Dynamic and Static Structure–Function Coupling With Machine Learning for the Early Detection of Alzheimer's Disease

ABSTRACT The progression of Alzheimer's disease (AD) involves complex changes in brain structure and function that are driven by their interaction, making structure–function coupling (SFC) a valuable indicator for early detection of AD. Static SFC refers to the overall structure–function intera...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Human brain mapping Ročník 46; číslo 5; s. e70202 - n/a
Hlavní autoři: Wu, Han, Lu, Yinping, Wang, Luyao, Wu, Jinglong, Liu, Ying, Zhang, Zhilin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 01.04.2025
Témata:
ISSN:1065-9471, 1097-0193, 1097-0193
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT The progression of Alzheimer's disease (AD) involves complex changes in brain structure and function that are driven by their interaction, making structure–function coupling (SFC) a valuable indicator for early detection of AD. Static SFC refers to the overall structure–function interaction, whereas dynamic SFC refers to transient coupling variations. In this study, we aimed to assess the potential of combining static and dynamic SFC with machine learning (ML) for the early detection of AD. We analyzed a discovery cohort and an external validation cohort, including AD, mild cognitive impairment (MCI), and healthy control (HC) groups. Then, we quantified differences between static SFC and dynamic SFC at different stages of AD progression. Feature selection was performed using ElasticNet. A Gaussian naive Bayes (GNB) classifier was used to test the ability of SFC to classify AD stages. We also analyzed the correlations between SFC features and early AD physiological biomarkers. Static SFC increased with AD progression, whereas dynamic SFC showed greater variability and decreased stability. Using SFC features selected by ElasticNet, the GNB classifier achieved high performance in differentiating between the HC and MCI stages (area under the curve [AUC] = 91.1%) and between the MCI and AD stages (AUC = 89.03%). Significant correlations were found between SFC features and physiological biomarkers. The combined use of SFC features and ML has strong potential value for the accurate classification of AD stages and significant potential value for the early detection of AD. This study demonstrates that combining static and dynamic SFC with ML provides a novel perspective for understanding the mechanisms of AD and contributes to improving its early detection. This study investigates the integration of static and dynamic structure–function coupling (SFC) for early Alzheimer's disease (AD) classification. By combining machine learning with SFC metrics, it reveals how AD alters brain network stability, offering new insights for early AD detection and pathophysiological understanding.
AbstractList The progression of Alzheimer's disease (AD) involves complex changes in brain structure and function that are driven by their interaction, making structure–function coupling (SFC) a valuable indicator for early detection of AD. Static SFC refers to the overall structure–function interaction, whereas dynamic SFC refers to transient coupling variations. In this study, we aimed to assess the potential of combining static and dynamic SFC with machine learning (ML) for the early detection of AD. We analyzed a discovery cohort and an external validation cohort, including AD, mild cognitive impairment (MCI), and healthy control (HC) groups. Then, we quantified differences between static SFC and dynamic SFC at different stages of AD progression. Feature selection was performed using ElasticNet. A Gaussian naive Bayes (GNB) classifier was used to test the ability of SFC to classify AD stages. We also analyzed the correlations between SFC features and early AD physiological biomarkers. Static SFC increased with AD progression, whereas dynamic SFC showed greater variability and decreased stability. Using SFC features selected by ElasticNet, the GNB classifier achieved high performance in differentiating between the HC and MCI stages (area under the curve [AUC] = 91.1%) and between the MCI and AD stages (AUC = 89.03%). Significant correlations were found between SFC features and physiological biomarkers. The combined use of SFC features and ML has strong potential value for the accurate classification of AD stages and significant potential value for the early detection of AD. This study demonstrates that combining static and dynamic SFC with ML provides a novel perspective for understanding the mechanisms of AD and contributes to improving its early detection.
The progression of Alzheimer's disease (AD) involves complex changes in brain structure and function that are driven by their interaction, making structure-function coupling (SFC) a valuable indicator for early detection of AD. Static SFC refers to the overall structure-function interaction, whereas dynamic SFC refers to transient coupling variations. In this study, we aimed to assess the potential of combining static and dynamic SFC with machine learning (ML) for the early detection of AD. We analyzed a discovery cohort and an external validation cohort, including AD, mild cognitive impairment (MCI), and healthy control (HC) groups. Then, we quantified differences between static SFC and dynamic SFC at different stages of AD progression. Feature selection was performed using ElasticNet. A Gaussian naive Bayes (GNB) classifier was used to test the ability of SFC to classify AD stages. We also analyzed the correlations between SFC features and early AD physiological biomarkers. Static SFC increased with AD progression, whereas dynamic SFC showed greater variability and decreased stability. Using SFC features selected by ElasticNet, the GNB classifier achieved high performance in differentiating between the HC and MCI stages (area under the curve [AUC] = 91.1%) and between the MCI and AD stages (AUC = 89.03%). Significant correlations were found between SFC features and physiological biomarkers. The combined use of SFC features and ML has strong potential value for the accurate classification of AD stages and significant potential value for the early detection of AD. This study demonstrates that combining static and dynamic SFC with ML provides a novel perspective for understanding the mechanisms of AD and contributes to improving its early detection.The progression of Alzheimer's disease (AD) involves complex changes in brain structure and function that are driven by their interaction, making structure-function coupling (SFC) a valuable indicator for early detection of AD. Static SFC refers to the overall structure-function interaction, whereas dynamic SFC refers to transient coupling variations. In this study, we aimed to assess the potential of combining static and dynamic SFC with machine learning (ML) for the early detection of AD. We analyzed a discovery cohort and an external validation cohort, including AD, mild cognitive impairment (MCI), and healthy control (HC) groups. Then, we quantified differences between static SFC and dynamic SFC at different stages of AD progression. Feature selection was performed using ElasticNet. A Gaussian naive Bayes (GNB) classifier was used to test the ability of SFC to classify AD stages. We also analyzed the correlations between SFC features and early AD physiological biomarkers. Static SFC increased with AD progression, whereas dynamic SFC showed greater variability and decreased stability. Using SFC features selected by ElasticNet, the GNB classifier achieved high performance in differentiating between the HC and MCI stages (area under the curve [AUC] = 91.1%) and between the MCI and AD stages (AUC = 89.03%). Significant correlations were found between SFC features and physiological biomarkers. The combined use of SFC features and ML has strong potential value for the accurate classification of AD stages and significant potential value for the early detection of AD. This study demonstrates that combining static and dynamic SFC with ML provides a novel perspective for understanding the mechanisms of AD and contributes to improving its early detection.
