Analysing high-throughput sequencing data in Python with HTSeq 2.0
Abstract Summary HTSeq 2.0 provides a more extensive application programming interface including a new representation for sparse genomic data, enhancements for htseq-count to suit single-cell omics, a new script for data using cell and molecular barcodes, improved documentation, testing and deployme...
Saved in:
| Published in: | Bioinformatics Vol. 38; no. 10; pp. 2943 - 2945 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Oxford University Press
15.05.2022
|
| Subjects: | |
| ISSN: | 1367-4803, 1367-4811, 1460-2059, 1367-4811 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract
Summary
HTSeq 2.0 provides a more extensive application programming interface including a new representation for sparse genomic data, enhancements for htseq-count to suit single-cell omics, a new script for data using cell and molecular barcodes, improved documentation, testing and deployment, bug fixes and Python 3 support.
Availability and implementation
HTSeq 2.0 is released as an open-source software under the GNU General Public License and is available from the Python Package Index at https://pypi.python.org/pypi/HTSeq. The source code is available on Github at https://github.com/htseq/htseq.
Supplementary information
Supplementary data are available at Bioinformatics online. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1367-4803 1367-4811 1460-2059 1367-4811 |
| DOI: | 10.1093/bioinformatics/btac166 |