43067_024_00150_4 crossref_primary_10_1007_s41939_025_00931_y crossref_primary_10_1080_13854046_2025_2513446 |
| Cites_doi | 10.1001/archneur.63.5.693 10.30534/ijatcse/2019/0581.42019 10.1177/0020720921989015 10.1016/j.jalz.2011.03.008 10.1186/s40537-020-00327-4 10.1002/alz.12645 10.1016/j.pscychresns.2011.06.014 10.1007/s00521-016-2416-3 10.1038/s41746-022-00592-y 10.1108/03684921311295547 10.1023/A:1010933404324 10.3233/JAD-210573 10.1016/j.neurobiolaging.2018.10.004 10.1016/j.neuroimage.2006.01.021 10.1111/j.1742-4658.2011.08228.x 10.1007/s12525-021-00475-2 10.1016/j.mayocp.2014.06.019 10.1212/WNL.0000000000004569 10.1186/1750-1326-9-53 10.1016/j.trci.2019.11.002 10.1186/s12883-020-01728-x 10.1016/j.nicl.2017.10.009 10.1016/j.neuron.2014.05.004 10.1111/joim.12190 10.3389/fnagi.2013.00058 10.3389/fneur.2020.576029 10.3390/informatics8040079 10.3390/rs14153547 10.1016/j.tins.2018.09.009 10.18632/aging.101719 10.1007/s00500-020-05292-x |
| ContentType | Journal Article |
| Copyright | 2023 The Authors Copyright © 2023 IBRO. Published by Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 IBRO. Published by Elsevier Ltd. All rights reserved. |
| CorporateAuthor | for the Alzheimer's Disease Neuroimaging Initiative the Alzheimer's Disease Metabolomics Consortium ADMC Alzheimer's Disease Metabolomics Consortium ADMC Alzheimer's Disease Neuroimaging Initiative |
| CorporateAuthor_xml | – name: the Alzheimer's Disease Metabolomics Consortium ADMC – name: for the Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Metabolomics Consortium ADMC |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neuroscience.2023.01.029 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1873-7544 |
| EndPage | 152 |
| ExternalDocumentID | 36736612 10_1016_j_neuroscience_2023_01_029 S0306452223000477 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: CIHR – fundername: NIA NIH HHS grantid: U01 AG024904 |
| GroupedDBID | --- --K --M -DZ -~X .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5RE 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABJNI ABLJU ABMAC ABTEW ACDAQ ACGFO ACGFS ACIUM ACLOT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMQ IHE J1W KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSN SSZ T5K UNMZH Z5R ~G- ~HD 6I. AACTN AADPK AAFTH AAIAV ABYKQ AFCTW AFKWA AJOXV AMFUW SEW .55 .GJ 29N 53G 5VS 9DU AAQXK AAYXX ABWVN ABXDB ACRPL ADMUD ADNMO AGHFR AGQPQ AHHHB ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SNS WUQ X7M YYP ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c4069-6355292b29572ce51868f1a09f9bfee2c3a3952f1aa52fea7ff0a7f773eb39823 |
| ISSN | 0306-4522 1873-7544 |
| IngestDate | Thu Oct 02 06:13:55 EDT 2025 Wed Feb 19 02:24:08 EST 2025 Tue Nov 18 22:31:05 EST 2025 Sat Nov 29 07:22:19 EST 2025 Fri Feb 23 02:35:04 EST 2024 Tue Oct 14 19:30:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ADNI c-MCI ABETA sMRI artificial intelligence random forest (RF) NPV PPV t-Tau GB LM-DEL PTAU ML machine learning (ML) algorithms RAVLT-DEL and -IMM SHAP AD mild cognitive impairment (MCI) p-Tau ADAS-Cog-11 and 13 Alzheimer’s disease dementia (AD) prediction AdaBoost MCI XGB gradient boosting s-MCI RF FAQ |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2023 IBRO. Published by Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c4069-6355292b29572ce51868f1a09f9bfee2c3a3952f1aa52fea7ff0a7f773eb39823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.neuroscience.2023.01.029 |
| PMID | 36736612 |