ABSTRACT The progression of Alzheimer's disease (AD) involves complex changes in brain structure and function that are driven by their interaction, making structure–function coupling (SFC) a valuable indicator for early detection of AD. Static SFC refers to the overall structure–function interaction, whereas dynamic SFC refers to transient coupling variations. In this study, we aimed to assess the potential of combining static and dynamic SFC with machine learning (ML) for the early detection of AD. We analyzed a discovery cohort and an external validation cohort, including AD, mild cognitive impairment (MCI), and healthy control (HC) groups. Then, we quantified differences between static SFC and dynamic SFC at different stages of AD progression. Feature selection was performed using ElasticNet. A Gaussian naive Bayes (GNB) classifier was used to test the ability of SFC to classify AD stages. We also analyzed the correlations between SFC features and early AD physiological biomarkers. Static SFC increased with AD progression, whereas dynamic SFC showed greater variability and decreased stability. Using SFC features selected by ElasticNet, the GNB classifier achieved high performance in differentiating between the HC and MCI stages (area under the curve [AUC] = 91.1%) and between the MCI and AD stages (AUC = 89.03%). Significant correlations were found between SFC features and physiological biomarkers. The combined use of SFC features and ML has strong potential value for the accurate classification of AD stages and significant potential value for the early detection of AD. This study demonstrates that combining static and dynamic SFC with ML provides a novel perspective for understanding the mechanisms of AD and contributes to improving its early detection.
The progression of Alzheimer's disease (AD) involves complex changes in brain structure and function that are driven by their interaction, making structure–function coupling (SFC) a valuable indicator for early detection of AD. Static SFC refers to the overall structure–function interaction, whereas dynamic SFC refers to transient coupling variations. In this study, we aimed to assess the potential of combining static and dynamic SFC with machine learning (ML) for the early detection of AD. We analyzed a discovery cohort and an external validation cohort, including AD, mild cognitive impairment (MCI), and healthy control (HC) groups. Then, we quantified differences between static SFC and dynamic SFC at different stages of AD progression. Feature selection was performed using ElasticNet. A Gaussian naive Bayes (GNB) classifier was used to test the ability of SFC to classify AD stages. We also analyzed the correlations between SFC features and early AD physiological biomarkers. Static SFC increased with AD progression, whereas dynamic SFC showed greater variability and decreased stability. Using SFC features selected by ElasticNet, the GNB classifier achieved high performance in differentiating between the HC and MCI stages (area under the curve [AUC] = 91.1%) and between the MCI and AD stages (AUC = 89.03%). Significant correlations were found between SFC features and physiological biomarkers. The combined use of SFC features and ML has strong potential value for the accurate classification of AD stages and significant potential value for the early detection of AD. This study demonstrates that combining static and dynamic SFC with ML provides a novel perspective for understanding the mechanisms of AD and contributes to improving its early detection. This study investigates the integration of static and dynamic structure–function coupling (SFC) for early Alzheimer's disease (AD) classification. By combining machine learning with SFC metrics, it reveals how AD alters brain network stability, offering new insights for early AD detection and pathophysiological understanding.
ABSTRACT The progression of Alzheimer's disease (AD) involves complex changes in brain structure and function that are driven by their interaction, making structure–function coupling (SFC) a valuable indicator for early detection of AD. Static SFC refers to the overall structure–function interaction, whereas dynamic SFC refers to transient coupling variations. In this study, we aimed to assess the potential of combining static and dynamic SFC with machine learning (ML) for the early detection of AD. We analyzed a discovery cohort and an external validation cohort, including AD, mild cognitive impairment (MCI), and healthy control (HC) groups. Then, we quantified differences between static SFC and dynamic SFC at different stages of AD progression. Feature selection was performed using ElasticNet. A Gaussian naive Bayes (GNB) classifier was used to test the ability of SFC to classify AD stages. We also analyzed the correlations between SFC features and early AD physiological biomarkers. Static SFC increased with AD progression, whereas dynamic SFC showed greater variability and decreased stability. Using SFC features selected by ElasticNet, the GNB classifier achieved high performance in differentiating between the HC and MCI stages (area under the curve [AUC] = 91.1%) and between the MCI and AD stages (AUC = 89.03%). Significant correlations were found between SFC features and physiological biomarkers. The combined use of SFC features and ML has strong potential value for the accurate classification of AD stages and significant potential value for the early detection of AD. This study demonstrates that combining static and dynamic SFC with ML provides a novel perspective for understanding the mechanisms of AD and contributes to improving its early detection. This study investigates the integration of static and dynamic structure–function coupling (SFC) for early Alzheimer's disease (AD) classification. By combining machine learning with SFC metrics, it reveals how AD alters brain network stability, offering new insights for early AD detection and pathophysiological understanding.
