An introduction to Majorization‐Minimization algorithms for machine learning and statistical estimation
MM (majorization–minimization) algorithms are an increasingly popular tool for solving optimization problems in machine learning and statistical estimation. This article introduces the MM algorithm framework in general and via three commonly considered example applications: Gaussian mixture regressi...
Gespeichert in:
| Veröffentlicht in: | Wiley interdisciplinary reviews. Data mining and knowledge discovery Jg. 7; H. 2; S. np - n/a |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken, USA
Wiley Periodicals, Inc
01.03.2017
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 1942-4787, 1942-4795 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | MM (majorization–minimization) algorithms are an increasingly popular tool for solving optimization problems in machine learning and statistical estimation. This article introduces the MM algorithm framework in general and via three commonly considered example applications: Gaussian mixture regressions, multinomial logistic regressions, and support vector machines. Specific algorithms for these three examples are derived and Mathematical Programming Series A numerical demonstrations are presented. Theoretical and practical aspects of MM algorithm design are discussed. WIREs Data Mining Knowl Discov 2017, 7:e1198. doi: 10.1002/widm.1198
This article is categorized under:
Algorithmic Development > Statistics
Technologies > Machine Learning
Technologies > Statistical Fundamentals
A quadratic majorizer for the absolute value function. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1942-4787 1942-4795 |
| DOI: | 10.1002/widm.1198 |