| PQID | 2773116301 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2773116301 pubmed_primary_36736612 crossref_primary_10_1016_j_neuroscience_2023_01_029 crossref_citationtrail_10_1016_j_neuroscience_2023_01_029 elsevier_sciencedirect_doi_10_1016_j_neuroscience_2023_01_029 elsevier_clinicalkey_doi_10_1016_j_neuroscience_2023_01_029 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-15 |
| PublicationDateYYYYMMDD | 2023-03-15 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neuroscience |
| PublicationTitleAlternate | Neuroscience |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Schapire, Freund (b0155) 2013 Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (b0060) 2006; 31 Brem, Sensi (b0025) 2018; 41 Poil, de Haan, van der Flier, Mansvelder, Scheltens, Linkenkaer-Hansen (b0135) 2013; 5 Shree, Sheshadri (b0160) 2018; 29 Casaletto, Elahi, Bettcher, Neuhaus, Bendlin, Asthana (b0035) 2017; 89 Natras, Soja, Schmidt (b0125) 2022; 14 Spires-Jones, Hyman (b0165) 2014; 82 Massetti, Russo, Franciotti, Nardini, Mandolini, Granzotto, Bomba, Delli Pizzi, Mosca, Scherer, Onofrj, Sensi, Alzheimer’s Disease Neuroimaging Initiative (ADNI); Alzheimer’s Disease Metabolomics Consortium (ADMC) (b0110) 2022; 85 Faouri, AlBashayreh, Azzeh (b0075) 2022; 333–346 Williams, Serpell (b0190) 2011; 278 Delli Pizzi, Punzi, Sensi, Initiative (b0055) 2019; 74 Apostolova, Dutton, Dinov, Hayashi, Toga, Cummings, Thompson (b0010) 2006; 63 Syaifullah, Shiino, Kitahara, Ito, Ishida, Tanigaki (b0170) 2021; 11 Brinkmalm, Brinkmalm, Honer, Fr€olich, Hausner, Minthon, Hansson, Wallin, Zetterberg, Blennow, Öhrfelt (b0030) 2014; 9 Vozella, Basit, Piras, Realini, Armirotti, Bossù, Assogna, Sensi, Spalletta, Piomelli (b0185) 2019; 11 Chen, Dewi, Huang, Caraka (b0040) 2020; 7 Dinu, Ganesan (b0065) 2019; 8 Cox, Li, Darlington (b0050) 2001; 49 Petersen, Caracciolo, Brayne, Gauthier, Jelic, Fratiglioni (b0130) 2014; 275 Chen, Guestrin (b0045) 2016 Fernández-Delgado, Cernadas, Barro, Amorim (b0080) 2014; 15 Poulin, Dautoff, Morris, Barrett, Dickerson, Initiative (b0140) 2011; 194 Rohini, Surendran (b9000) 2021; 25 Janiesch, Zschech, Heinrich (b0095) 2021; 31 Galasko, Xiao, Xu, Smirnov, Salmon, Dewit, Vanbrabant, Jacobs, Vanderstichele, Vanmechelen, Initiative, ADNI, Worley (b0090) 2019; 5 Mazaheri, Segaert, Olichney, Yang, Niu, Shapiro, Bowman (b0115) 2018; 17 Bergstra, Bengio (b0015) 2012; 13 Albert, DeKosky, Dickson, Dubois, Feldman, Fox, Gamst, Holtzman, Jagust, Petersen, Snyder, Carrillo, Thies, Phelps (b0005) 2011; 7 Rossini, Miraglia, Vecchio (b0150) 2022; 18 Friedman (b0085) 2001 Mishra, Mallick, Tripathy, Jena, Chae (b0120) 2021 Knopman, Petersen (b0100) 2014; 89 Qi (b0145) 2012 Teng, Li, Zhao, Hu, Zhang, Yao, Hu, Alzheimer’ s Disease Neuroimaging Initiative (ADNI) (b0175) 2020; 20 Elgeldawi, Sayed, Galal, Zaki (b0070) 2021; 8 Breiman (b0020) 2001; 45 Lundberg, Lee (b0105) 2017; 30 Varoquaux, Cheplygina (b0180) 2022; 5 Delli Pizzi (10.1016/j.neuroscience.2023.01.029_b0055) 2019; 74 Qi (10.1016/j.neuroscience.2023.01.029_b0145) 2012 Faouri (10.1016/j.neuroscience.2023.01.029_b0075) 2022; 333–346 Albert (10.1016/j.neuroscience.2023.01.029_b0005) 2011; 7 Breiman (10.1016/j.neuroscience.2023.01.029_b0020) 2001; 45 Vozella (10.1016/j.neuroscience.2023.01.029_b0185) 2019; 11 Brem (10.1016/j.neuroscience.2023.01.029_b0025) 2018; 41 Brinkmalm (10.1016/j.neuroscience.2023.01.029_b0030) 2014; 9 Massetti (10.1016/j.neuroscience.2023.01.029_b0110) 2022; 85 Rossini (10.1016/j.neuroscience.2023.01.029_b0150) 2022; 18 