Author Liu, Ying
Zhang, Zhilin
Wu, Han
Lu, Yinping
Wu, Jinglong
Wang, Luyao
AuthorAffiliation 2 Research Center for Medical Artificial Intelligence Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong China
3 Institute of Biomedical Engineering, School of Life Sciences Shanghai University Shanghai China
1 School of Software Northeastern University Shenyang China
AuthorAffiliation_xml – name: 3 Institute of Biomedical Engineering, School of Life Sciences Shanghai University Shanghai China
– name: 1 School of Software Northeastern University Shenyang China
– name: 2 Research Center for Medical Artificial Intelligence Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong China
Author_xml – sequence: 1
  givenname: Han
  orcidid: 0009-0008-6217-7916
  surname: Wu
  fullname: Wu, Han
  organization: Northeastern University
– sequence: 2
  givenname: Yinping
  surname: Lu
  fullname: Lu, Yinping
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
– sequence: 3
  givenname: Luyao
  surname: Wang
  fullname: Wang, Luyao
  email: wangly1018@shu.edu.cn
  organization: Shanghai University
– sequence: 4
  givenname: Jinglong
  surname: Wu
  fullname: Wu, Jinglong
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
– sequence: 5
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
  organization: Northeastern University
– sequence: 6
  givenname: Zhilin
  orcidid: 0000-0002-2442-0478
  surname: Zhang
  fullname: Zhang, Zhilin
  email: zhangzhilin@siat.ac.cn
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40193134$$D View this record in MEDLINE/PubMed
BookMark eNp10ctu1DAUBmALFdELLHgBZIkFsEjrW-JkhcpMS5GmYlEQS8vxnDSuEntqO6BhxTvwhjwJHlIqQGLlI_vz0bH_Q7TnvAOEnlJyTAlhJ307HkvCCHuADihpZEFow_d2dVUWjZB0Hx3GeEMIpSWhj9C-2AHKxQGallunR2uwdmt8lXTK5VUKk0lTgB_fvp9PziTrHV74aTNYd40_2dTjS2166wCvQAe32-18wKkHfKbDsMVLSDBf8x0-Hb72YEcILyJe2gg6wmP0sNNDhCd36xH6eH72YXFRrN6_fbc4XRVGkIoVFRgNTHYcOgDe6U60Nee1qAXRmlMQRsq24rqsQJeNXjNWcdY2JVkDLVtT8iP0eu67mdoR1gZcCnpQm2BHHbbKa6v-PnG2V9f-s6K0kUKUTe7w8q5D8LcTxKRGGw0Mg3bgp6g4rSWjLP9xps__oTd-Ci6_L6uGEFkTIbN69udI97P8jiSDVzMwwccYoLsnlKhd3CrHrX7Fne3JbL_YAbb_h-rizeV84ydDvq0v
Cites_doi 10.1016/S1532-0464(03)00034-0
10.1016/j.arr.2022.101614
10.1111/j.1467-9868.2005.00503.x
10.35940/ijeat.A1922.1010120
10.1016/j.jalz.2018.02.018
10.1186/s40035-021-00270-1
10.1007/s00500-020-05297-6
10.1186/s13195-021-00880-x
10.1016/j.arr.2023.101911
10.1038/s41467-023-41686-9
10.1038/s41380-018-0067-8
10.3389/fnagi.2020.608667
10.1038/s41398-019-0467-9
10.1016/j.neubiorev.2018.05.008
10.1186/s40478-023-01554-5
10.1016/j.neuroimage.2016.12.061
10.1007/978-3-030-03146-6_86
10.1016/j.biopsych.2017.06.013
10.1016/j.nicl.2017.08.006
10.1111/cns.13387
10.2147/DNND.S228939
10.1098/rsif.2008.0484
10.1016/j.neulet.2014.11.050
10.3389/fneur.2020.00053
10.1016/j.neuroimage.2012.03.025
10.1109/TCSVT.2007.905530
10.3389/fnhum.2013.00042
10.3389/fnhum.2021.625232
10.1007/s11682-021-00501-z
10.1002/alz.13859
10.1111/ejn.12177
10.1155/2022/2436946
10.1016/j.neuroimage.2019.02.062
10.1002/hbm.21287
10.1002/alz.14227
10.3389/fnins.2018.00770
10.1073/pnas.1912034117
10.1007/BF00308809
10.1016/j.neuroimage.2017.11.024
10.3389/fnins.2019.00738
10.1007/s00429-016-1238-5
10.3390/bs8040039
10.1016/j.neuroimage.2021.117898
10.1016/j.neuroimage.2017.08.047
10.1007/s12035-017-0533-3
10.1109/TNNLS.2021.3084827
10.1038/s41592-018-0235-4
10.1186/s40478-018-0515-3
10.1212/WNL.43.11.2412-a
10.1016/j.neuroscience.2017.09.009
10.1038/s41583-024-00846-6
10.1016/j.bspc.2020.102362
10.1007/978-3-540-39964-3_62
10.1016/j.bspc.2021.103293
10.1016/j.neurobiolaging.2018.11.005
10.1016/j.nicl.2021.102726
10.1002/hbm.25531
10.1038/nrn.2016.141
10.1002/ana.410300410
10.1148/radiol.211762
10.1103/PhysRevE.77.036111
10.1093/cercor/bhx179
10.1038/s41593-020-0588-8
10.1371/journal.pone.0096505
10.1073/pnas.1903403116
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC.
2025 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.
2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC.
– notice: 2025 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7X7
7XB
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
K9.
M0S
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1002/hbm.70202
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central - New (Subscription)
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Chemoreception Abstracts
ProQuest Central (New)
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Publicly Available Content Database
MEDLINE


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Education
EISSN 1097-0193
EndPage n/a
ExternalDocumentID PMC11974459
40193134
10_1002_hbm_70202
HBM70202
Genre researchArticle
Journal Article
GeographicLocations Canada
Montreal Quebec Canada
GeographicLocations_xml – name: Canada
– name: Montreal Quebec Canada
GrantInformation_xml – fundername: GuangDong Basic and Applied Basic Research Foundation
  funderid: 2023A1515012929
– fundername: Science and Technology Planning Project of Guangdong Province, China
  funderid: 2023A0505050162
– fundername: Science and Technology Planning Project of Guangdong Province, China
  grantid: 2023A0505050162
– fundername: GuangDong Basic and Applied Basic Research Foundation
  grantid: 2023A1515012929
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ABUWG
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGXDD
AHMBA
AIDQK
AIDYY
AIURR
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BENPR
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
FYUFA
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HMCUK
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RX1
RYL
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
53G
AANHP
AAYXX
ABEML
ABJNI
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AFFHD
AGQPQ
AIQQE
ASPBG
AVWKF
AZFZN
BFHJK
CITATION
EJD
FEDTE
GAKWD
HF~
HVGLF
LW6
M6M
O8X
RIWAO
RJQFR
SAMSI
WIN
WXSBR
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c4062-6ecae27f3efee3faf4b83384840aa31e4c77b63a56ea59ad22632b950de15bc53
IEDL.DBID BENPR
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001461467400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1065-9471
1097-0193
IngestDate Tue Nov 04 02:06:06 EST 2025
Fri Sep 05 17:43:52 EDT 2025
Sat Nov 29 14:41:31 EST 2025
Sat May 17 01:30:18 EDT 2025
Sat Nov 29 08:04:21 EST 2025
Sun Jul 06 04:45:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords static structure–function coupling
magnetic resonance imaging
dynamic structure–function coupling
machine learning
Alzheimer's disease
Language English
License Attribution-NonCommercial-NoDerivs
2025 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4062-6ecae27f3efee3faf4b83384840aa31e4c77b63a56ea59ad22632b950de15bc53
Notes Funding
This work was supported by GuangDong Basic and Applied Basic Research Foundation, 2023A1515012929, Science and Technology Planning Project of Guangdong Province, China, 2023A0505050162.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding: This work was supported by GuangDong Basic and Applied Basic Research Foundation, 2023A1515012929, Science and Technology Planning Project of Guangdong Province, China, 2023A0505050162.
