Lightning as a major driver of recent large fire years in North American boreal forests
Changes in climate and fire regimes are transforming the boreal forest, the world’s largest biome. Boreal North America recently experienced two years with large burned area: 2014 in the Northwest Territories and 2015 in Alaska. Here we use climate, lightning, fire and vegetation data sets to assess...
Saved in:
| Published in: | Nature climate change Vol. 7; no. 7; pp. 529 - 534 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
01.07.2017
Nature Publishing Group |
| Subjects: | |
| ISSN: | 1758-678X, 1758-6798 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Changes in climate and fire regimes are transforming the boreal forest, the world’s largest biome. Boreal North America recently experienced two years with large burned area: 2014 in the Northwest Territories and 2015 in Alaska. Here we use climate, lightning, fire and vegetation data sets to assess the mechanisms contributing to large fire years. We find that lightning ignitions have increased since 1975, and that the 2014 and 2015 events coincided with a record number of lightning ignitions and exceptionally high levels of burning near the northern treeline. Lightning ignition explained more than 55% of the interannual variability in burned area, and was correlated with temperature and precipitation, which are projected to increase by mid-century. The analysis shows that lightning drives interannual and long-term ignition and burned area dynamics in boreal North America, and implies future ignition increases may increase carbon loss while accelerating the northward expansion of boreal forest.
The boreal forest is being transformed by changes in its climate–fire regime. Analysis now shows that lightning drives year-to-year and long-term ignition and burned area trends in boreal North America. |
|---|---|
| AbstractList | Changes in climate and fire regimes are transforming the boreal forest, the world’s largest biome. Boreal North America recently experienced two years with large burned area: 2014 in the Northwest Territories and 2015 in Alaska. Here we use climate, lightning, fire and vegetation data sets to assess the mechanisms contributing to large fire years. We find that lightning ignitions have increased since 1975, and that the 2014 and 2015 events coincided with a record number of lightning ignitions and exceptionally high levels of burning near the northern treeline. Lightning ignition explained more than 55% of the interannual variability in burned area, and was correlated with temperature and precipitation, which are projected to increase by mid-century. The analysis shows that lightning drives interannual and long-term ignition and burned area dynamics in boreal North America, and implies future ignition increases may increase carbon loss while accelerating the northward expansion of boreal forest.
The boreal forest is being transformed by changes in its climate–fire regime. Analysis now shows that lightning drives year-to-year and long-term ignition and burned area trends in boreal North America. Changes in climate and fire regimes are transforming the boreal forest, the world's largest biome. Boreal North America recently experienced two years with large burned area: 2014 in the Northwest Territories and 2015 in Alaska. Here we use climate, lightning, fire and vegetation data sets to assess the mechanisms contributing to large fire years. We find that lightning ignitions have increased since 1975, and that the 2014 and 2015 events coincided with a record number of lightning ignitions and exceptionally high levels of burning near the northern treeline. Lightning ignition explained more than 55% of the interannual variability in burned area, and was correlated with temperature and precipitation, which are projected to increase by mid-century. The analysis shows that lightning drives interannual and long-term ignition and burned area dynamics in boreal North America, and implies future ignition increases may increase carbon loss while accelerating the northward expansion of boreal forest. |
| Author | Veraverbeke, Sander Wiggins, Elizabeth B. Rogers, Brendan M. Randerson, James T. Goulden, Mike L. Jandt, Randi R. Miller, Charles E. |
| Author_xml | – sequence: 1 givenname: Sander orcidid: 0000-0003-1362-5125 surname: Veraverbeke fullname: Veraverbeke, Sander email: s.s.n.veraverbeke@vu.nl organization: Department of Earth System Science, University of California, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam – sequence: 2 givenname: Brendan M. surname: Rogers fullname: Rogers, Brendan M. organization: Woods Hole Research Center – sequence: 3 givenname: Mike L. surname: Goulden fullname: Goulden, Mike L. organization: Department of Earth System Science, University of California – sequence: 4 givenname: Randi R. surname: Jandt fullname: Jandt, Randi R. organization: Alaska Fire Science Consortium, University of Alaska – sequence: 5 givenname: Charles E. surname: Miller fullname: Miller, Charles E. organization: NASA Jet Propulsion Laboratory, California Institute of Technology – sequence: 6 givenname: Elizabeth B. surname: Wiggins fullname: Wiggins, Elizabeth B. organization: Department of Earth System Science, University of California – sequence: 7 givenname: James T. surname: Randerson fullname: Randerson, James T. organization: Department of Earth System Science, University of California |
| BookMark | eNp1kE9LAzEQxYNUsNbe_AABr64m3U12cyzFf1D0ouhtSbKzbco2qZNU6Ld3pSJFdC5vDr_3ZninZOCDB0LOObviLK-uve3cWifI84k6IkNeiiqTpaoGP3v1dkLGMa5YPyWXuVRD8jp3i2Xyzi-ojlTTtV4FpA26D0AaWopgwSfaaVwAbR0C3YHGSJ2njwHTkk7XgM5qT01A0B1te4kpnpHjVncRxt86Ii-3N8-z-2z-dPcwm84zWzCRsrZspGCVUIZZYUsmjMwtN4zpotK5YBxKXYFmVS6tFkYZoxojjZK2FdBIyEfkYp-7wfC-7S_Xq7BF35-sueKlkkVZFD11uacshhgR2nqDfVm4qzmrv9qrD9vr8ckv3Lqkkws-oXbdf6Zsb4p9tl8AHnzyF_8JBUOHjw |
| CitedBy_id | crossref_primary_10_3390_f12010107 crossref_primary_10_1111_gcb_14888 crossref_primary_10_3390_land11050651 crossref_primary_10_1016_j_agrformet_2020_107990 crossref_primary_10_1126_sciadv_adp7765 crossref_primary_10_5194_bg_21_109_2024 crossref_primary_10_1016_j_ecoinf_2024_102531 crossref_primary_10_1029_2020JD033180 crossref_primary_10_1038_s41477_019_0495_8 crossref_primary_10_1088_1748_9326_ad7871 crossref_primary_10_1007_s13280_020_01490_x crossref_primary_10_3390_atmos16040440 crossref_primary_10_1016_j_gloplacha_2025_104948 crossref_primary_10_1088_1748_9326_ac8e85 crossref_primary_10_3390_su14095462 crossref_primary_10_1029_2023AV001148 crossref_primary_10_1029_2024AV001327 crossref_primary_10_1111_1365_2664_13876 crossref_primary_10_3390_f8110422 crossref_primary_10_1016_j_scitotenv_2023_166132 crossref_primary_10_1029_2022JD037236 crossref_primary_10_1088_1748_9326_ae0491 crossref_primary_10_1038_s41467_022_31597_6 crossref_primary_10_1186_s42408_025_00376_1 crossref_primary_10_1007_s10021_023_00854_0 crossref_primary_10_1038_s41586_024_07028_5 crossref_primary_10_1002_ecs2_4737 crossref_primary_10_3390_atmos11090918 crossref_primary_10_1080_10106049_2021_1973581 crossref_primary_10_1016_j_ijdrr_2023_104221 crossref_primary_10_1038_s41558_024_02176_y crossref_primary_10_1016_j_atmosenv_2024_120436 crossref_primary_10_1088_1748_9326_abbc3b crossref_primary_10_1098_rstb_2023_0446 crossref_primary_10_1029_2020JD033967 crossref_primary_10_1139_cjfr_2024_0099 crossref_primary_10_1002_qj_4777 crossref_primary_10_1111_gcb_70247 crossref_primary_10_1088_1748_9326_acf50b crossref_primary_10_3390_su14159193 crossref_primary_10_3390_rs16122118 