Fernández-Delgado (10.1016/j.neuroscience.2023.01.029_b0080) 2014; 15 Dinu (10.1016/j.neuroscience.2023.01.029_b0065) 2019; 8 Poil (10.1016/j.neuroscience.2023.01.029_b0135) 2013; 5 Bergstra (10.1016/j.neuroscience.2023.01.029_b0015) 2012; 13 Poulin (10.1016/j.neuroscience.2023.01.029_b0140) 2011; 194 Desikan (10.1016/j.neuroscience.2023.01.029_b0060) 2006; 31 Shree (10.1016/j.neuroscience.2023.01.029_b0160) 2018; 29 Mazaheri (10.1016/j.neuroscience.2023.01.029_b0115) 2018; 17 Schapire (10.1016/j.neuroscience.2023.01.029_b0155) 2013 Lundberg (10.1016/j.neuroscience.2023.01.029_b0105) 2017; 30 Rohini (10.1016/j.neuroscience.2023.01.029_b9000) 2021; 25 Chen (10.1016/j.neuroscience.2023.01.029_b0045) 2016 Natras (10.1016/j.neuroscience.2023.01.029_b0125) 2022; 14 Cox (10.1016/j.neuroscience.2023.01.029_b0050) 2001; 49 Williams (10.1016/j.neuroscience.2023.01.029_b0190) 2011; 278 Galasko (10.1016/j.neuroscience.2023.01.029_b0090) 2019; 5 Janiesch (10.1016/j.neuroscience.2023.01.029_b0095) 2021; 31 Apostolova (10.1016/j.neuroscience.2023.01.029_b0010) 2006; 63 Casaletto (10.1016/j.neuroscience.2023.01.029_b0035) 2017; 89 Friedman (10.1016/j.neuroscience.2023.01.029_b0085) 2001 Mishra (10.1016/j.neuroscience.2023.01.029_b0120) 2021 Petersen (10.1016/j.neuroscience.2023.01.029_b0130) 2014; 275 Knopman (10.1016/j.neuroscience.2023.01.029_b0100) 2014; 89 Varoquaux (10.1016/j.neuroscience.2023.01.029_b0180) 2022; 5 Chen (10.1016/j.neuroscience.2023.01.029_b0040) 2020; 7 Spires-Jones (10.1016/j.neuroscience.2023.01.029_b0165) 2014; 82 Teng (10.1016/j.neuroscience.2023.01.029_b0175) 2020; 20 Elgeldawi (10.1016/j.neuroscience.2023.01.029_b0070) 2021; 8 Syaifullah (10.1016/j.neuroscience.2023.01.029_b0170) 2021; 11 36592944 - Neuroscience. 2023 Mar 15;514:141-142 |
| References_xml | – volume: 11 start-page: 73 year: 2019 end-page: 88 ident: b0185 article-title: Elevated plasma ceramide levels in post-menopausal women: a crosssectional study publication-title: Aging (Albany NY) – volume: 5 start-page: 48 year: 2022 ident: b0180 article-title: Machine learning for medical imaging: methodological failures and recommendations for the future publication-title: npj Digit Med – volume: 17 start-page: 188 year: 2018 end-page: 197 ident: b0115 article-title: EEG oscillations during word processing predict MCI conversion to Alzheimer’s disease publication-title: NeuroImage: Clin – volume: 333–346 year: 2022 ident: b0075 article-title: Examining stability of machine learning methods for predicting dementia at early phases of the disease publication-title: Decis Sci Lett – volume: 194 start-page: 7 year: 2011 end-page: 13 ident: b0140 article-title: Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity publication-title: Psychiatry Res Neuroimaging – volume: 8 year: 2021 ident: b0070 article-title: Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis publication-title: Informatics – volume: 85 start-page: 1639 year: 2022 end-page: 1655 ident: b0110 article-title: A Machine Learning-Based Holistic Approach to Predict the Clinical Course of Patients within the Alzheimer’s Disease Spectrum publication-title: J Alzheimer’s Dis – volume: 11 year: 2021 ident: b0170 article-title: Machine Learning for Diagnosis of AD and Prediction of MCI Progression From Brain MRI Using Brain Anatomical Analysis Using Diffeomorphic Deformation publication-title: Front Neurol – start-page: 307 year: 2012 end-page: 323 ident: b0145 article-title: Random Forest for Bioinformatics publication-title: Ensemble Machine Learning – volume: 63 start-page: 693 year: 2006 end-page: 699 ident: b0010 article-title: Conversion of Mild Cognitive Impairment to Alzheimer Disease Predicted by Hippocampal Atrophy Maps publication-title: Arch Neurol – volume: 14 start-page: 3547 year: 2022 ident: b0125 article-title: Ensemble Machine Learning of Random Forest, AdaBoost and XGBoost for Vertical Total Electron Content Forecasting publication-title: Remote Sens – volume: 275 start-page: 214 year: 2014 end-page: 228 ident: b0130 article-title: Mild cognitive impairment: a concept in evolution publication-title: J Intern Med – volume: 89 start-page: 1782 year: 2017 end-page: 1788 ident: b0035 article-title: Neurogranin, a synaptic protein, is associated with memory independent of Alzheimer biomarkers publication-title: Neurology – volume: 31 start-page: 968 year: 2006 end-page: 980 ident: b0060 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage – volume: 7 start-page: 270 year: 2011 end-page: 279 ident: b0005 article-title: The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimers Dement – volume: 8 start-page: 29 year: 2019 end-page: 37 ident: b0065 article-title: Early detection of Alzheimer’s disease using predictive k-NN instance based approach and T-Test Method publication-title: Int J Adv Trends Comput Sci Eng – volume: 15 start-page: 3133 year: 2014 end-page: 3181 ident: b0080 article-title: Do we need hundreds of classifiers to solve real-world classification problems? publication-title: J Mach Learn Res – volume: 49 start-page: 219 year: 2001 end-page: 230 ident: b0050 article-title: Extracting room reverberation time from speech using artificial neural networks publication-title: J audio Eng. Soc – volume: 20 start-page: 148 year: 2020 ident: b0175 article-title: Predicting MCI progression with FDG-PET and cognitive scores: a longitudinal study publication-title: BMC Neurol – start-page: 1189 year: 2001 end-page: 1232 ident: b0085 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann Stat – year: 2013 ident: b0155 article-title: Boosting: Foundations and algorithms publication-title: Kybernetes. – volume: 29 start-page: 123 year: 2018 end-page: 132 ident: b0160 article-title: Diagnosis of Alzheimer’s disease using Naive Bayesian Classifiers publication-title: Neural Comput & Applic – volume: 25 start-page: 2589 year: 2021 end-page: 2597 ident: b9000 article-title: Toward Alzheimer’s disease classification through machine learning publication-title: Soft Comput – volume: 7 start-page: 1 year: 2020 end-page: 26 ident: b0040 article-title: Selecting critical features for data classification based on machine learning methods publication-title: J Big Data – volume: 13 start-page: 281 year: 2012 end-page: 305 ident: b0015 article-title: Random search for hyper-parameter optimization publication-title: J Mach Learn Res – volume: 89 start-page: 1452 year: 2014 end-page: 1459 ident: b0100 article-title: Mild Cognitive Impairment and Mild Dementia: A Clinical Perspective publication-title: Mayo Clin Proc – volume: 18 start-page: 2699 year: 2022 end-page: 2706 ident: b0150 article-title: Early dementia diagnosis, MCI-to-dementia risk prediction, and the role of machine learningmethods for feature extraction from integrated biomarkers, in particular for EEG signal analysis publication-title: Alzheimer’s Dement – volume: 5 start-page: 58 year: 2013 ident: b0135 article-title: Integrative EEG biomarkers predict progression to Alzheimer’s disease at the MCI