ORCID 0009-0008-6217-7916
0000-0002-2442-0478
OpenAccessLink https://www.proquest.com/docview/3190078047?pq-origsite=%requestingapplication%
PMID 40193134
PQID 3190078047
PQPubID 996345
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11974459
proquest_miscellaneous_3187212471
proquest_journals_3190078047
pubmed_primary_40193134
crossref_primary_10_1002_hbm_70202
wiley_primary_10_1002_hbm_70202_HBM70202
PublicationCentury 2000
PublicationDate 01 April 2025
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 01 April 2025
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2012; 61
2021; 25
2017; 82
2021; 66
2022; 72
2015; 585
2019; 13
2018; 167
2019; 16
2008; 77
2020; 12
2020; 11
2020; 10
2013; 7
2005; 67
2018; 6
2018; 8
2021; 31
2019; 116
2017; 160
2017; 161
2024; 20
2021; 232
2022; 77
2022; 33
2024; 25
2014; 9
2017; 364
2007; 17
2019; 9
2018; 28
2019; 192
2023; 14
2021; 42
2023; 11
2019; 75
1991; 30
2002; 35
1993; 43
1991; 82
2003
2016; 17
2012; 33
2021; 13
2023; 87
2021; 15
2013; 37
2021; 10
2022; 2022
2022; 5
2017; 16
2018; 92
2019
2020; 117
2020; 26
2020; 25
2009; 6
2020; 23
2018; 12
2017; 222
2018; 55
2022; 304
2010; 52
2022; 16
2018; 14
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
Liu Z.‐Q. (e_1_2_10_42_1) 2022; 5
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Honey C. J. (e_1_2_10_32_1) 2010; 52
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 16
  start-page: 281
  year: 2022
  end-page: 290
  article-title: Detection of Functional and Structural Brain Alterations in Female Schizophrenia Using Elastic Net Logistic Regression
  publication-title: Brain Imaging and Behavior
– volume: 13
  start-page: 137
  year: 2021
  article-title: Tau‐PET and In Vivo Braak‐Staging as Prognostic Markers of Future Cognitive Decline in Cognitively Normal to Demented Individuals
  publication-title: Alzheimer's Research & Therapy
– volume: 43
  start-page: 2412
  year: 1993
  article-title: The Clinical Dementia Rating (CDR)
  publication-title: Neurology
– volume: 82
  start-page: 746
  year: 2017
  end-page: 755
  article-title: Affected Anatomical Rich Club and Structural–Functional Coupling in Young Offspring of Schizophrenia and Bipolar Disorder Patients
  publication-title: Biological Psychiatry
– volume: 42
  start-page: 3950
  year: 2021
  end-page: 3962
  article-title: Causal Structural Covariance Network Revealing Atrophy Progression in Alzheimer's Disease Continuum
  publication-title: Human Brain Mapping
– volume: 9
  start-page: 123
  year: 2019
  end-page: 130
  article-title: Alzheimer's Disease – Why we Need Early Diagnosis
  publication-title: Degenerative Neurological and Neuromuscular Disease
– volume: 26
  start-page: 962
  year: 2020
  end-page: 971
  article-title: Abnormal Dynamic Functional Connectivity in Alzheimer's Disease
  publication-title: CNS Neuroscience & Therapeutics
– volume: 364
  start-page: 212
  year: 2017
  end-page: 225
  article-title: Disrupted Structural and Functional Connectivity Networks in Ischemic Stroke Patients
  publication-title: Neuroscience
– volume: 11
  year: 2020
  article-title: Abnormal Anatomical Rich‐Club Organization and Structural–Functional Coupling in Mild Cognitive Impairment and Alzheimer's Disease
  publication-title: Frontiers in Neurology
– volume: 14
  start-page: 535
  year: 2018
  end-page: 562
  article-title: NIA‐AA Research Framework: Toward a Biological Definition of Alzheimer's Disease
  publication-title: Alzheimer's & Dementia
– volume: 55
  start-page: 3021
  year: 2018
  end-page: 3032
  article-title: Synaptic Dysfunction in Alzheimer's Disease: Aβ, Tau, and Epigenetic Alterations
  publication-title: Molecular Neurobiology
– volume: 15
  year: 2021
  article-title: Altered Frequency‐Dependent Brain Activation and White Matter Integrity Associated With Cognition in Characterizing Preclinical Alzheimer's Disease Stages
  publication-title: Frontiers in Human Neuroscience
– volume: 17
  start-page: 1194
  year: 2007
  end-page: 1203
  article-title: Performance Analysis of SVC
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– volume: 52
  start-page: 766
  year: 2010
  end-page: 776
  article-title: Can Structure Predict Function in the Human Brain? NeuroImage 52
  publication-title: Computational Models of the Brain
– volume: 232
  year: 2021
  article-title: Abnormal Meta‐State Activation of Dynamic Brain Networks Across the Alzheimer Spectrum
  publication-title: NeuroImage
– volume: 33
  start-page: 1295
  year: 2012
  end-page: 1308
  article-title: Damage to the Cingulum Contributes to Alzheimer's Disease Pathophysiology by Deafferentation Mechanism
  publication-title: Human Brain Mapping
– start-page: 986
  year: 2003
  end-page: 996
– volume: 61
  start-page: 966
  year: 2012
  end-page: 977
  article-title: A Dual‐Subsystem Model of the Brain's Default Network: Self‐Referential Processing, Memory Retrieval Processes, and Autobiographical Memory Retrieval
  publication-title: NeuroImage
– volume: 33
  start-page: 6999
  year: 2022
  end-page: 7019
  article-title: A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 72
  year: 2022
  article-title: Machine Learning Techniques for Diagnosis of Alzheimer Disease, Mild Cognitive Disorder, and Other Types of Dementia
  publication-title: Biomedical Signal Processing and Control
– volume: 9
  year: 2014
  article-title: Disrupted Functional Brain Connectivity and Its Association to Structural Connectivity in Amnestic Mild Cognitive Impairment and Alzheimer's Disease
  publication-title: PLoS One
– volume: 8
  start-page: 39
  year: 2018
  article-title: What We Know About the Brain Structure–Function Relationship
  publication-title: Behavioral Science
– volume: 20
  start-page: 5143
  year: 2024
  end-page: 5169
  article-title: Revised Criteria for Diagnosis and Staging of Alzheimer's Disease: Alzheimer's Association Workgroup
  publication-title: Alzheimers Dement
– volume: 11
  start-page: 56
  year: 2023
  article-title: Myelin in Alzheimer's Disease: Culprit or Bystander?