crossref_primary_10_1007_s10980_022_01506_9 crossref_primary_10_1002_ecs2_4605 crossref_primary_10_1038_s41558_020_00922_6 crossref_primary_10_1093_femsec_fiac069 crossref_primary_10_3389_ffgc_2020_00087 crossref_primary_10_1088_1748_9326_aa9a76 crossref_primary_10_5194_tc_12_123_2018 crossref_primary_10_3390_fire6050195 crossref_primary_10_1029_2023MS003749 crossref_primary_10_1038_s44304_025_00120_4 crossref_primary_10_1016_j_earscirev_2020_103324 crossref_primary_10_1111_gcb_17130 crossref_primary_10_1016_j_foreco_2020_118127 crossref_primary_10_1029_2023JD039136 crossref_primary_10_1029_2020JG005693 crossref_primary_10_1016_j_atmosres_2023_107093 crossref_primary_10_1002_eap_3061 crossref_primary_10_1016_j_agrformet_2020_108075 crossref_primary_10_1038_s41612_022_00274_2 crossref_primary_10_1029_2020GL087911 crossref_primary_10_3389_fenvs_2024_1438262 crossref_primary_10_1088_2752_5295_adec0f crossref_primary_10_1088_1748_9326_ad8bdc crossref_primary_10_1029_2022GL099017 crossref_primary_10_3390_atmos13050662 crossref_primary_10_1126_science_abe1739 crossref_primary_10_1088_1748_9326_aa9853 crossref_primary_10_5194_esd_15_1161_2024 crossref_primary_10_1002_ppp_2048 crossref_primary_10_1038_s41561_024_01505_2 crossref_primary_10_3390_rs14174180 crossref_primary_10_1086_703418 crossref_primary_10_1088_1748_9326_aafc1b crossref_primary_10_1109_TGRS_2024_3487774 crossref_primary_10_1002_joc_7678 crossref_primary_10_3390_f15050844 crossref_primary_10_1016_j_atmosenv_2024_120336 crossref_primary_10_3389_ffgc_2020_00090 crossref_primary_10_1016_j_rsase_2025_101540 crossref_primary_10_3390_fire7030079 crossref_primary_10_1088_1748_9326_abf0d0 crossref_primary_10_3389_fclim_2021_716464 crossref_primary_10_3390_atmos14010029 crossref_primary_10_1111_gcb_70389 crossref_primary_10_3389_ffgc_2022_965605 crossref_primary_10_1038_s41558_021_01011_y crossref_primary_10_1126_science_abn4419 crossref_primary_10_1109_TGRS_2020_2968029 crossref_primary_10_1175_JAMC_D_21_0106_1 crossref_primary_10_1002_2017RG000559 crossref_primary_10_1177_0959683619838036 crossref_primary_10_3390_rs13101966 crossref_primary_10_1088_1748_9326_ab6d3a crossref_primary_10_1088_1748_9326_aba101 crossref_primary_10_3390_atmos15010106 crossref_primary_10_1177_0959683619838039 crossref_primary_10_1071_WF18220 crossref_primary_10_1029_2018GL078294 crossref_primary_10_3390_heritage5040187 crossref_primary_10_1002_ecs2_4159 crossref_primary_10_1111_gcb_14287 crossref_primary_10_1088_1742_6596_1624_2_022025 crossref_primary_10_1029_2022JG007055 crossref_primary_10_1016_j_foreco_2024_122262 crossref_primary_10_1111_nph_15195 crossref_primary_10_1088_1748_9326_ac8696 crossref_primary_10_3390_f13111867 crossref_primary_10_1016_j_scib_2024_05_022 crossref_primary_10_3389_ffgc_2021_701277 crossref_primary_10_1038_s44304_025_00113_3 crossref_primary_10_1038_s43247_025_02505_9 crossref_primary_10_1134_S0001433819090469 crossref_primary_10_1002_joc_6648 crossref_primary_10_1071_WF17123 crossref_primary_10_1073_pnas_2024872118 crossref_primary_10_1007_s40641_019_00128_9 crossref_primary_10_1038_s43247_022_00356_2 crossref_primary_10_1038_s43017_020_0085_3 crossref_primary_10_1088_1748_9326_ac60d6 crossref_primary_10_1088_1748_9326_ac2ce7 crossref_primary_10_1016_j_scitotenv_2018_09_115 crossref_primary_10_1038_s41467_021_26232_9 crossref_primary_10_1029_2022JG006891 crossref_primary_10_3390_rs17132162 crossref_primary_10_1175_JAMC_D_19_0209_1 crossref_primary_10_1016_j_quascirev_2023_108171 crossref_primary_10_5194_essd_15_1151_2023 crossref_primary_10_1038_s41561_023_01322_z crossref_primary_10_1016_j_agrformet_2025_110507 crossref_primary_10_1088_1748_9326_ac2f64 crossref_primary_10_1002_eap_1768 crossref_primary_10_1038_nclimate3432 crossref_primary_10_1088_1748_9326_ab0d44 crossref_primary_10_1007_s11430_024_1397_2 crossref_primary_10_3389_fevo_2021_728958 crossref_primary_10_1029_2021GL096814 crossref_primary_10_1002_hyp_14640 crossref_primary_10_1007_s13143_023_00346_0 crossref_primary_10_1029_2021GL093789 crossref_primary_10_5194_esd_14_55_2023 crossref_primary_10_1139_er_2018_0041 crossref_primary_10_5194_acp_21_8557_2021 crossref_primary_10_1016_j_agrformet_2024_110108 crossref_primary_10_1111_gcb_15158 crossref_primary_10_1017_qua_2020_48 crossref_primary_10_3390_f15111981 crossref_primary_10_1016_j_agrformet_2021_108712 crossref_primary_10_3389_fevo_2018_00209 crossref_primary_10_1016_j_accre_2025_01_003 crossref_primary_10_1016_j_agrformet_2024_110219 crossref_primary_10_5194_acp_25_6365_2025 crossref_primary_10_1109_JSTARS_2024_3400218 crossref_primary_10_1126_science_adl5889 crossref_primary_10_1088_2515_7620_acdfad crossref_primary_10_1029_2021RG000757 crossref_primary_10_1029_2024EF005098 crossref_primary_10_5194_essd_17_2249_2025 crossref_primary_10_5194_bg_19_4779_2022 crossref_primary_10_1111_jvs_12736 crossref_primary_10_1016_j_agrformet_2024_110216 crossref_primary_10_1007_s11368_023_03533_8 crossref_primary_10_1016_j_agrformet_2021_108723 crossref_primary_10_1016_j_gloenvcha_2024_102894 crossref_primary_10_1016_j_scitotenv_2021_146361 crossref_primary_10_1111_gcb_15214 crossref_primary_10_3390_fire6050215 crossref_primary_10_1038_s41558_023_01851_w crossref_primary_10_1038_s41558_021_01016_7 crossref_primary_10_1016_j_atmosres_2025_108369 crossref_primary_10_1126_sciadv_adt5088 crossref_primary_10_3390_f15010216 crossref_primary_10_1038_s44284_025_00204_2 crossref_primary_10_1016_j_quascirev_2017_10_018 crossref_primary_10_1029_2024JD041806 crossref_primary_10_1139_cjfr_2018_0293 crossref_primary_10_3390_atmos16091085 crossref_primary_10_1073_pnas_1914135117 crossref_primary_10_1186_s40494_018_0186_1 crossref_primary_10_1016_j_gloplacha_2025_105076 crossref_primary_10_5194_bg_18_5053_2021 crossref_primary_10_1146_annurev_nucl_121423_101055 crossref_primary_10_1016_j_jag_2024_103776 crossref_primary_10_3390_rs13050897 crossref_primary_10_5194_acp_21_17529_2021 crossref_primary_10_1016_j_epsr_2024_110296 crossref_primary_10_1016_j_agrformet_2024_110081 crossref_primary_10_1080_07055900_2019_1576023 crossref_primary_10_3389_fenvs_2024_1460155 crossref_primary_10_1016_j_quascirev_2020_106697 crossref_primary_10_1029_2020JD032918 crossref_primary_10_1186_s40645_020_00366_8 crossref_primary_10_5194_acp_25_7719_2025 crossref_primary_10_1029_2020JG005720 crossref_primary_10_1007_s10021_019_00398_2 crossref_primary_10_3390_f12081023 crossref_primary_10_1002_ecs2_4344 crossref_primary_10_1029_2023GL103096 crossref_primary_10_5194_bg_16_3883_2019 crossref_primary_10_1039_c8pp90063a crossref_primary_10_1016_j_oneear_2021_03_002 crossref_primary_10_1029_2022GL099669 crossref_primary_10_1088_1748_9326_ac59aa crossref_primary_10_1038_s41598_021_81233_4 crossref_primary_10_5194_bg_20_1537_2023 crossref_primary_10_3390_fire5040106 crossref_primary_10_1016_j_foreco_2023_121615 crossref_primary_10_1134_S1995425524700446 crossref_primary_10_1016_j_palaeo_2024_112359 crossref_primary_10_1111_gcb_14380 crossref_primary_10_1029_2020RG000726 crossref_primary_10_1016_j_foreco_2022_120007 crossref_primary_10_1002_ecs2_2156 crossref_primary_10_1038_s41586_021_03437_y crossref_primary_10_1088_1748_9326_ac98d7 crossref_primary_10_1155_2023_9953551 crossref_primary_10_1111_gcb_15591 crossref_primary_10_3390_su16030957 crossref_primary_10_5194_cp_16_799_2020 crossref_primary_10_1139_cjfr_2020_0466 crossref_primary_10_3390_rs14020313 crossref_primary_10_1002_adfm_202300403 crossref_primary_10_1007_s40641_020_00169_5 crossref_primary_10_1139_as_2022_0050 