stage publication-title: Front Aging Neurosci – volume: 31 start-page: 685 year: 2021 end-page: 695 ident: b0095 article-title: Machine learning and deep learning publication-title: Electronic Markets – year: 2021 ident: b0120 article-title: Stacked KNN with hard voting predictive approach to assist the hiring process in IT organizations publication-title: Int J Electr Eng Educ – volume: 5 start-page: 871 year: 2019 end-page: 882 ident: b0090 article-title: Synaptic biomarkers in CSF aid in diagnosis, correlate with cognition and predict progression in MCI and Alzheimer’s disease publication-title: Alzheimers Dement (N Y) – volume: 41 start-page: 885 year: 2018 end-page: 897 ident: b0025 article-title: Towards Combinatorial Approaches for Preserving Cognitive Fitness in Aging publication-title: Trends Neurosci – volume: 74 start-page: 21 year: 2019 end-page: 37 ident: b0055 article-title: Functional signature of conversion of patients with mild cognitive impairment publication-title: Neurobiol Aging – volume: 278 start-page: 3905 year: 2011 end-page: 3917 ident: b0190 article-title: Membrane and surface interactions of the Alzheimer’s A! peptide: Insights into the mechanism of cytotoxicity publication-title: FEBS J – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0020 article-title: Random Forests publication-title: Mach Learn – volume: 30 year: 2017 ident: b0105 article-title: A unified approach to interpreting model predictions publication-title: Adv Neural Inf Process Syst – year: 2016 ident: b0045 article-title: XGBoost publication-title: in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (ACM) – volume: 9 start-page: 53 year: 2014 ident: b0030 article-title: SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer’s disease publication-title: Mol Neurodegener – volume: 82 start-page: 756 year: 2014 end-page: 771 ident: b0165 article-title: The intersection of amyloid beta and tau at synapses in Alzheimer’s disease publication-title: Neuron – volume: 63 start-page: 693 year: 2006 ident: 10.1016/j.neuroscience.2023.01.029_b0010 article-title: Conversion of Mild Cognitive Impairment to Alzheimer Disease Predicted by Hippocampal Atrophy Maps publication-title: Arch Neurol doi: 10.1001/archneur.63.5.693 – volume: 8 start-page: 29 year: 2019 ident: 10.1016/j.neuroscience.2023.01.029_b0065 article-title: Early detection of Alzheimer’s disease using predictive k-NN instance based approach and T-Test Method publication-title: Int J Adv Trends Comput Sci Eng doi: 10.30534/ijatcse/2019/0581.42019 – year: 2021 ident: 10.1016/j.neuroscience.2023.01.029_b0120 article-title: Stacked KNN with hard voting predictive approach to assist the hiring process in IT organizations publication-title: Int J Electr Eng Educ doi: 10.1177/0020720921989015 – volume: 7 start-page: 270 year: 2011 ident: 10.1016/j.neuroscience.2023.01.029_b0005 article-title: The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.008 – volume: 30 year: 2017 ident: 10.1016/j.neuroscience.2023.01.029_b0105 article-title: A unified approach to interpreting model predictions publication-title: Adv Neural Inf Process Syst – volume: 7 start-page: 1 year: 2020 ident: 10.1016/j.neuroscience.2023.01.029_b0040 article-title: Selecting critical features for data classification based on machine learning methods publication-title: J Big Data doi: 10.1186/s40537-020-00327-4 – volume: 18 start-page: 2699 year: 2022 ident: 10.1016/j.neuroscience.2023.01.029_b0150 article-title: Early dementia