  publication-title: Acta Neuropathologica Communications
– volume: 12
  year: 2018
  article-title: Default Mode Network Complexity and Cognitive Decline in Mild Alzheimer's Disease
  publication-title: Frontiers in Neuroscience
– volume: 304
  start-page: 624
  year: 2022
  end-page: 632
  article-title: Resting‐State Functional MRI of Healthy Adults: Temporal Dynamic Brain Coactivation Patterns
  publication-title: Radiology
– volume: 16
  start-page: 343
  year: 2017
  end-page: 354
  article-title: A Whole‐Brain Computational Modeling Approach to Explain the Alterations in Resting‐State Functional Connectivity During Progression of Alzheimer's Disease
  publication-title: NeuroImage: Clinical
– volume: 37
  start-page: 1916
  year: 2013
  end-page: 1924
  article-title: Functional Alteration Patterns of Default Mode Networks: Comparisons of Normal Aging, Amnestic Mild Cognitive Impairment and Alzheimer's Disease
  publication-title: European Journal of Neuroscience
– volume: 14
  start-page: 6115
  year: 2023
  article-title: Myelination and Excitation‐Inhibition Balance Synergistically Shape Structure‐Function Coupling Across the Human Cortex
  publication-title: Nature Communications
– volume: 25
  start-page: 2277
  year: 2021
  end-page: 2293
  article-title: Naive Bayes: Applications, Variations and Vulnerabilities: A Review of Literature With Code Snippets for Implementation
  publication-title: Soft Computing
– start-page: 758
  year: 2019
  end-page: 763
– volume: 7
  year: 2013
  article-title: PANDA: A Pipeline Toolbox for Analyzing Brain Diffusion Images
  publication-title: Frontiers in Human Neuroscience
– volume: 10
  start-page: 45
  year: 2021
  article-title: The Role of Pathological Tau in Synaptic Dysfunction in Alzheimer's Diseases
  publication-title: Translational Neurodegeneration
– volume: 167
  start-page: 104
  year: 2018
  end-page: 120
  article-title: Harmonization of Cortical Thickness Measurements Across Scanners and Sites
  publication-title: NeuroImage
– volume: 87
  start-page: 101911
  year: 2023
  article-title: Abnormal White Matter Changes in Alzheimer's Disease Based on Diffusion Tensor Imaging: A Systematic Review
  publication-title: Ageing Research Reviews
– volume: 16
  start-page: 111
  year: 2019
  end-page: 116
  article-title: fMRIPrep: A Robust Preprocessing Pipeline for Functional MRI
  publication-title: Nature Methods
– volume: 77
  year: 2008
  article-title: Communicability in Complex Networks
  publication-title: Physical Review E
– volume: 161
  start-page: 149
  year: 2017
  end-page: 170
  article-title: Harmonization of Multi‐Site Diffusion Tensor Imaging Data
  publication-title: NeuroImage
– volume: 6
  start-page: 22
  year: 2018
  article-title: White Matter Changes in Alzheimer's Disease: A Focus on Myelin and Oligodendrocytes
  publication-title: Acta Neuropathologica Communications
– volume: 116
  start-page: 21219
  year: 2019
  end-page: 21227
  article-title: Gradients of Structure–Function Tethering Across Neocortex
  publication-title: Proceedings of the National Academy of Sciences
– volume: 160
  start-page: 41
  year: 2017
  end-page: 54
  article-title: The Dynamic Functional Connectome: State‐of‐the‐Art and Perspectives
  publication-title: NeuroImage
– volume: 82
  start-page: 239
  year: 1991
  end-page: 259
  article-title: Neuropathological Stageing of Alzheimer‐Related Changes
  publication-title: Acta Neuropathologica
– volume: 28
  start-page: 3095
  year: 2018
  end-page: 3114
  article-title: Local‐Global Parcellation of the Human Cerebral Cortex From Intrinsic Functional Connectivity MRI
  publication-title: Cerebral Cortex
– volume: 13
  year: 2019
  article-title: Disrupted Regional Cerebral Blood Flow, Functional Activity and Connectivity in Alzheimer's Disease: A Combined ASL Perfusion and Resting State fMRI Study
  publication-title: Frontiers in Neuroscience
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  article-title: Regularization and Variable Selection via the Elastic Net
  publication-title: Journal of the Royal Statistical Society, Series B: Statistical Methodology
– volume: 75
  start-page: 71
  year: 2019
  end-page: 82
  article-title: Disrupted Structural and Functional Brain Networks in Alzheimer's Disease
  publication-title: Neurobiology of Aging
– volume: 31
  year: 2021
  article-title: Temporal Stability of the Ventral Attention Network and General Cognition Along the Alzheimer's Disease Spectrum
  publication-title: NeuroImage: Clinical
– volume: 20
  start-page: 7657
  year: 2024
  end-page: 7674