crossref_primary_10_3390_f10070534 crossref_primary_10_1071_WF24062 crossref_primary_10_1016_j_scitotenv_2022_153021 crossref_primary_10_3390_atmos14060957 crossref_primary_10_5194_bg_16_57_2019 crossref_primary_10_3390_f14081577 crossref_primary_10_1088_1748_9326_acacb2 crossref_primary_10_3390_fire8070282 crossref_primary_10_1007_s11783_024_1890_6 crossref_primary_10_1088_1748_9326_add754 crossref_primary_10_3390_fire6080301 crossref_primary_10_3390_rs13122311 crossref_primary_10_3390_rs15020413 crossref_primary_10_1016_j_jenvman_2018_07_097 crossref_primary_10_1029_2021JD035589 crossref_primary_10_3390_rs17152719 crossref_primary_10_1029_2021EF002560 crossref_primary_10_1002_2017GB005787 crossref_primary_10_5194_bg_20_2785_2023 crossref_primary_10_5194_bg_21_279_2024 crossref_primary_10_5194_nhess_24_445_2024 crossref_primary_10_1002_2017JG004080 crossref_primary_10_1038_s41559_025_02862_w crossref_primary_10_1111_gcb_17151 crossref_primary_10_1155_2022_9102145 crossref_primary_10_1016_j_ecoinf_2021_101471 crossref_primary_10_1111_brv_12804 crossref_primary_10_1139_er_2021_0110 crossref_primary_10_1029_2018MS001368 crossref_primary_10_1080_07038992_2023_2216312 crossref_primary_10_1016_j_ecolmodel_2023_110367 crossref_primary_10_1038_d41586_020_03561_1 crossref_primary_10_3390_atmos11090956 crossref_primary_10_1088_1748_9326_ac6311 crossref_primary_10_1139_cjfr_2019_0094 crossref_primary_10_1016_j_chemgeo_2024_122022 crossref_primary_10_1088_1748_9326_aaea86 crossref_primary_10_3390_fire4030057 crossref_primary_10_1139_cjfas_2020_0141 crossref_primary_10_1016_j_quascirev_2018_12_003 crossref_primary_10_1016_j_scitotenv_2017_12_013 crossref_primary_10_1071_WF19023 crossref_primary_10_1177_0959683619846978 crossref_primary_10_3390_f11050516 crossref_primary_10_1016_j_gloplacha_2023_104076 crossref_primary_10_1029_2019MS001955 crossref_primary_10_5194_esd_14_223_2023 crossref_primary_10_1038_s41586_024_07878_z crossref_primary_10_1016_j_rse_2018_06_020 crossref_primary_10_1029_2021GL096095 crossref_primary_10_1016_j_cliser_2025_100592 crossref_primary_10_3390_rs16173306 crossref_primary_10_1088_1748_9326_ac6886 crossref_primary_10_1088_1748_9326_ad63bf crossref_primary_10_1111_pce_13916 crossref_primary_10_1029_2019RG000652 crossref_primary_10_1088_1748_9326_ac4c1e crossref_primary_10_1016_j_dendro_2020_125727 crossref_primary_10_1177_0959683619865593 crossref_primary_10_1111_1365_2745_13446 crossref_primary_10_1029_2024JD042319 crossref_primary_10_1038_s41612_024_00781_4 crossref_primary_10_1016_j_scitotenv_2022_156550 crossref_primary_10_1139_as_2021_0042 crossref_primary_10_3389_fenvs_2022_949271 crossref_primary_10_1029_2024JD042674 crossref_primary_10_5194_esd_13_251_2022 crossref_primary_10_5194_acp_20_12813_2020 crossref_primary_10_1016_j_ecolind_2024_112841 crossref_primary_10_1016_j_jclimf_2024_100055 crossref_primary_10_1002_rse2_238 crossref_primary_10_1080_07038992_2019_1643707 crossref_primary_10_3390_fire5040096 crossref_primary_10_1071_WF19129 crossref_primary_10_1088_1748_9326_ace205 crossref_primary_10_1007_s41982_017_0002_6 crossref_primary_10_16993_tellusb_34 crossref_primary_10_1029_2020JG006078 crossref_primary_10_1029_2024GL112193 crossref_primary_10_1139_cjfr_2021_0353 crossref_primary_10_3390_f9040159 crossref_primary_10_1111_geb_12872 crossref_primary_10_1007_s10980_019_00780_4 crossref_primary_10_1093_biosci_biab139 |
| Cites_doi | 10.1126/science.1259100 10.5194/acp-10-6873-2010 10.1002/2013JG002502 10.1890/150063 10.5194/bg-11-3739-2014 10.1002/2015JG003033 10.1139/cjfr-2013-0499 10.1890/14-1430.1 10.1175/BAMS-87-3-343 10.1139/x02-214 10.5194/bg-13-3359-2016 10.1007/s10584-005-5935-y 10.1890/05-1021 10.1006/qres.1999.2123 10.1080/10106049109354290 10.1007/s10980-015-0306-1 10.1038/359716a0 10.2328/jnds.33.71 10.5194/bg-12-3579-2015 10.1111/ecog.02205 10.1002/2015GB005247 10.1111/j.1461-0248.2009.01355.x 10.1029/2004GL020876 10.1175/BAMS-D-11-00094.1 10.1139/cjfr-2013-0401 10.1126/science.1128834 10.1038/nature14338 10.1175/JCLI-D-11-00081.1 10.1071/WF14167 10.1073/pnas.1409316111 10.1175/1520-0434(1991)006<0309:CCAOPO>2.0.CO;2 10.3137/ao.400208 10.1175/BAMS-D-16-0149.1 10.1080/17538940902951401 10.1029/2009JD012384 10.1073/pnas.1305069110 10.1890/09-2004.1 10.1111/j.1365-2486.2008.01679.x 10.1071/WF13015 10.1111/j.1654-1103.2005.tb02365.x 10.1007/s10584-011-0156-z 10.1029/2001JD000484 10.1175/JTECH-D-13-00261.1 10.1038/nature10283 10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2 10.1016/j.atmosres.2012.06.028 10.1175/1520-0442(1994)007<1484:TIOACC>2.0.CO;2 10.1038/ngeo1027 10.1002/joc.1556 10.1002/jgrd.50171 10.1029/2011JG001707 10.1046/j.1365-2486.2002.00528.x 10.1071/WF02023 10.3334/ORNLDAAC/1341 10.3137/ao.400104 10.1029/95JD02418 10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2 10.1126/science.292.5517.673 10.1111/j.1365-2486.2009.02051.x 10.1038/ngeo2352 10.5194/bg-10-699-2013 10.1002/2015JG003177 10.5194/gmd-6-643-2013 10.1139/x85-042 10.1890/08-0806.1 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2017 Copyright Nature Publishing Group Jul 2017 |
| Copyright_xml | – notice: Springer Nature Limited 2017 – notice: Copyright Nature Publishing Group Jul 2017 |
| DBID | AAYXX CITATION 3V. 7ST 7TG 7TN 7XB 88I 8AF 8FK ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 H97 HCIFZ KL. L.G M2P PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U SOI |
| DOI | 10.1038/nclimate3329 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic Environment Abstracts |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1758-6798 |
| EndPage | 534 |
| ExternalDocumentID | 10_1038_nclimate3329 |
| GeographicLocations | North America |
| GeographicLocations_xml | – name: North America |
| GroupedDBID | 0R~ 39C 3V. 4.4 53G 5BI 70F 88I 8AF 8FE 8FH AAEEF AAHBH AARCD AAYZH AAZLF ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACHQT ADBBV AENEX AEUYN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHDO AGHTU AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BHPHI BKKNO BKSAR BPHCQ CCPQU D1K DWQXO EBS EE. EJD EXGXG FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ K6- M2P NNMJJ O9- PCBAR PQQKQ PROAC RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX AFANA AFFHD AGSTI ALPWD ATHPR CITATION PHGZM PHGZT 7ST 7TG 7TN 7XB 8FK C1K F1W H96 H97 KL. L.G PKEHL PQEST PQUKI Q9U SOI |
| ID | FETCH-LOGICAL-c405t-f7d650859b0c5c705b63c1b00a48a3501e7a8ea0836ca5b9bb9db6b96cf5ed6e3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 353 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404545400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1758-678X |
| IngestDate | Wed Jul 16 16:01:48 EDT 2025 Sat Nov 29 04:24:59 EST 2025 Tue Nov 18 21:58:02 EST 2025 Fri Feb 21 02:38:28 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c405t-f7d650859b0c5c705b63c1b00a48a3501e7a8ea0836ca5b9bb9db6b96cf5ed6e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1362-5125 |
| OpenAccessLink | https://www.nature.com/articles/nclimate3329.pdf |
| PQID | 1917964744 |
| PQPubID | 1056412 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_1917964744 crossref_primary_10_1038_nclimate3329 crossref_citationtrail_10_1038_nclimate3329 springer_journals_10_1038_nclimate3329 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-01 |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Nature climate change |
| PublicationTitleAbbrev | Nature Clim Change |