diagnosis, MCI-to-dementia risk prediction, and the role of machine learningmethods for feature extraction from integrated biomarkers, in particular for EEG signal analysis publication-title: Alzheimer’s Dement doi: 10.1002/alz.12645 – volume: 194 start-page: 7 year: 2011 ident: 10.1016/j.neuroscience.2023.01.029_b0140 article-title: Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity publication-title: Psychiatry Res Neuroimaging doi: 10.1016/j.pscychresns.2011.06.014 – volume: 29 start-page: 123 year: 2018 ident: 10.1016/j.neuroscience.2023.01.029_b0160 article-title: Diagnosis of Alzheimer’s disease using Naive Bayesian Classifiers publication-title: Neural Comput & Applic doi: 10.1007/s00521-016-2416-3 – volume: 5 start-page: 48 year: 2022 ident: 10.1016/j.neuroscience.2023.01.029_b0180 article-title: Machine learning for medical imaging: methodological failures and recommendations for the future publication-title: npj Digit Med doi: 10.1038/s41746-022-00592-y – year: 2013 ident: 10.1016/j.neuroscience.2023.01.029_b0155 article-title: Boosting: Foundations and algorithms publication-title: Kybernetes. doi: 10.1108/03684921311295547 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.neuroscience.2023.01.029_b0020 article-title: Random Forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 15 start-page: 3133 year: 2014 ident: 10.1016/j.neuroscience.2023.01.029_b0080 article-title: Do we need hundreds of classifiers to solve real-world classification problems? publication-title: J Mach Learn Res – volume: 85 start-page: 1639 year: 2022 ident: 10.1016/j.neuroscience.2023.01.029_b0110 article-title: A Machine Learning-Based Holistic Approach to Predict the Clinical Course of Patients within the Alzheimer’s Disease Spectrum publication-title: J Alzheimer’s Dis doi: 10.3233/JAD-210573 – volume: 74 start-page: 21 year: 2019 ident: 10.1016/j.neuroscience.2023.01.029_b0055 article-title: Functional signature of conversion of patients with mild cognitive impairment publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2018.10.004 – volume: 31 start-page: 968 year: 2006 ident: 10.1016/j.neuroscience.2023.01.029_b0060 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 49 start-page: 219 year: 2001 ident: 10.1016/j.neuroscience.2023.01.029_b0050 article-title: Extracting room reverberation time from speech using artificial neural networks publication-title: J audio Eng. Soc – volume: 278 start-page: 3905 year: 2011 ident: 10.1016/j.neuroscience.2023.01.029_b0190 article-title: Membrane and surface interactions of the Alzheimer’s A! peptide: Insights into the mechanism of cytotoxicity publication-title: FEBS J doi: 10.1111/j.1742-4658.2011.08228.x – volume: 31 start-page: 685 year: 2021 ident: 10.1016/j.neuroscience.2023.01.029_b0095 article-title: Machine learning and deep learning publication-title: Electronic Markets doi: 10.1007/s12525-021-00475-2 – start-page: 1189 year: 2001 ident: 10.1016/j.neuroscience.2023.01.029_b0085 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann Stat – volume: 89 start-page: 1452 year: 2014 ident: 10.1016/j.neuroscience.2023.01.029_b0100 article-title: Mild Cognitive Impairment and Mild Dementia: A Clinical Perspective publication-title: Mayo Clin Proc doi: 10.1016/j.mayocp.2014.06.019 – volume: 89 start-page: 1782 year: 2017 ident: 10.1016/j.neuroscience.2023.01.029_b0035 article-title: Neurogranin, a synaptic protein, is associated with memory independent of Alzheimer biomarkers publication-title: Neurology doi: 