  article-title: Brain Network Dynamics in Patients With Single‐ and Multiple‐Domain Amnestic Mild Cognitive Impairment
  publication-title: Alzheimer's & Dementia
– volume: 92
  start-page: 104
  year: 2018
  end-page: 127
  article-title: The Cingulum Bundle: Anatomy, Function, and Dysfunction
  publication-title: Neuroscience & Biobehavioral Reviews
– volume: 25
  start-page: 230
  year: 2020
  end-page: 239
  article-title: Changes in Functional and Structural Brain Connectome Along the Alzheimer's Disease Continuum
  publication-title: Molecular Psychiatry
– volume: 5
  start-page: 1
  year: 2022
  end-page: 10
  article-title: Time‐Resolved Structure‐Function Coupling in Brain Networks
  publication-title: Communications Biology
– volume: 23
  start-page: 481
  year: 2020
  end-page: 486
  article-title: Myelin Degeneration and Diminished Myelin Renewal Contribute to Age‐Related Deficits in Memory
  publication-title: Nature Neuroscience
– volume: 117
  start-page: 771
  year: 2020
  end-page: 778
  article-title: Development of Structure–Function Coupling in Human Brain Networks During Youth
  publication-title: Proceedings of the National Academy of Sciences
– volume: 77
  year: 2022
  article-title: Artificial Intelligence in Brain MRI Analysis of Alzheimer's Disease Over the Past 12 Years: A Systematic Review
  publication-title: Ageing Research Reviews
– volume: 10
  start-page: 433
  year: 2020
  end-page: 435
  article-title: Early Detection of Parkinson Disease Progression Using Gaussian Naïve Bayes Machine Learning Approach by Identifying Degeneration in Basal Ganglia Regions
  publication-title: International Journal of Engineering and Advanced Technology
– volume: 2022
  year: 2022
  article-title: Gaussian Naïve Bayes Algorithm: A Reliable Technique Involved in the Assortment of the Segregation in Cancer
  publication-title: Mobile Information Systems
– volume: 30
  start-page: 572
  year: 1991
  end-page: 580
  article-title: Physical Basis of Cognitive Alterations in Alzheimer's Disease: Synapse Loss Is the Major Correlate of Cognitive Impairment
  publication-title: Annals of Neurology
– volume: 25
  start-page: 688
  year: 2024
  end-page: 704
  article-title: Structure–Function Coupling in Macroscale Human Brain Networks
  publication-title: Nature Reviews. Neuroscience
– volume: 192
  start-page: 115
  year: 2019
  end-page: 134
  article-title: Benchmarking Functional Connectome‐Based Predictive Models for Resting‐State fMRI
  publication-title: NeuroImage
– volume: 9
  start-page: 1
  year: 2019
  end-page: 12
  article-title: Connectome Analysis of Functional and Structural Hemispheric Brain Networks in Major Depressive Disorder
  publication-title: Translational Psychiatry
– volume: 66
  year: 2021
  article-title: Early Diagnosis Model of Alzheimer's Disease Based on Sparse Logistic Regression With the Generalized Elastic Net
  publication-title: Biomedical Signal Processing and Control
– volume: 585
  start-page: 160
  year: 2015
  end-page: 165
  article-title: Functional Degeneration in Dorsal and Ventral Attention Systems in Amnestic Mild Cognitive Impairment and Alzheimer's Disease: An fMRI Study
  publication-title: Neuroscience Letters
– volume: 17
  start-page: 777
  year: 2016
  end-page: 792
  article-title: Network Abnormalities and Interneuron Dysfunction in Alzheimer Disease
  publication-title: Nature Reviews. Neuroscience
– volume: 12
  year: 2020
  article-title: Posterior Cingulate Cortex Network Predicts Alzheimer's Disease Progression
  publication-title: Frontiers in Aging Neuroscience
– volume: 35
  start-page: 352
  year: 2002
  end-page: 359
  article-title: Logistic Regression and Artificial Neural Network Classification Models: A Methodology Review
  publication-title: Journal of Biomedical Informatics
– volume: 6
  start-page: 411
  year: 2009
  end-page: 414
  article-title: A Weighted Communicability Measure Applied to Complex Brain Networks
  publication-title: Journal of the Royal Society Interface
– volume: 222
  start-page: 603
  year: 2017
  end-page: 618
  article-title: Path Ensembles and a Tradeoff Between Communication Efficiency and Resilience in the Human Connectome
  publication-title: Brain Structure & Function
– ident: e_1_2_10_20_1
  doi: 10.1016/S1532-0464(03)00034-0
– ident: e_1_2_10_28_1
  doi: 10.1016/j.arr.2022.101614
– volume: 5
  start-page: 1
  year: 2022
  ident: e_1_2_10_42_1
  article-title: Time‐Resolved Structure‐Function Coupling in Brain Networks
  publication-title: Communications Biology
– ident: e_1_2_10_68_1
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: e_1_2_10_43_1