| PublicationYear | 2017 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | FlanniganMGlobal wildland fire season severity in the 21st centuryFor. Ecol. Manag.20132945461 PetersonDWangJIchokuCRemerLAEffects of lightning and other meteorological factors on fire activity in the North American boreal forest: implications for fire weather forecastingAtmos. Chem. Phys.2010106873688810.5194/acp-10-6873-20101:CAS:528:DC%2BC3cXhtFKlt7vI CarrollMLTownshendJRDiMiceliCMNoojipadyPSohlbergRAA new global raster water mask at 250 m resolutionInt. J. Digit. Earth2009229130810.1080/17538940902951401 RogersBMSojaAJGouldenMLRandersonJTInfluence of tree species on continental differences in boreal fires and climate feedbacksNat. Geosci.2015822823410.1038/ngeo23521:CAS:528:DC%2BC2MXhvFCnt7c%3D TuretskyMRRecent acceleration of biomass burning and carbon losses in Alaskan forests and peatlandsNat. Geosci.20114273110.1038/ngeo10271:CAS:528:DC%2BC3cXhsF2jur3O FarukhMAHayasakaHActive forest fire occurrences in severe lightning years in AlaskaJ. Nat. Disaster Sci.201233718410.2328/jnds.33.71 ParksSAHolsingerLMMillerCNelsonCRWildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progressionEcol. Appl.2015251478149210.1890/14-1430.1 PartainJLAn assessment of the role of anthropogenic climate change in the Alaska fire season of 2015Bull. Am. Meteorol. Soc.201697S14S1810.1175/BAMS-D-16-0149.1 BondTCBounding the role of black carbon in the climate system: a scientific assessmentJ. Geophys. Res.2013118538055521:CAS:528:DC%2BC3sXhtVyrtbrF MackMCCarbon loss from an unprecedented Arctic tundra wildfireNature201147548949210.1038/nature102831:CAS:528:DC%2BC3MXpsFajtbg%3D PriceCRindDThe impact of a 2 × CO2 climate on lightning-caused firesJ. Clim.199471484149410.1175/1520-0442(1994)007<1484:TIOACC>2.0.CO;2 MacDonaldGMHolocene treeline history and climate change across Northern EurasiaQuat. Res.20005330231110.1006/qres.1999.2123 HantsonSThe status and challenge of global fire modellingBiogeosciences2016133359337510.5194/bg-13-3359-2016 VeraverbekeSRogersBMRandersonJTDaily burned area and carbon emissions from boreal fires in AlaskaBiogeosciences2015123579360110.5194/bg-12-3579-20151:CAS:528:DC%2BC2MXhsVamsLrL ReapRClimatological characteristics and objective prediction of thunderstorms over AlaskaWeather Forecast.1991630931910.1175/1520-0434(1991)006<0309:CCAOPO>2.0.CO;2 MesingerFNorth American regional reanalysisBull. Am. Meteorol. Soc.20068734336010.1175/BAMS-87-3-343 LegendrePLegendreLNumerical Ecology2012 EuskirchenESMcGuireADChapinFSYiSThompsonCCChanges in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacksEcol. Appl.2009191022104310.1890/08-0806.11:STN:280:DC%2BD1MvjsFGrsQ%3D%3D KasischkeEWilliamsDBarryDAnalysis of the patterns of large fires in the boreal forest region of AlaskaInt. J. Wildl. Fire20021113114410.1071/WF02023 FowlerHJBlenkinsopSTebaldiCLinking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modellingInt. J. Climatol.2007271547157810.1002/joc.1556 PielkeRAVidalePLThe boreal forest and the polar frontJ. Geophys. Res.1995100257552575810.1029/95JD02418 Veraverbeke, S. et al. ABoVE: Ignitions, Burned Area and Emissions of Fires in AK, YT, and NWT, 2001–2015http://dx.doi.org/10.3334/ORNLDAAC/1341 (2017). HewittREGetting to the root of the matter: landscape implications of plant-fungal interactions for tree migration in AlaskaLandsc. Ecol.20153189591110.1007/s10980-015-0306-1 PfeifferMSpessaAKaplanJOA model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0)Geosci. Model Dev.2013664368510.5194/gmd-6-643-20131:CAS:528:DC%2BC2MXkvFKruro%3D KrawchukMACummingSGFlanniganMDWeinRWBiotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forestEcology20068745846810.1890/05-10211:STN:280:DC%2BD283jtVWrtA%3D%3D BrownDRNInteractive effects of wildfire and climate on permafrost degradation in Alaskan lowland forestsJ. Geophys. Res.20151201619163710.1002/2015JG003033 MeinshausenMThe RCP greenhouse gas concentrations and their extensions from 1765 to 2300Climatic Change201110921324110.1007/s10584-011-0156-z1:CAS:528:DC%2BC3MXht12gsbfL FrenchNHFFire in arctic tundra of Alaska: past fire activity, future fire potential, and significance for land management and ecologyInt. J. Wildl. Fire2015241045106110.1071/WF14167 HuFSTundra burning in Alaska: linkages to climatic change and sea ice retreatJ. Geophys. Res.2010115G0400210.1029/2009JD012384 BurrowsWRLightning occurrence patterns over Canada and adjacent United States from lightning detection network observationsAtmos. Ocean200240598010.3137/ao.400104 López GarcíaMJCasellesVMapping burns and natural reforestation using thematic Mapper dataGeocarto Int.19916313710.1080/10106049109354290 KasischkeESQuantifying burned area for North American forests: Implications for direct reduction of carbon stocksJ. Geophys. Res.2011116G0400310.1029/2011JG0017071:CAS:528:DC%2BC38XovV2ntLk%3D HansenMCGlobal percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithmEarth Interact.2003711510.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2 VenevskySThonickeKSitchSCramerWSimulating fire regimes in human-dominated ecosystems: Iberian Peninsula case studyGlob. Change Biol.2002898499810.1046/j.1365-2486.2002.00528.x WalkerDAThe Circumpolar Arctic vegetation mapJ. Veg. Sci.20051626728210.1111/j.1654-1103.2005.tb02365.x YoungAMHigueraPEDuffyPAHuFSClimatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate changeEcography20164060661710.1111/ecog.02205 SedanoFRandersonJTMulti-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystemsBiogeosciences2014113739375510.5194/bg-11-3739-2014 TaylorKEStoufferRJMeehlGAAn overview of CMIP5 and the experiment designBull. Am. Meteorol. Soc.20129348549810.1175/BAMS-D-11-00094.1 Van WagnerCEDevelopment and Structure of the Canadian Forest Fire Weather Index System1987 DissingDVerbylaDLSpatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetationCan. J. For. Res.20033377078210.1139/x02-214 HéonJArseneaultDParisienM-AResistance of the boreal forest to high burn ratesProc. Natl Acad. Sci. USA2014111138881389310.1073/pnas.14093161111:CAS:528:DC%2BC2cXhsFSju7vN RompsDMSeeleyJTVollaroDMolinariJProjected increase in lightning strikes in the United States due to global warmingScience201434685185410.1126/science.12591001:CAS:528:DC%2BC2cXhvV2nt7fK KasischkeESTuretskyMRRecent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and AlaskaGeophys. Res. Lett.200633L09703 HuFSArctic tundra fires: natural variability and responses to climate changeFront. Ecol. Environ.20151336937710.1890/150063 PayetteSFilionLWhite spruce expansion at the tree line and recent climatic changeCan. J. For. Res.19851524125110.1139/x85-042 Nowacki, G. & Brock, T. Ecoregions and Subregions of Alaska, EcoMap Version 2.0 (map) (USDA Forest Service, 1995). JohnstoneJFHollingsworthTNChapinFSMackMCChanges in fire regime break the legacy lock on successional trajectories in Alaskan boreal forestGlob. Change Biol.2010161281129510.1111/j.1365-2486.2009.02051.x DavisMBShawRGRange shifts and adaptive responses to Quaternary climate changeScience200129267367910.1126/science.292.5517.6731:CAS:528:DC%2BD3MXjt1elsrY%3D BalshiMSAssessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approachGlob. Change Biol.20091557860010.1111/j.1365-2486.2008.01679.x KochtubajdaBStewartREGyakumJRFlanniganMDSummer convection and lightning over the Mackenzie river basin and their impacts during 1994 and 1995Atmos. Ocean20024019922010.3137/ao.400208 BonanGBPollardDThompsonSLEffects of boreal forest vegetation on global climateNature199235971671810.1038/359716a0 FrenchNHFWhitleyMAJenkinsLKFire disturbance effects on land surface albedo in Alaskan tundraJ. Geophys. Res.201612184185410.1002/2015JG003177 KrauseAKlosterSWilkenskjeldSPaethHThe sensitivity of global wildfires to simulated past, present, and future lightning frequencyJ. Geophys. Res.201411931232210.1002/2013JG002502 ScharlemannJPTannerEVHiedererRKaposVGlobal soil carbon: understanding and managing the largest terrestrial carbon poolCarbon Manag.2014581911:CAS:528:DC%2BC2cXht1emtrw%3D DaleVHClimate change and forest disturbancesBioscience20015172373410.