10.1212/WNL.0000000000004569 – volume: 9 start-page: 53 year: 2014 ident: 10.1016/j.neuroscience.2023.01.029_b0030 article-title: SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer’s disease publication-title: Mol Neurodegener doi: 10.1186/1750-1326-9-53 – volume: 5 start-page: 871 year: 2019 ident: 10.1016/j.neuroscience.2023.01.029_b0090 article-title: Synaptic biomarkers in CSF aid in diagnosis, correlate with cognition and predict progression in MCI and Alzheimer’s disease publication-title: Alzheimers Dement (N Y) doi: 10.1016/j.trci.2019.11.002 – year: 2016 ident: 10.1016/j.neuroscience.2023.01.029_b0045 article-title: XGBoost – volume: 20 start-page: 148 year: 2020 ident: 10.1016/j.neuroscience.2023.01.029_b0175 article-title: Predicting MCI progression with FDG-PET and cognitive scores: a longitudinal study publication-title: BMC Neurol doi: 10.1186/s12883-020-01728-x – start-page: 307 year: 2012 ident: 10.1016/j.neuroscience.2023.01.029_b0145 article-title: Random Forest for Bioinformatics – volume: 17 start-page: 188 year: 2018 ident: 10.1016/j.neuroscience.2023.01.029_b0115 article-title: EEG oscillations during word processing predict MCI conversion to Alzheimer’s disease publication-title: NeuroImage: Clin doi: 10.1016/j.nicl.2017.10.009 – volume: 82 start-page: 756 year: 2014 ident: 10.1016/j.neuroscience.2023.01.029_b0165 article-title: The intersection of amyloid beta and tau at synapses in Alzheimer’s disease publication-title: Neuron doi: 10.1016/j.neuron.2014.05.004 – volume: 333–346 year: 2022 ident: 10.1016/j.neuroscience.2023.01.029_b0075 article-title: Examining stability of machine learning methods for predicting dementia at early phases of the disease publication-title: Decis Sci Lett – volume: 275 start-page: 214 year: 2014 ident: 10.1016/j.neuroscience.2023.01.029_b0130 article-title: Mild cognitive impairment: a concept in evolution publication-title: J Intern Med doi: 10.1111/joim.12190 – volume: 5 start-page: 58 year: 2013 ident: 10.1016/j.neuroscience.2023.01.029_b0135 article-title: Integrative EEG biomarkers predict progression to Alzheimer’s disease at the MCI stage publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2013.00058 – volume: 11 year: 2021 ident: 10.1016/j.neuroscience.2023.01.029_b0170 article-title: Machine Learning for Diagnosis of AD and Prediction of MCI Progression From Brain MRI Using Brain Anatomical Analysis Using Diffeomorphic Deformation publication-title: Front Neurol doi: 10.3389/fneur.2020.576029 – volume: 8 year: 2021 ident: 10.1016/j.neuroscience.2023.01.029_b0070 article-title: Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis publication-title: Informatics doi: 10.3390/informatics8040079 – volume: 14 start-page: 3547 year: 2022 ident: 10.1016/j.neuroscience.2023.01.029_b0125 article-title: Ensemble Machine Learning of Random Forest, AdaBoost and XGBoost for Vertical Total Electron Content Forecasting publication-title: Remote Sens doi: 10.3390/rs14153547 – volume: 41 start-page: 885 year: 2018 ident: 10.1016/j.neuroscience.2023.01.029_b0025 article-title: Towards Combinatorial Approaches for Preserving Cognitive Fitness in Aging publication-title: Trends Neurosci doi: 10.1016/j.tins.2018.09.009 – volume: 13 start-page: 281 year: 2012 ident: 10.1016/j.neuroscience.2023.01.029_b0015 article-title: Random search for hyper-parameter optimization publication-title: J Mach Learn Res – volume: 11 start-page: 73 year: 2019 ident: 10.1016/j.neuroscience.2023.01.029_b0185 article-title: Elevated plasma ceramide levels in post-menopausal women: a crosssectional study publication-title: Aging (Albany NY) doi: 10.18632/aging.101719 – volume: 25 start-page: 2589 year: 2021 ident: 10.1016/j.neuroscience.2023.01.029_b9000 article-title: Toward Alzheimer’s disease classification through machine learning publication-title: Soft Comput doi: 10.1007/s00500-020-05292-x – reference: 36592944 - Neuroscience. 2023 Mar 15;514:141-142 |