  doi: 10.35940/ijeat.A1922.1010120
– ident: e_1_2_10_34_1
  doi: 10.1016/j.jalz.2018.02.018
– ident: e_1_2_10_62_1
  doi: 10.1186/s40035-021-00270-1
– ident: e_1_2_10_60_1
  doi: 10.1007/s00500-020-05297-6
– ident: e_1_2_10_6_1
  doi: 10.1186/s13195-021-00880-x
– ident: e_1_2_10_12_1
  doi: 10.1016/j.arr.2023.101911
– ident: e_1_2_10_26_1
  doi: 10.1038/s41467-023-41686-9
– ident: e_1_2_10_23_1
  doi: 10.1038/s41380-018-0067-8
– ident: e_1_2_10_37_1
  doi: 10.3389/fnagi.2020.608667
– ident: e_1_2_10_35_1
  doi: 10.1038/s41398-019-0467-9
– ident: e_1_2_10_9_1
  doi: 10.1016/j.neubiorev.2018.05.008
– ident: e_1_2_10_44_1
  doi: 10.1186/s40478-023-01554-5
– ident: e_1_2_10_51_1
  doi: 10.1016/j.neuroimage.2016.12.061
– volume: 52
  start-page: 766
  year: 2010
  ident: e_1_2_10_32_1
  article-title: Can Structure Predict Function in the Human Brain? NeuroImage 52
  publication-title: Computational Models of the Brain
– ident: e_1_2_10_50_1
  doi: 10.1007/978-3-030-03146-6_86
– ident: e_1_2_10_14_1
  doi: 10.1016/j.biopsych.2017.06.013
– ident: e_1_2_10_19_1
  doi: 10.1016/j.nicl.2017.08.006
– ident: e_1_2_10_30_1
  doi: 10.1111/cns.13387
– ident: e_1_2_10_53_1
  doi: 10.2147/DNND.S228939
– ident: e_1_2_10_15_1
  doi: 10.1098/rsif.2008.0484
– ident: e_1_2_10_66_1
  doi: 10.1016/j.neulet.2014.11.050
– ident: e_1_2_10_10_1
  doi: 10.3389/fneur.2020.00053
– ident: e_1_2_10_36_1
  doi: 10.1016/j.neuroimage.2012.03.025
– ident: e_1_2_10_61_1
  doi: 10.1109/TCSVT.2007.905530
– ident: e_1_2_10_16_1
  doi: 10.3389/fnhum.2013.00042
– ident: e_1_2_10_59_1
  doi: 10.3389/fnhum.2021.625232
– ident: e_1_2_10_63_1
  doi: 10.1007/s11682-021-00501-z
– ident: e_1_2_10_33_1
  doi: 10.1002/alz.13859
– ident: e_1_2_10_11_1
  doi: 10.1111/ejn.12177
– ident: e_1_2_10_2_1
  doi: 10.1155/2022/2436946
– ident: e_1_2_10_17_1
  doi: 10.1016/j.neuroimage.2019.02.062
– ident: e_1_2_10_7_1
  doi: 10.1002/hbm.21287
– ident: e_1_2_10_41_1
  doi: 10.1002/alz.14227
– ident: e_1_2_10_29_1
  doi: 10.3389/fnins.2018.00770
– ident: e_1_2_10_5_1
  doi: 10.1073/pnas.1912034117
– ident: e_1_2_10_8_1
  doi: 10.1007/BF00308809
– ident: e_1_2_10_24_1
  doi: 10.1016/j.neuroimage.2017.11.024
– ident: e_1_2_10_67_1
  doi: 10.3389/fnins.2019.00738
– ident: e_1_2_10_3_1
  doi: 10.1007/s00429-016-1238-5
– ident: e_1_2_10_4_1
  doi: 10.3390/bs8040039
– ident: e_1_2_10_48_1
  doi: 10.1016/j.neuroimage.2021.117898
– ident: e_1_2_10_25_1
  doi: 10.1016/j.neuroimage.2017.08.047
– ident: e_1_2_10_38_1
  doi: 10.1007/s12035-017-0533-3
– ident: e_1_2_10_39_1
  doi: 10.1109/TNNLS.2021.3084827
– ident: e_1_2_10_21_1
  doi: 10.1038/s41592-018-0235-4
– ident: e_1_2_10_47_1
  doi: 10.1186/s40478-018-0515-3
– ident: e_1_2_10_46_1
  doi: 10.1212/WNL.43.11.2412-a
– ident: e_1_2_10_65_1
  doi: 10.1016/j.neuroscience.2017.09.009
– ident: e_1_2_10_27_1
  doi: 10.1038/s41583-024-00846-6
– ident: e_1_2_10_64_1
  doi: 10.1016/j.bspc.2020.102362
– ident: e_1_2_10_31_1
  doi: 10.1007/978-3-540-39964-3_62
– ident: e_1_2_10_45_1
  doi: 10.1016/j.bspc.2021.103293
– ident: e_1_2_10_18_1
  doi: 10.1016/j.neurobiolaging.2018.11.005
– ident: e_1_2_10_13_1
  doi: 10.1016/j.nicl.2021.102726
– ident: e_1_2_10_52_1
  doi: 10.1002/hbm.25531
– ident: e_1_2_10_49_1
  doi: 10.1038/nrn.2016.141
– ident: e_1_2_10_56_1
  doi: 10.1002/ana.410300410
– ident: e_1_2_10_40_1
  doi: 10.1148/radiol.211762
– ident: e_1_2_10_22_1
  doi: 10.1103/PhysRevE.77.036111
– ident: e_1_2_10_54_1
  doi: 10.1093/cercor/bhx179
– ident: e_1_2_10_58_1
  doi: 10.1038/s41593-020-0588-8
– ident: e_1_2_10_55_1
  doi: 10.1371/journal.pone.0096505
– ident: e_1_2_10_57_1
  doi: 10.1073/pnas.1903403116
SSID ssj0011501
Score 2.4791782
Snippet ABSTRACT The progression of Alzheimer's disease (AD) involves complex changes in brain structure and function that are driven by their interaction, making...
The progression of Alzheimer's disease (AD) involves complex changes in brain structure and function that are driven by their interaction, making...
ABSTRACT The progression of Alzheimer's disease (AD) involves complex changes in brain structure and function that are driven by their interaction, making...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e70202
SubjectTerms Aged
Aged, 80 and over
Alzheimer Disease - diagnosis
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - physiopathology
Alzheimer's disease
Biomarkers
Brain
Cognitive ability
Cognitive Dysfunction - diagnosis
Cognitive Dysfunction - diagnostic imaging
Cognitive Dysfunction - physiopathology
Coupling
Disease
Disease Progression
dynamic structure–function coupling
Early Diagnosis
Education
Feature selection
Female
Functional anatomy