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2 MoutevaGOBlack carbon aerosol dynamics and isotopic composition in Alaska linked with boreal fire emissions and depth of burn in organic soilsGlob. Biogeochem. Cycles2015291977200010.1002/2015GB0052471:CAS:528:DC%2BC2MXhvFemsb7O CecilDJBuechlerDEBlakesleeRJGridded lightning climatology from TRMM-LIS and OTD: dataset descriptionAtmos. Res.2014135–13640441410.1016/j.atmosres.2012.06.028 StocksBJLarge forest fires in Canada, 1959–1997J. Geophys. Res.2002108814910.1029/2001JD000484 KochtubajdaBLightning and fires in the Northwest Territories and responses to future climate changeArctic200659211221 WesterlingALHidalgoHGCayanDRSwetnamTWWarming and earlier spring increase western US forest wildfire activityScience200631394094310.1126/science.11288341:CAS:528:DC%2BD28XotFCitbo%3D SchuurEAGClimate change and the permafrost carbon feedbackNature201552017117910.1038/nature143381:CAS:528:DC%2BC2MXmt1Sms7s%3D ListonGEHiemstraCAThe changing cryosphere: pan-Arctic snow trends (1979–2009)J. Clim.2011245691571210.1175/JCLI-D-11-00081.1 KuuselaKThe Dynamics of Boreal Coniferous Forests1992 GillettNPWeaverAJZwiersFWFlanniganMDDetecting the effect of climate change on Canadian forest firesGeophys. Res. Lett.200431L1821110.1029/2004GL020876 FlanniganMDLoganKAAmiroBDSkinnerWRStocksBJFuture area burned in CanadaClimatic Change20057211610.1007/s10584-005-5935-y1:CAS:528:DC%2BD2MXhtVyisrzM KrawchukMACummingSGEffects of biotic feedback an B Kochtubajda (BFnclimate3329_CR54) 2002; 40 JL Partain (BFnclimate3329_CR26) 2016; 97 D Dissing (BFnclimate3329_CR14) 2003; 33 K Kuusela (BFnclimate3329_CR1) 1992 MA Krawchuk (BFnclimate3329_CR20) 2011; 21 NP Gillett (BFnclimate3329_CR5) 2004; 31 RA Pielke (BFnclimate3329_CR34) 1995; 100 M Meinshausen (BFnclimate3329_CR52) 2011; 109 BJ Stocks (BFnclimate3329_CR13) 2002; 108 MD Flannigan (BFnclimate3329_CR7) 2005; 72 MA Farukh (BFnclimate3329_CR56) 2012; 33 MC Hansen (BFnclimate3329_CR67) 2003; 7 BM Rogers (BFnclimate3329_CR3) 2015; 8 S Venevsky (BFnclimate3329_CR11) 2002; 8 DRN Brown (BFnclimate3329_CR46) 2015; 120 BFnclimate3329_CR59 JP Scharlemann (BFnclimate3329_CR2) 2014; 5 F Sedano (BFnclimate3329_CR25) 2014; 11 MJ López García (BFnclimate3329_CR62) 1991; 6 S Hantson (BFnclimate3329_CR48) 2016; 13 GO Mouteva (BFnclimate3329_CR44) 2015; 29 A Krause (BFnclimate3329_CR22) 2014; 119 MB Davis (BFnclimate3329_CR35) 2001; 292 BM Rogers (BFnclimate3329_CR31) 2013; 10 GB Bonan (BFnclimate3329_CR39) 1992; 359 BI Magi (BFnclimate3329_CR30) 2015; 32 KE Taylor (BFnclimate3329_CR51) 2012; 93 DM Romps (BFnclimate3329_CR21) 2014; 346 ES Euskirchen (BFnclimate3329_CR40) 2009; 19 S Veraverbeke (BFnclimate3329_CR23) 2015; 12 ML Carroll (BFnclimate3329_CR69) 2009; 2 B Kochtubajda (BFnclimate3329_CR55) 2006; 59 TC Bond (BFnclimate3329_CR45) 2013; 118 DA Walker (BFnclimate3329_CR68) 2005; 16 FS Hu (BFnclimate3329_CR15) 2015; 13 ES Kasischke (BFnclimate3329_CR66) 2011; 116 F Mesinger (BFnclimate3329_CR50) 2006; 87 SJ Prichard (BFnclimate3329_CR64) 2014; 44 ES Kasischke (BFnclimate3329_CR4) 2006; 33 E Kasischke (BFnclimate3329_CR12) 2002; 11 GM MacDonald (BFnclimate3329_CR32) 2000; 53 RE Hewitt (BFnclimate3329_CR37) 2015; 31 S Payette (BFnclimate3329_CR38) 1985; 15 MC Mack (BFnclimate3329_CR43) 2011; 475 CE Van Wagner (BFnclimate3329_CR65) 1987 FS Hu (BFnclimate3329_CR10) 2010; 115 MA Harsch (BFnclimate3329_CR33) 2009; 12 S Veraverbeke (BFnclimate3329_CR61) 2014; 23 R Reap (BFnclimate3329_CR58) 1991; 6 J Héon (BFnclimate3329_CR16) 2014; 111 R Kelly (BFnclimate3329_CR17) 2013; 110 P Legendre (BFnclimate3329_CR70) 2012 BFnclimate3329_CR73 NHF French (BFnclimate3329_CR9) 2015; 24 MA Krawchuk (BFnclimate3329_CR41) 2006; 87 HJ Fowler (BFnclimate3329_CR53) 2007; 27 EAG Schuur (BFnclimate3329_CR47) 2015; 520 NHF French (BFnclimate3329_CR42) 2016; 121 AM Young (BFnclimate3329_CR8) 2016; 40 MS Balshi (BFnclimate3329_CR6) 2009; 15 VH Dale (BFnclimate3329_CR36) 2001; 51 SA Parks (BFnclimate3329_CR19) 2015; 25 AL Westerling (BFnclimate3329_CR29) 2006; 313 M Pfeiffer (BFnclimate3329_CR49) 2013; 6 A Beaudoin (BFnclimate3329_CR63) 2014; 44 JF Johnstone (BFnclimate3329_CR18) 2010; 16 MR Turetsky (BFnclimate3329_CR24) 2011; 4 GE Liston (BFnclimate3329_CR28) 2011; 24 C Price (BFnclimate3329_CR71) 1994; 7 M Flannigan (BFnclimate3329_CR27) 2013; 294 WR Burrows (BFnclimate3329_CR57) 2002; 40 DJ Cecil (BFnclimate3329_CR60) 2014; 135–136 D Peterson (BFnclimate3329_CR72) 2010; 10 |
| References_xml | – reference: PfeifferMSpessaAKaplanJOA model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0)Geosci. Model Dev.2013664368510.5194/gmd-6-643-20131:CAS:528:DC%2BC2MXkvFKruro%3D – reference: HansenMCGlobal percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithmEarth Interact.2003711510.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2 – reference: MesingerFNorth American regional reanalysisBull. Am. Meteorol. Soc.20068734336010.1175/BAMS-87-3-343 – reference: FrenchNHFFire in arctic tundra of Alaska: past fire activity, future fire potential, and significance for land management and ecologyInt. J. Wildl. Fire2015241045106110.1071/WF14167 – reference: KrauseAKlosterSWilkenskjeldSPaethHThe sensitivity of global wildfires to simulated past, present, and future lightning frequencyJ. Geophys. Res.201411931232210.1002/2013JG002502 – reference: RogersBMRandersonJTBonanGBHigh-latitude cooling associated with landscape changes from North American boreal forest firesBiogeosciences20131069971810.5194/bg-10-699-2013 – reference: FrenchNHFWhitleyMAJenkinsLKFire disturbance effects on land surface albedo in Alaskan tundraJ. Geophys. Res.201612184185410.1002/2015JG003177 – reference: VeraverbekeSMapping the daily progression of large wildland fires using MODIS active fire dataInt. J. Wildl. Fire20142365566710.1071/WF13015 – reference: KasischkeESQuantifying burned area for North American forests: Implications for direct reduction of carbon stocksJ. Geophys. Res.2011116G0400310.1029/2011JG0017071:CAS:528:DC%2BC38XovV2ntLk%3D – reference: ScharlemannJPTannerEVHiedererRKaposVGlobal soil carbon: understanding and managing the largest terrestrial carbon poolCarbon Manag.2014581911:CAS:528:DC%2BC2cXht1emtrw%3D – reference: GillettNPWeaverAJZwiersFWFlanniganMDDetecting the effect of climate change on Canadian forest firesGeophys. Res. Lett.200431L1821110.1029/2004GL020876 – reference: Nowacki, G. & Brock, T. Ecoregions and Subregions of Alaska, EcoMap Version 2.0 (map) (USDA Forest Service, 1995). – reference: StocksBJLarge forest fires in Canada, 1959–1997J. Geophys. Res.2002108814910.1029/2001JD000484 – reference: WalkerDAThe Circumpolar Arctic vegetation mapJ. Veg. Sci.20051626728210.1111/j.1654-1103.2005.tb02365.x – reference: HéonJArseneaultDParisienM-AResistance of the boreal forest to high burn ratesProc. Natl Acad. Sci. USA2014111138881389310.1073/pnas.14093161111:CAS:528:DC%2BC2cXhsFSju7vN – reference: JohnstoneJFHollingsworthTNChapinFSMackMCChanges in fire regime break the legacy lock on successional trajectories in Alaskan boreal forestGlob. Change Biol.2010161281129510.1111/j.1365-2486.2009.02051.x – reference: MeinshausenMThe RCP greenhouse gas concentrations and their extensions from 1765 to 2300Climatic Change201110921324110.1007/s10584-011-0156-z1:CAS:528:DC%2BC3MXht12gsbfL – reference: CecilDJBuechlerDEBlakesleeRJGridded lightning climatology from TRMM-LIS and OTD: dataset descriptionAtmos. Res.2014135–13640441410.1016/j.atmosres.2012.06.028 – reference: DavisMBShawRGRange shifts and adaptive responses to Quaternary climate changeScience200129267367910.1126/science.292.5517.6731:CAS:528:DC%2BD3MXjt1elsrY%3D – reference: HewittREGetting to the root of the matter: landscape implications of plant-fungal interactions for tree migration in AlaskaLandsc. Ecol.20153189591110.1007/s10980-015-0306-1 – reference: KasischkeESTuretskyMRRecent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and AlaskaGeophys. Res. Lett.200633L09703 – reference: SedanoFRandersonJTMulti-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystemsBiogeosciences2014113739375510.5194/bg-11-3739-2014 – reference: TuretskyMRRecent acceleration of biomass burning and carbon losses in Alaskan forests and peatlandsNat. Geosci.20114273110.1038/ngeo10271:CAS:528:DC%2BC3cXhsF2jur3O – reference: López GarcíaMJCasellesVMapping burns and natural reforestation using thematic Mapper dataGeocarto Int.19916313710.1080/10106049109354290 – reference: DaleVHClimate change and forest disturbancesBioscience20015172373410.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2 – reference: FlanniganMDLoganKAAmiroBDSkinnerWRStocksBJFuture area burned in CanadaClimatic Change20057211610.1007/s10584-005-5935-y1:CAS:528:DC%2BD2MXhtVyisrzM – reference: KellyRRecent burning of boreal forests exceeds fire regime limits of the past 10,000 yearsProc. Natl Acad. Sci. USA2013110130551306010.1073/pnas.1305069110 – reference: VeraverbekeSRogersBMRandersonJTDaily burned area and carbon emissions from boreal fires in AlaskaBiogeosciences2015123579360110.5194/bg-12-3579-20151:CAS:528:DC%2BC2MXhsVamsLrL – reference: FlanniganMGlobal wildland fire season severity in the 21st centuryFor. Ecol. Manag.20132945461 – reference: RogersBMSojaAJGouldenMLRandersonJTInfluence of tree species on continental differences in boreal fires and climate feedbacksNat. Geosci.2015822823410.1038/ngeo23521:CAS:528:DC%2BC2MXhvFCnt7c%3D – reference: BonanGBPollardDThompsonSLEffects of boreal forest vegetation on global climateNature199235971671810.1038/359716a0 – reference: MagiBIGlobal lightning parameterization from CMIP5 climate model outputJ. Atmos. Ocean. Technol.20153243445210.1175/JTECH-D-13-00261.1 – reference: KrawchukMACummingSGFlanniganMDWeinRWBiotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forestEcology20068745846810.1890/05-10211:STN:280:DC%2BD283jtVWrtA%3D%3D – reference: BeaudoinAMapping attributes of Canada’s forests at moderate resolution through k NN and MODIS imageryCan. J. For. Res.20144452153210.1139/cjfr-2013-0401 – reference: SchuurEAGClimate change and the permafrost carbon feedbackNature201552017117910.1038/nature143381:CAS:528:DC%2BC2MXmt1Sms7s%3D – reference: EuskirchenESMcGuireADChapinFSYiSThompsonCCChanges in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacksEcol. Appl.2009191022104310.1890/08-0806.11:STN:280:DC%2BD1MvjsFGrsQ%3D%3D – reference: PayetteSFilionLWhite spruce expansion at the tree line and recent climatic changeCan. J. For. Res.19851524125110.1139/x85-042 – reference: Veraverbeke, S. et al. ABoVE: Ignitions, Burned Area and Emissions of Fires in AK, YT, and NWT, 2001–2015http://dx.doi.org/10.3334/ORNLDAAC/1341 (2017). – reference: MoutevaGOBlack carbon aerosol dynamics and isotopic composition in Alaska linked with boreal fire emissions and depth of burn in organic soilsGlob. Biogeochem. Cycles2015291977200010.1002/2015GB0052471:CAS:528:DC%2BC2MXhvFemsb7O – reference: RompsDMSeeleyJTVollaroDMolinariJProjected increase in lightning strikes in the United States due to global warmingScience201434685185410.1126/science.12591001:CAS:528:DC%2BC2cXhvV2nt7fK – reference: HantsonSThe status and challenge of global fire modellingBiogeosciences2016133359337510.5194/bg-13-3359-2016 – reference: KuuselaKThe Dynamics of Boreal Coniferous Forests1992 – reference: YoungAMHigueraPEDuffyPAHuFSClimatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate changeEcography20164060661710.1111/ecog.02205 – reference: PetersonDWangJIchokuCRemerLAEffects of lightning and other meteorological factors on fire activity in the North American boreal forest: implications for fire weather forecastingAtmos. Chem. Phys.2010106873688810.5194/acp-10-6873-20101:CAS:528:DC%2BC3cXhtFKlt7vI – reference: PartainJLAn assessment of the role of anthropogenic climate change in the Alaska fire season of 2015Bull. Am. Meteorol. Soc.201697S14S1810.1175/BAMS-D-16-0149.1 – reference: BondTCBounding the role of black carbon in the climate system: a scientific assessmentJ. Geophys. Res.2013118538055521:CAS:528:DC%2BC3sXhtVyrtbrF – reference: ListonGEHiemstraCAThe changing cryosphere: pan-Arctic snow trends (1979–2009)J. Clim.2011245691571210.1175/JCLI-D-11-00081.1 – reference: PrichardSJEvaluation of the CONSUME and FOFEM fuel consumption models in pine and mixed hardwood forests of the eastern United StatesCan. J. For. Res.20144478479510.1139/cjfr-2013-0499 – reference: HuFSArctic tundra fires: natural variability and responses to climate changeFront. Ecol. Environ.20151336937710.1890/150063 – reference: KochtubajdaBLightning and fires in the Northwest Territories and responses to future climate changeArctic200659211221 – reference: CarrollMLTownshendJRDiMiceliCMNoojipadyPSohlbergRAA new global raster water mask at 250 m resolutionInt. J. Digit. Earth2009229130810.1080/17538940902951401 – reference: VenevskySThonickeKSitchSCramerWSimulating fire regimes in human-dominated ecosystems: Iberian Peninsula case studyGlob. Change Biol.2002898499810.1046/j.1365-2486.2002.00528.x – reference: ReapRClimatological characteristics and objective prediction of thunderstorms over AlaskaWeather Forecast.1991630931910.1175/1520-0434(1991)006<0309:CCAOPO>2.0.CO;2 – reference: DissingDVerbylaDLSpatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetationCan. J. For. Res.20033377078210.1139/x02-214 – reference: HuFSTundra burning in Alaska: linkages to climatic change and sea ice retreatJ. Geophys. Res.2010115G0400210.1029/2009JD012384 – reference: TaylorKEStoufferRJMeehlGAAn overview of CMIP5 and the experiment designBull. Am. Meteorol. Soc.20129348549810.1175/BAMS-D-11-00094.1 – reference: Van WagnerCEDevelopment and Structure of the Canadian Forest Fire Weather Index System1987 – reference: MacDonaldGMHolocene treeline history and climate change across Northern EurasiaQuat. Res.20005330231110.1006/qres.1999.2123 – reference: FowlerHJBlenkinsopSTebaldiCLinking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modellingInt. J. Climatol.2007271547157810.1002/joc.1556 – reference: HarschMAHulmePEMcGloneMSDuncanRPAre treelines advancing? A global meta-analysis of treeline response to climate warmingEcol. Lett.2009121040104910.1111/j.1461-0248.2009.01355.x – reference: PielkeRAVidalePLThe boreal forest and the polar frontJ. Geophys. Res.1995100257552575810.1029/95JD02418 – reference: FarukhMAHayasakaHActive forest fire occurrences in severe lightning years in AlaskaJ. Nat. Disaster Sci.201233718410.2328/jnds.33.71 – reference: MackMCCarbon loss from an unprecedented Arctic tundra wildfireNature201147548949210.1038/nature102831:CAS:528:DC%2BC3MXpsFajtbg%3D – reference: LegendrePLegendreLNumerical Ecology2012 – reference: BurrowsWRLightning occurrence patterns over Canada and adjacent United States from lightning detection network observationsAtmos. Ocean200240598010.3137/ao.400104 – reference: PriceCRindDThe impact of a 2 × CO2 climate on lightning-caused firesJ. Clim.199471484149410.1175/1520-0442(1994)007<1484:TIOACC>2.0.CO;2 – reference: ParksSAHolsingerLMMillerCNelsonCRWildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progressionEcol. Appl.2015251478149210.1890/14-1430.1 – reference: KochtubajdaBStewartREGyakumJRFlanniganMDSummer convection and lightning over the Mackenzie river basin and their impacts during 1994 and 1995Atmos. Ocean20024019922010.3137/ao.400208 – reference: BalshiMSAssessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approachGlob. Change Biol.20091557860010.1111/j.1365-2486.2008.01679.x – reference: KasischkeEWilliamsDBarryDAnalysis of the patterns of large fires in the boreal forest region of AlaskaInt. J. Wildl. Fire20021113114410.1071/WF02023 – reference: BrownDRNInteractive effects of wildfire and climate on permafrost degradation in Alaskan lowland forestsJ. Geophys. Res.20151201619163710.1002/2015JG003033 – reference: KrawchukMACummingSGEffects of biotic feedback and harvest management on boreal forest fire activity under climate changeEcol. Appl.20112112213610.1890/09-2004.1 – reference: WesterlingALHidalgoHGCayanDRSwetnamTWWarming and earlier spring increase western US forest wildfire activityScience200631394094310.1126/science.11288341:CAS:528:DC%2BD28XotFCitbo%3D – volume: 346 start-page: 851 year: 2014 ident: BFnclimate3329_CR21 publication-title: Science doi: 10.1126/science.1259100 – volume: 10 start-page: 6873 year: 2010 ident: BFnclimate3329_CR72 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-10-6873-2010 – volume: 119 start-page: 312 year: 2014 ident: BFnclimate3329_CR22 publication-title: J. Geophys. Res. doi: 10.1002/2013JG002502 – volume: 13 start-page: 369 year: 2015 ident: BFnclimate3329_CR15 publication-title: Front. Ecol. Environ. doi: 10.1890/150063 – volume: 11 start-page: 3739 year: 2014 ident: BFnclimate3329_CR25 publication-title: Biogeosciences doi: 10.5194/bg-11-3739-2014 – volume: 120 start-page: 1619 year: 2015 ident: BFnclimate3329_CR46 publication-title: J. Geophys. Res. doi: 10.1002/2015JG003033 – volume: 44 start-page: 784 year: 2014 ident: BFnclimate3329_CR64 publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2013-0499 – volume: 59 start-page: 211 year: 2006 ident: BFnclimate3329_CR55 publication-title: Arctic – volume: 25 start-page: 1478 year: 2015 ident: BFnclimate3329_CR19 publication-title: Ecol. Appl. doi: 10.1890/14-1430.1 – volume: 87 start-page: 343 year: 2006 ident: BFnclimate3329_CR50 publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-87-3-343 – volume: 33 start-page: 770 year: 2003 ident: BFnclimate3329_CR14 publication-title: Can. J. For. Res. doi: 10.1139/x02-214 – volume: 13 start-page: 3359 year: 2016 ident: BFnclimate3329_CR48 publication-title: Biogeosciences doi: 10.5194/bg-13-3359-2016 – volume: 72 start-page: 1 year: 2005 ident: BFnclimate3329_CR7 publication-title: Climatic Change doi: 10.1007/s10584-005-5935-y – volume: 87 start-page: 458 year: 2006 ident: BFnclimate3329_CR41 publication-title: Ecology doi: 10.1890/05-1021 – volume: 53 start-page: 302 year: 2000 ident: BFnclimate3329_CR32 publication-title: Quat. Res. doi: 10.1006/qres.1999.2123 – volume: 6 start-page: 31 year: 1991 ident: BFnclimate3329_CR62 publication-title: Geocarto Int. doi: 10.1080/10106049109354290 – volume: 31 start-page: 895 year: 2015 ident: BFnclimate3329_CR37 publication-title: Landsc. Ecol. doi: 10.1007/s10980-015-0306-1 – ident: BFnclimate3329_CR59 – volume-title: Development and Structure of the Canadian Forest Fire Weather Index System year: 1987 ident: BFnclimate3329_CR65 – volume: 359 start-page: 716 year: 1992 ident: BFnclimate3329_CR39 publication-title: Nature doi: 10.1038/359716a0 – volume: 33 start-page: 71 year: 2012 ident: BFnclimate3329_CR56 publication-title: J. Nat. Disaster Sci. doi: 10.2328/jnds.33.71 – volume: 12 start-page: 3579 year: 2015 ident: BFnclimate3329_CR23 publication-title: Biogeosciences doi: 10.5194/bg-12-3579-2015 – volume: 40 start-page: 606 year: 2016 ident: BFnclimate3329_CR8 publication-title: Ecography doi: 10.1111/ecog.02205 – volume: 29 start-page: 1977 year: 2015 ident: BFnclimate3329_CR44 publication-title: Glob. Biogeochem. Cycles doi: 10.1002/2015GB005247 – volume: 12 start-page: 1040 year: 2009 ident: BFnclimate3329_CR33 publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2009.01355.x – volume: 31 start-page: L18211 year: 2004 ident: BFnclimate3329_CR5 publication-title: Geophys. Res. Lett. doi: 10.1029/2004GL020876 – volume: 93 start-page: 485 year: 2012 ident: BFnclimate3329_CR51 publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-11-00094.1 – volume: 44 start-page: 521 year: 2014 ident: BFnclimate3329_CR63 publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2013-0401 – volume: 313 start-page: 940 year: 2006 ident: BFnclimate3329_CR29 publication-title: Science doi: 10.1126/science.1128834 – volume: 520 start-page: 171 year: 2015 ident: BFnclimate3329_CR47 publication-title: Nature doi: 10.1038/nature14338 – volume: 24 start-page: 5691 year: 2011 ident: BFnclimate3329_CR28 publication-title: J. Clim. doi: 10.1175/JCLI-D-11-00081.1 – volume: 24 start-page: 1045 year: 2015 ident: BFnclimate3329_CR9 publication-title: Int. J. Wildl. Fire doi: 10.1071/WF14167 – volume: 111 start-page: 13888 year: 2014 ident: BFnclimate3329_CR16 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1409316111 – volume: 6 start-page: 309 year: 1991 ident: BFnclimate3329_CR58 publication-title: Weather Forecast. doi: 10.1175/1520-0434(1991)006<0309:CCAOPO>2.0.CO;2 – volume: 40 start-page: 199 year: 2002 ident: BFnclimate3329_CR54 publication-title: Atmos. Ocean doi: 10.3137/ao.400208 – volume: 97 start-page: S14 year: 2016 ident: BFnclimate3329_CR26 publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-16-0149.1 – volume: 2 start-page: 291 year: 2009 ident: BFnclimate3329_CR69 publication-title: Int. J. Digit. Earth doi: 10.1080/17538940902951401 – volume: 115 start-page: G04002 year: 2010 ident: BFnclimate3329_CR10 publication-title: J. Geophys. Res. doi: 10.1029/2009JD012384 – volume: 110 start-page: 13055 year: 2013 ident: BFnclimate3329_CR17 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1305069110 – volume: 5 start-page: 81 year: 2014 ident: BFnclimate3329_CR2 publication-title: Carbon Manag. – volume: 21 start-page: 122 year: 2011 ident: BFnclimate3329_CR20 publication-title: Ecol. Appl. doi: 10.1890/09-2004.1 – volume: 15 start-page: 578 year: 2009 ident: BFnclimate3329_CR6 publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2008.01679.x – volume: 23 start-page: 655 year: 2014 ident: BFnclimate3329_CR61 publication-title: Int. J. Wildl. Fire doi: 10.1071/WF13015 – volume: 16 start-page: 267 year: 2005 ident: BFnclimate3329_CR68 publication-title: J. Veg. Sci. doi: 10.1111/j.1654-1103.2005.tb02365.x – volume: 33 start-page: L09703 year: 2006 ident: BFnclimate3329_CR4 publication-title: Geophys. Res. Lett. – volume: 109 start-page: 213 year: 2011 ident: BFnclimate3329_CR52 publication-title: Climatic Change doi: 10.1007/s10584-011-0156-z – volume: 108 start-page: 8149 year: 2002 ident: BFnclimate3329_CR13 publication-title: J. Geophys. Res. doi: 10.1029/2001JD000484 – volume: 32 start-page: 434 year: 2015 ident: BFnclimate3329_CR30 publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-13-00261.1 – volume-title: The Dynamics of Boreal Coniferous Forests year: 1992 ident: BFnclimate3329_CR1 – volume: 475 start-page: 489 year: 2011 ident: BFnclimate3329_CR43 publication-title: Nature doi: 10.1038/nature10283 – volume: 7 start-page: 1 year: 2003 ident: BFnclimate3329_CR67 publication-title: Earth Interact. doi: 10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2 – volume: 135–136 start-page: 404 year: 2014 ident: BFnclimate3329_CR60 publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2012.06.028 – volume: 7 start-page: 1484 year: 1994 ident: BFnclimate3329_CR71 publication-title: J. Clim. doi: 10.1175/1520-0442(1994)007<1484:TIOACC>2.0.CO;2 – volume: 4 start-page: 27 year: 2011 ident: BFnclimate3329_CR24 publication-title: Nat. Geosci. doi: 10.1038/ngeo1027 – volume: 27 start-page: 1547 year: 2007 ident: BFnclimate3329_CR53 publication-title: Int. J. Climatol. doi: 10.1002/joc.1556 – volume-title: Numerical Ecology year: 2012 ident: BFnclimate3329_CR70 – volume: 118 start-page: 5380 year: 2013 ident: BFnclimate3329_CR45 publication-title: J. Geophys. Res. doi: 10.1002/jgrd.50171 – volume: 116 start-page: G04003 year: 2011 ident: BFnclimate3329_CR66 publication-title: J. Geophys. Res. doi: 10.1029/2011JG001707 – volume: 8 start-page: 984 year: 2002 ident: BFnclimate3329_CR11 publication-title: Glob. Change Biol. doi: 10.1046/j.1365-2486.2002.00528.x – volume: 11 start-page: 131 year: 2002 ident: BFnclimate3329_CR12 publication-title: Int. J. Wildl. Fire doi: 10.1071/WF02023 – ident: BFnclimate3329_CR73 doi: 10.3334/ORNLDAAC/1341 – volume: 40 start-page: 59 year: 2002 ident: BFnclimate3329_CR57 publication-title: Atmos. Ocean doi: 10.3137/ao.400104 – volume: 100 start-page: 25755 year: 1995 ident: BFnclimate3329_CR34 publication-title: J. Geophys. Res. doi: 10.1029/95JD02418 – volume: 51 start-page: 723 year: 2001 ident: BFnclimate3329_CR36 publication-title: Bioscience doi: 10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2 – volume: 292 start-page: 673 year: 2001 ident: BFnclimate3329_CR35 publication-title: Science doi: 10.1126/science.292.5517.673 – volume: 16 start-page: 1281 year: 2010 ident: BFnclimate3329_CR18 publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2009.02051.x – volume: 294 start-page: 54 year: 2013 ident: BFnclimate3329_CR27 publication-title: For. Ecol. Manag. – volume: 8 start-page: 228 year: 2015 ident: BFnclimate3329_CR3 publication-title: Nat. Geosci. doi: 10.1038/ngeo2352 – volume: 10 start-page: 699 year: 2013 ident: BFnclimate3329_CR31 publication-title: Biogeosciences doi: 10.5194/bg-10-699-2013 – volume: 121 start-page: 841 year: 2016 ident: BFnclimate3329_CR42 publication-title: J. Geophys. Res. doi: 10.1002/2015JG003177 – volume: 6 start-page: 643 year: 2013 ident: BFnclimate3329_CR49 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-6-643-2013 – volume: 15 start-page: 241 year: 1985 ident: BFnclimate3329_CR38 publication-title: Can. J. For. Res. doi: 10.1139/x85-042 – volume: 19 start-page: 1022 year: 2009 ident: BFnclimate3329_CR40 publication-title: Ecol. Appl. doi: 10.1890/08-0806.1 |
| SSID | ssj0000716369 |
| Score | 2.6360066 |
| Snippet | Changes in climate and fire regimes are transforming the boreal forest, the world’s largest biome. Boreal North America recently experienced two years with... Changes in climate and fire regimes are transforming the boreal forest, the world's largest biome. Boreal North America recently experienced two years with... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 529 |
| SubjectTerms | 704/158/2454 704/158/2465 Annual variations Area Boreal ecosystems Boreal forests Burning Carbon Climate Climate Change Climate Change/Climate Change Impacts Combustion Dynamics Environment Environmental Law/Policy/Ecojustice Fires Forests Ignition Interannual variability Lightning Precipitation Temperature effects Treeline Vegetation |
| Title | Lightning as a major driver of recent large fire years in North American boreal forests |
| URI | https://link.springer.com/article/10.1038/nclimate3329 https://www.proquest.com/docview/1917964744 |
| Volume | 7 |
| WOSCitedRecordID | wos000404545400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database (ProQuest) customDbUrl: eissn: 1758-6798 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0000716369 issn: 1758-678X databaseCode: PCBAR dateStart: 20070601 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1758-6798 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0000716369 issn: 1758-678X databaseCode: BENPR dateStart: 20070601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1758-6798 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0000716369 issn: 1758-678X databaseCode: M2P dateStart: 20070601 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED6Nsoe9jAGb6GDoHgYvyCKNEyd5Qm0F4gGqCoHoW2Q7jlRUEpYUpP17zsaBamJ72aMV62Tl7Ps-353vAH7GXJZJJlJW6iBhUVIIpuIBZ4YT3vMgKELuHgpfJJNJOptlU-9wa31aZWcTnaEuam195Mf2XmFfTUbRycMvZrtG2eiqb6GxBuu2UlnUg_XR6WR69eplIQAV3PW1I5hMGVnmmc9-D3h6XOnFnHih4dwxzBVceiObf8RHHeycbfzvgr_AZ084cfiyQzbhg6m2oH9JXLlunEsdD3HsFuhG23B7Ye_r1l2CskWJ9_KubrBobAIH1iWSiSSgwoVNIceSLCb-ptPS4rxCFwTCLgiEtL2IhiLRYlp1-xVuzk6vx-fMt19gmljckpWkuNjWP1OBjnUSxEpwPaBjKqNU2nikSWRqpC1vrWWsMqWyQgmVCV3GphCGf4NeVVdmB7AMB8IkaVCUxBiMiDMjIh0oEhhlSWiiPhx1Pz_Xvja5bZGxyF2MnKf5qqr6cPA6--GlJsdf5u11msn9yWzzN7X04bDT7crnd-R8_7ecXfgUWqx3Obx70Fs2j-YHfNRPy3nb7PsduQ9rl-GURtPxaHj1DDlL70s |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BrQQX-kQspe0cCpfKIhsnTnKoqmpbxGof4kDVvaW240iLlgSSBcSf4jd27E2WVdX2xqHHKNEotsf-vnl4BuBDyGUeJSJmufYiFkSZYCrscmY44T33vMzn7qLwMBqP48kkOV2D-_YujE2rbM9Ed1BnpbY-8iNrV9hbk0Hw-fKK2a5RNrrattBYqMXA3N2SyVZ_6n-l9T3w_eNvZ70T1nQVYJrIyZzl9D-hLeulPB3qyAuV4LpL2ieDWNowm4lkbKSt2qxlqBKlkkwJlQidhyYThpPcdXgSkCVk99XIP136dAiuBXdd9AiUY0Y4MGly7T0eHxV6NiUWajh3fHYFBR-o7W_RWAdyx8_-t-l5DtsNncYvC_1_AWumeAmdEVkCZeUCBniIPTch7ukV_Bhab4R1BqGsUeKFPC8rzCqbnoJljgQABMM4swnymBMe4B2NqsZpgS7EhW2IC2nzEMlGIv00S_Vr-P4o49yBjaIszC5g7neFiWIvy4kPGREmRgTaUyQwSCLfBB342C52qpvK67YByCx1GQA8TldVowMHy68vFxVH_vLdfqsJaXPu1OmDGnTgsNWlldd_kLP3bznvYfPkbDRMh_3x4A1s-ZbVuGzlfdiYV9fmLTzVN_NpXb1zewHh52Nr1y-xgkm6 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghCX8qzYUmAOtBdkbTaOneSAEGpZUXW72gOIvQXbsaVFS1KSBdS_xq9j7E3aFQJuPXCMEo1i-7O_eXkG4IXgyqW5zJgzUcqStJRMixFnlhPf8ygqYx4uCk_S6TSbz_PZFvzs78L4tMr-TAwHdVkb7yMfervC35pMkqHr0iJmx-PX51-Z7yDlI619O401RE7txQ8y39pXJ8e01gdxPH77_ugd6zoMMEOKyoo5-jfhS3zpyAiTRkJLbkaERJVkyofcbKoyq3wFZ6OEzrXOSy11Lo0TtpSWk9wbcDNNhPDphGfx7NK_Q9QteeioRwSdMeKEeZd3H_FsWJnlgjRSy3nQbTcY8UrN_S0yGwhvfPd_nqp7sNOp2fhmvS_uw5atHsDgjCyEugmBBDzEozA54ekhfJx4L4V3EqFqUeEX9blusGx82grWDokYiJ5x6RPn0RFP4AWNqsVFhSH0hX3oC2lTkfKNZAzQjLWP4MO1jHMXtqu6so8BXTySNs2i0pGeZKXIrUxMpElgkqexTQbwsl_4wnQV2X1jkGURMgN4VmzCZAAHl1-fryuR_OW7_R4VRXcetcUVJAZw2ONq4_Uf5Oz9W85zuE2gKiYn09MncCf2yk5IYt6H7VXzzT6FW-b7atE2z8K2QPh03eD6BX4cUoA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightning+as+a+major+driver+of+recent+large+fire+years+in+North+American+boreal+forests&rft.jtitle=Nature+climate+change&rft.au=Veraverbeke%2C+Sander&rft.au=Rogers%2C+Brendan+M.&rft.au=Goulden%2C+Mike+L.&rft.au=Jandt%2C+Randi+R.&rft.date=2017-07-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1758-678X&rft.eissn=1758-6798&rft.volume=7&rft.issue=7&rft.spage=529&rft.epage=534&rft_id=info:doi/10.1038%2Fnclimate3329&rft.externalDocID=10_1038_nclimate3329 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-678X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-678X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-678X&client=summon |