| SSID | ssj0000543 |
| Score | 2.4304955 |
| Snippet | •Psychological and AD-related biomarkers reach the highest accuracy in AD prediction.•Clinical and biological data are helpful in machine learning algorithms’... In Mild Cognitive Impairment (MCI), identifying a high risk of conversion to Alzheimer's Disease Dementia (AD) is a primary goal for patient management.... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 143 |
| SubjectTerms | Alzheimer Disease - cerebrospinal fluid Alzheimer Disease - diagnostic imaging Alzheimer’s disease dementia (AD) prediction artificial intelligence Biomarkers - cerebrospinal fluid Cognitive Dysfunction - cerebrospinal fluid Cognitive Dysfunction - diagnosis Disease Progression gradient boosting Humans Machine Learning machine learning (ML) algorithms Magnetic Resonance Imaging - methods mild cognitive impairment (MCI) random forest (RF) |
| Title | Comparison of Machine Learning-based Approaches to Predict the Conversion to Alzheimer’s Disease from Mild Cognitive Impairment |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0306452223000477 https://dx.doi.org/10.1016/j.neuroscience.2023.01.029 https://www.ncbi.nlm.nih.gov/pubmed/36736612 https://www.proquest.com/docview/2773116301 |
| Volume | 514 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7544 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000543 issn: 0306-4522 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLa6jQtuEDB-ys9kJMRdUGI3cy3ERTUNMQRjGgP1LnJSm7UqyZSm1eAKHoOX4WF4Es6JHScIVSpC3FhVotP8nC_2sf2d7xDyOKpFylUYDLQ2AeZKBhLi5kArhWmcPFI1GfPDa3F8PByP5Umv96PJhVnNRZ4PLy_lxX91NRwDZ2Pq7F-42_8pHIDf4HRowe3QbuT4g25lQSwsdI6BpNNR_RjgsDXB4LNOpbICDyclbtfUWY2YAriya2h4ZjT_cq6nWGHFkSLkAgU7cU_HZqa8mc4nYNNwkI7g2tPSs2lmjTaUF830OLIVPYrK0glOlTFK2wJIdnEakZtPPe3e250u4f1Zwn_ZNXibF6acufSjrOiuZjCOdC6bz2mX2Jo0m5bTVKd2hfsBSr_bQcv21EPBA1Tv63blcTTodMaRFYBy43pklXL_GDLs6sXsaUc_FOVTGbdyrrIdKD198R3eEN4PzN9QblNskR0mYgm96s7o6HD8qo0FYsvbbB6gkb2tGYbrrrguRFo3BapDobPr5Jqbw9CRxd4N0tP5TbI7ylVVfPpMn9CaVVxv1-ySby0caWGogyP9HY60hSOtCurgSAGOtIUjnvFw_Pn1-4I6IFIEIkUgUg9E2gLxFnn_4vDs4GXgyn4EGaZhBxgCM8lSJmPBMh1jQQcTqVAamRqtWcYVlzGDQwparYQxITRCcJ1yOWT8NtnOi1zfJVSkWhkVqzTcNwOUVRpoGcZhmE5kNhEs7hPZvOkkc5r4WJplnjTkx1nS9VKCXkrCKAEv9Qn3thdWGWYjq2eNQ5Mm9xlG6wTQuJH1c2_tTtvId2P7Rw2GEhhGcG9Q5bpYLhIGry-CuVkY9ckdCy7_VBy5nzATuvePV79Prraf_AOyXZVL_ZBcyVbVdFHukS0xHu65D-gXPVcCAg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Machine+Learning-based+Approaches+to+Predict+the+Conversion+to+Alzheimer%E2%80%99s+Disease+from+Mild+Cognitive+Impairment&rft.jtitle=Neuroscience&rft.au=Franciotti%2C+Raffaella&rft.au=Nardini%2C+Davide&rft.au=Russo%2C+Mirella&rft.au=Onofrj%2C+Marco&rft.date=2023-03-15&rft.pub=Elsevier+Ltd&rft.issn=0306-4522&rft.eissn=1873-7544&rft.volume=514&rft.spage=143&rft.epage=152&rft_id=info:doi/10.1016%2Fj.neuroscience.2023.01.029&rft.externalDocID=S0306452223000477 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4522&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4522&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4522&client=summon |