Hospitals
Humans
Learning algorithms
Machine Learning
Magnetic Resonance Imaging
Male
Medical imaging
Mental disorders
Middle Aged
Neurodegenerative diseases
Neuroimaging
Physiology
Scanners
static structure–function coupling
Structure-function relationships
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VpUJcCm15hJbKIARcQjd-rGNx2nZZ9bJVJUD0FjnJpLsSm632gQQn_gP_sL-EsZ0NXVWVkLhZsq1Y8YznG8_4G4DXylhHitKNbWFtTBZKxJbLMi6E5jmaBHkZik3os7P04sKcb8CH1VuYwA_RXrg5zfDntVNwm8-P_pKGjvLJe01gh87fe0kiUle3gcvzNoRASMd7W2RjY0NH8IpWqMOP2qnrxugWwrydKHkTwHoLNHj4X2t_BNsN8GS9ICk7sIH1Luz1anK6Jz_YG-ZTQf0d-y7cHzYR9z1Y9kPJembrkjlkSs1PnnN2OcPrX78HZBfd3rKT6dI97r1kX8eLERv6HE1kDX3rJSNszAhrMk-ozPq4wDBtWrHet58jHE9w9nbO-iFe9Bi-DD5-PjmNm1INcUGIgMddLCxyXQmsEEVlK5mn5PxKch-tFQnKQuu8K6zqoiXxKLmjic-N6pSYqLxQ4gls1tManwFDRHIyNWo0SmpVpaqywpIpNymvyryM4NVqz7KrwMiRBe5lntF_zfx_jeBgtZtZo5TzjE4bh4g6Ukfwsu0mdXIxElvjdOnGpOQTc5KXCJ6GzW-_Qq6oIWGWEaRrYtEOcFTd6z31eOQpu12wVkplInjn5eLulWenx0PfeP7vQ_fhAXdliX1C0QFskhTgC9gqvi_G89mhV4s_bBcSew
  priority: 102
  providerName: Wiley-Blackwell
Title Dynamic and Static Structure–Function Coupling With Machine Learning for the Early Detection of Alzheimer's Disease
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.70202
https://www.ncbi.nlm.nih.gov/pubmed/40193134
https://www.proquest.com/docview/3190078047
https://www.proquest.com/docview/3187212471
https://pubmed.ncbi.nlm.nih.gov/PMC11974459
Volume 46
WOSCitedRecordID wos001461467400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: 7X7
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: BENPR
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: PIMPY
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: 24P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RFCEuPFKghhItCAEX02S9m7VPKG0atYdEFg81nKy1PW4iNXbJAwlO_Af-Ib-E2fUmEFVw4WJ5Za9sa2Z3vnn4G4AXMtKGFKXr60xrnyxU4Gsucj8LFE8x6iDP62YTajQKx-ModgG3hSurXO-JdqPOq8zEyA9JVYw5awv19uqzb7pGmeyqa6GxA7uGqUw0YPfoZBS_2-QRCO5Yl4sMrR_RPrzmFmrzw0k6e6MILPFti3QNZl6vlvwTxVozNLj7vx9wD-44AMp6tcbchxtYNmGvV5LzPfvKXjJbEmpj7U3T0tmVfzTh1tBl4fdg1a_b2DNd5sygVTp9b3loV3P8-f3HgGylmcSOq5X54feCnU-XEza0dZvIHKXrBSO8zAh_MkuyzPq4xHpaVbDe5bcJTmc4f7Vg_TqH9AA-Dk4-HJ_6rn2DnxFK4H4XM41cFQEWiEGhC5GG5BALcim1DjooMqXSbqBlFzWpTM4NdXwayXaOHZlmMngIjbIqcR8YIpLjqVBhJIWSRSgLHWgy71HIizzNPXi-FmFyVbN0JDUfM09IzomVswcHa8EkbqEukt9S8eDZ5jItMZM30SVWK3NPSH4yJ_Xx4FGtC5unkHsakYILD8ItLdncYOi7t6-U04ml8TYJXCFk5MFrq1B_f_Pk9GhoTx7_-xOewG1u2hPbwqIDaJDk8SnczL4sp4t5C3a4iOmoxsoew5ZbLS0biKBRfDaMP9Ho_Gz0C8k4IO8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VBQEXflIohgIL4u_iNlnbWfuAUGiIUrWJkCgiN7O2x40lYpf8gMKJd-A9eCiehJm1HYgquPXAzdKuZXv97cw3nvE3AI-9QLMoStvWsdY2eSjH1tJN7NhRMsKghTIpm02o4dAfjYI3G_Cj_heGyyprm2gMdVLE_I18j6DC7qzpqpenn2zuGsXZ1bqFRgmLQ1x-oZBt9uKgS-_3iZS918f7fbvqKmDH5Lyk3cZYo1Spgymik-rUjXyK01yKdLR2WujGSkVtR3tt1PQkiWRF8yjwmgm2vCjmLhFk8i-QHVdcQqZGqwCPyZUJ8Mit2wFZ_VrJqCn3xtFkVxE1k-v-7wypPVub-SdnNk6vd-1_W67rcLWi16JT7ocbsIF5A7Y6uZ4Xk6V4KkzBq8kkNLhhdVXc0oBLg6rGYAsW3WWuJ1ksdJ4I5uJ0-Nao7C6m-PPb9x4xAT5J7BcL_p35RLzP5mMxMFWpKCrB2hNB0YAgdi2MhLTo4hzL04pUdD5-HWM2wemzmeiWGbKb8O5c1uUWbOZFjrdBICKF1QoVBp6rvNT3Uu1oIi-BL9MkSix4VEMmPC01SMJSbVqGhKvQ4MqCnRoIYWWGZuFvFFjwcDVMBoSzQjrHYsFzfEX8heBqwXaJvdVVKPgOaPu6FvhrqFxNYHHy9ZE8GxuRck5Pu64XWPDcAPjvdx72Xw3MwZ1_P8IDuNw_HhyFRwfDw7twRXIjZlNCtQObhAK8Bxfjz_NsNr1vdqWAD-eN618jP3c1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VLaq48JMCNRRYEH8XN8l6nbUPCIWaqFFJFAlQy8ms7XFjidglP6Bw4h14Gx6HJ2F2bQeiCm49cLO0a9lefzvzjWf8DcAj11daFKVjq1gpmzyUYysuEjt2JI_QbyNPymYTcjj0Tk780Qb8qP-F0WWVtU00hjopYv2NvElQ0e6sJWQzrcoiRkHvxdknW3eQ0pnWup1GCZEjXH6h8G32vB_Qu37Mee_V24NDu-owYMfkyLjdwVghl6mDKaKTqlREHsVsgqIepZw2iljKqOMot4OKnirhWt088t1Wgm03inXHCDL_W0TJBe2xrVF_MHq_ymEQ1TLhHjl52ycfUOsatXhzHE32JRE1vu4Nz1Hc85WafzJo4wJ7V__nxbsGVyrizbrlTrkOG5g3YKebq3kxWbInzJTCmhxDQ7eyrspeGrA9qKoPdmARLHM1yWKm8oRplk6Hb4z-7mKKP7997xFH0Cexg2Khf3Q-ZcfZfMwGpl4VWSVle8ooTmDEu5kRl2YBzrE8rUhZ9-PXMWYTnD6dsaDMnd2AdxeyLjdhMy9y3AWGiBRwS5Tou0K6qeemylFEa3yPp0mUWPCwhk94VqqThKUONQ8JY6HBmAV7NSjCykDNwt-IsODBaphMi84XqRyLhZ7jSWI2BF0LbpU4XF2FwnKfNrawwFtD6GqCli1fH8mzsZEv14lrIVzfgmcGzH-_8_Dw5cAc3P73I9yHbYJz-Lo_PLoDl7nu0Gxqq_Zgk0CAd-FS_Hmezab3qi3K4MNFA_sXTWKBhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+and+Static+Structure-Function+Coupling+With+Machine+Learning+for+the+Early+Detection+of+Alzheimer%27s+Disease&rft.jtitle=Human+brain+mapping&rft.au=Wu%2C+Han&rft.au=Lu%2C+Yinping&rft.au=Wang%2C+Luyao&rft.au=Wu%2C+Jinglong&rft.date=2025-04-01&rft.eissn=1097-0193&rft.volume=46&rft.issue=5&rft.spage=e70202&rft_id=info:doi/10.1002%2Fhbm.70202&rft_id=info%3Apmid%2F40193134&rft.externalDocID=40193134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon