Lightning as a major driver of recent large fire years in North American boreal forests

Changes in climate and fire regimes are transforming the boreal forest, the world’s largest biome. Boreal North America recently experienced two years with large burned area: 2014 in the Northwest Territories and 2015 in Alaska. Here we use climate, lightning, fire and vegetation data sets to assess...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature climate change Ročník 7; číslo 7; s. 529 - 534
Hlavní autoři: Veraverbeke, Sander, Rogers, Brendan M., Goulden, Mike L., Jandt, Randi R., Miller, Charles E., Wiggins, Elizabeth B., Randerson, James T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 01.07.2017
Nature Publishing Group
Témata:
ISSN:1758-678X, 1758-6798
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Changes in climate and fire regimes are transforming the boreal forest, the world’s largest biome. Boreal North America recently experienced two years with large burned area: 2014 in the Northwest Territories and 2015 in Alaska. Here we use climate, lightning, fire and vegetation data sets to assess the mechanisms contributing to large fire years. We find that lightning ignitions have increased since 1975, and that the 2014 and 2015 events coincided with a record number of lightning ignitions and exceptionally high levels of burning near the northern treeline. Lightning ignition explained more than 55% of the interannual variability in burned area, and was correlated with temperature and precipitation, which are projected to increase by mid-century. The analysis shows that lightning drives interannual and long-term ignition and burned area dynamics in boreal North America, and implies future ignition increases may increase carbon loss while accelerating the northward expansion of boreal forest. The boreal forest is being transformed by changes in its climate–fire regime. Analysis now shows that lightning drives year-to-year and long-term ignition and burned area trends in boreal North America.
AbstractList Changes in climate and fire regimes are transforming the boreal forest, the world’s largest biome. Boreal North America recently experienced two years with large burned area: 2014 in the Northwest Territories and 2015 in Alaska. Here we use climate, lightning, fire and vegetation data sets to assess the mechanisms contributing to large fire years. We find that lightning ignitions have increased since 1975, and that the 2014 and 2015 events coincided with a record number of lightning ignitions and exceptionally high levels of burning near the northern treeline. Lightning ignition explained more than 55% of the interannual variability in burned area, and was correlated with temperature and precipitation, which are projected to increase by mid-century. The analysis shows that lightning drives interannual and long-term ignition and burned area dynamics in boreal North America, and implies future ignition increases may increase carbon loss while accelerating the northward expansion of boreal forest. The boreal forest is being transformed by changes in its climate–fire regime. Analysis now shows that lightning drives year-to-year and long-term ignition and burned area trends in boreal North America.
Changes in climate and fire regimes are transforming the boreal forest, the world's largest biome. Boreal North America recently experienced two years with large burned area: 2014 in the Northwest Territories and 2015 in Alaska. Here we use climate, lightning, fire and vegetation data sets to assess the mechanisms contributing to large fire years. We find that lightning ignitions have increased since 1975, and that the 2014 and 2015 events coincided with a record number of lightning ignitions and exceptionally high levels of burning near the northern treeline. Lightning ignition explained more than 55% of the interannual variability in burned area, and was correlated with temperature and precipitation, which are projected to increase by mid-century. The analysis shows that lightning drives interannual and long-term ignition and burned area dynamics in boreal North America, and implies future ignition increases may increase carbon loss while accelerating the northward expansion of boreal forest.
Author Veraverbeke, Sander
Wiggins, Elizabeth B.
Rogers, Brendan M.
Randerson, James T.
Goulden, Mike L.
Jandt, Randi R.
Miller, Charles E.
Author_xml – sequence: 1
  givenname: Sander
  orcidid: 0000-0003-1362-5125
  surname: Veraverbeke
  fullname: Veraverbeke, Sander
  email: s.s.n.veraverbeke@vu.nl
  organization: Department of Earth System Science, University of California, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam
– sequence: 2
  givenname: Brendan M.
  surname: Rogers
  fullname: Rogers, Brendan M.
  organization: Woods Hole Research Center
– sequence: 3
  givenname: Mike L.
  surname: Goulden
  fullname: Goulden, Mike L.
  organization: Department of Earth System Science, University of California
– sequence: 4
  givenname: Randi R.
  surname: Jandt
  fullname: Jandt, Randi R.
  organization: Alaska Fire Science Consortium, University of Alaska
– sequence: 5
  givenname: Charles E.
  surname: Miller
  fullname: Miller, Charles E.
  organization: NASA Jet Propulsion Laboratory, California Institute of Technology
– sequence: 6
  givenname: Elizabeth B.
  surname: Wiggins
  fullname: Wiggins, Elizabeth B.
  organization: Department of Earth System Science, University of California
– sequence: 7
  givenname: James T.
  surname: Randerson
  fullname: Randerson, James T.
  organization: Department of Earth System Science, University of California
BookMark eNp1kE9LAzEQxYNUsNbe_AABr64m3U12cyzFf1D0ouhtSbKzbco2qZNU6Ld3pSJFdC5vDr_3ZninZOCDB0LOObviLK-uve3cWifI84k6IkNeiiqTpaoGP3v1dkLGMa5YPyWXuVRD8jp3i2Xyzi-ojlTTtV4FpA26D0AaWopgwSfaaVwAbR0C3YHGSJ2njwHTkk7XgM5qT01A0B1te4kpnpHjVncRxt86Ii-3N8-z-2z-dPcwm84zWzCRsrZspGCVUIZZYUsmjMwtN4zpotK5YBxKXYFmVS6tFkYZoxojjZK2FdBIyEfkYp-7wfC-7S_Xq7BF35-sueKlkkVZFD11uacshhgR2nqDfVm4qzmrv9qrD9vr8ckv3Lqkkws-oXbdf6Zsb4p9tl8AHnzyF_8JBUOHjw
CitedBy_id crossref_primary_10_3390_f12010107
crossref_primary_10_1111_gcb_14888
crossref_primary_10_3390_land11050651
crossref_primary_10_1016_j_agrformet_2020_107990
crossref_primary_10_1126_sciadv_adp7765
crossref_primary_10_5194_bg_21_109_2024
crossref_primary_10_1016_j_ecoinf_2024_102531
crossref_primary_10_1029_2020JD033180
crossref_primary_10_1038_s41477_019_0495_8
crossref_primary_10_1088_1748_9326_ad7871
crossref_primary_10_1007_s13280_020_01490_x
crossref_primary_10_3390_atmos16040440
crossref_primary_10_1016_j_gloplacha_2025_104948
crossref_primary_10_1088_1748_9326_ac8e85
crossref_primary_10_3390_su14095462
crossref_primary_10_1029_2023AV001148
crossref_primary_10_1029_2024AV001327
crossref_primary_10_1111_1365_2664_13876
crossref_primary_10_3390_f8110422
crossref_primary_10_1016_j_scitotenv_2023_166132
crossref_primary_10_1029_2022JD037236
crossref_primary_10_1088_1748_9326_ae0491
crossref_primary_10_1038_s41467_022_31597_6
crossref_primary_10_1186_s42408_025_00376_1
crossref_primary_10_1007_s10021_023_00854_0
crossref_primary_10_1038_s41586_024_07028_5
crossref_primary_10_1002_ecs2_4737
crossref_primary_10_3390_atmos11090918
crossref_primary_10_1080_10106049_2021_1973581
crossref_primary_10_1016_j_ijdrr_2023_104221
crossref_primary_10_1038_s41558_024_02176_y
crossref_primary_10_1016_j_atmosenv_2024_120436
crossref_primary_10_1088_1748_9326_abbc3b
crossref_primary_10_1098_rstb_2023_0446
crossref_primary_10_1029_2020JD033967
crossref_primary_10_1139_cjfr_2024_0099
crossref_primary_10_1002_qj_4777
crossref_primary_10_1111_gcb_70247
crossref_primary_10_1088_1748_9326_acf50b
crossref_primary_10_3390_su14159193
crossref_primary_10_3390_rs16122118
crossref_primary_10_1007_s10980_022_01506_9
crossref_primary_10_1002_ecs2_4605
crossref_primary_10_1038_s41558_020_00922_6
crossref_primary_10_1093_femsec_fiac069
crossref_primary_10_3389_ffgc_2020_00087
crossref_primary_10_1088_1748_9326_aa9a76
crossref_primary_10_5194_tc_12_123_2018
crossref_primary_10_3390_fire6050195
crossref_primary_10_1029_2023MS003749
crossref_primary_10_1038_s44304_025_00120_4
crossref_primary_10_1016_j_earscirev_2020_103324
crossref_primary_10_1111_gcb_17130
crossref_primary_10_1016_j_foreco_2020_118127
crossref_primary_10_1029_2023JD039136
crossref_primary_10_1029_2020JG005693
crossref_primary_10_1016_j_atmosres_2023_107093
crossref_primary_10_1002_eap_3061
crossref_primary_10_1016_j_agrformet_2020_108075
crossref_primary_10_1038_s41612_022_00274_2
crossref_primary_10_1029_2020GL087911
crossref_primary_10_3389_fenvs_2024_1438262
crossref_primary_10_1088_2752_5295_adec0f
crossref_primary_10_1088_1748_9326_ad8bdc
crossref_primary_10_1029_2022GL099017
crossref_primary_10_3390_atmos13050662
crossref_primary_10_1126_science_abe1739
crossref_primary_10_1088_1748_9326_aa9853
crossref_primary_10_5194_esd_15_1161_2024
crossref_primary_10_1002_ppp_2048
crossref_primary_10_1038_s41561_024_01505_2
crossref_primary_10_3390_rs14174180
crossref_primary_10_1086_703418
crossref_primary_10_1088_1748_9326_aafc1b
crossref_primary_10_1109_TGRS_2024_3487774
crossref_primary_10_1002_joc_7678
crossref_primary_10_3390_f15050844
crossref_primary_10_1016_j_atmosenv_2024_120336
crossref_primary_10_3389_ffgc_2020_00090
crossref_primary_10_1016_j_rsase_2025_101540
crossref_primary_10_3390_fire7030079
crossref_primary_10_1088_1748_9326_abf0d0
crossref_primary_10_3389_fclim_2021_716464
crossref_primary_10_3390_atmos14010029
crossref_primary_10_1111_gcb_70389
crossref_primary_10_3389_ffgc_2022_965605
crossref_primary_10_1038_s41558_021_01011_y
crossref_primary_10_1126_science_abn4419
crossref_primary_10_1109_TGRS_2020_2968029
crossref_primary_10_1175_JAMC_D_21_0106_1
crossref_primary_10_1002_2017RG000559
crossref_primary_10_1177_0959683619838036
crossref_primary_10_3390_rs13101966
crossref_primary_10_1088_1748_9326_ab6d3a
crossref_primary_10_1088_1748_9326_aba101
crossref_primary_10_3390_atmos15010106
crossref_primary_10_1177_0959683619838039
crossref_primary_10_1071_WF18220
crossref_primary_10_1029_2018GL078294
crossref_primary_10_3390_heritage5040187
crossref_primary_10_1002_ecs2_4159
crossref_primary_10_1111_gcb_14287
crossref_primary_10_1088_1742_6596_1624_2_022025
crossref_primary_10_1029_2022JG007055
crossref_primary_10_1016_j_foreco_2024_122262
crossref_primary_10_1111_nph_15195
crossref_primary_10_1088_1748_9326_ac8696
crossref_primary_10_3390_f13111867
crossref_primary_10_1016_j_scib_2024_05_022
crossref_primary_10_3389_ffgc_2021_701277
crossref_primary_10_1038_s44304_025_00113_3
crossref_primary_10_1038_s43247_025_02505_9
crossref_primary_10_1134_S0001433819090469
crossref_primary_10_1002_joc_6648
crossref_primary_10_1071_WF17123
crossref_primary_10_1073_pnas_2024872118
crossref_primary_10_1007_s40641_019_00128_9
crossref_primary_10_1038_s43247_022_00356_2
crossref_primary_10_1038_s43017_020_0085_3
crossref_primary_10_1088_1748_9326_ac60d6
crossref_primary_10_1088_1748_9326_ac2ce7
crossref_primary_10_1016_j_scitotenv_2018_09_115
crossref_primary_10_1038_s41467_021_26232_9
crossref_primary_10_1029_2022JG006891
crossref_primary_10_3390_rs17132162
crossref_primary_10_1175_JAMC_D_19_0209_1
crossref_primary_10_1016_j_quascirev_2023_108171
crossref_primary_10_5194_essd_15_1151_2023
crossref_primary_10_1038_s41561_023_01322_z
crossref_primary_10_1016_j_agrformet_2025_110507
crossref_primary_10_1088_1748_9326_ac2f64
crossref_primary_10_1002_eap_1768
crossref_primary_10_1038_nclimate3432
crossref_primary_10_1088_1748_9326_ab0d44
crossref_primary_10_1007_s11430_024_1397_2
crossref_primary_10_3389_fevo_2021_728958
crossref_primary_10_1029_2021GL096814
crossref_primary_10_1002_hyp_14640
crossref_primary_10_1007_s13143_023_00346_0
crossref_primary_10_1029_2021GL093789
crossref_primary_10_5194_esd_14_55_2023
crossref_primary_10_1139_er_2018_0041
crossref_primary_10_5194_acp_21_8557_2021
crossref_primary_10_1016_j_agrformet_2024_110108
crossref_primary_10_1111_gcb_15158
crossref_primary_10_1017_qua_2020_48
crossref_primary_10_3390_f15111981
crossref_primary_10_1016_j_agrformet_2021_108712
crossref_primary_10_3389_fevo_2018_00209
crossref_primary_10_1016_j_accre_2025_01_003
crossref_primary_10_1016_j_agrformet_2024_110219
crossref_primary_10_5194_acp_25_6365_2025
crossref_primary_10_1109_JSTARS_2024_3400218
crossref_primary_10_1126_science_adl5889
crossref_primary_10_1088_2515_7620_acdfad
crossref_primary_10_1029_2021RG000757
crossref_primary_10_1029_2024EF005098
crossref_primary_10_5194_essd_17_2249_2025
crossref_primary_10_5194_bg_19_4779_2022
crossref_primary_10_1111_jvs_12736
crossref_primary_10_1016_j_agrformet_2024_110216
crossref_primary_10_1007_s11368_023_03533_8
crossref_primary_10_1016_j_agrformet_2021_108723
crossref_primary_10_1016_j_gloenvcha_2024_102894
crossref_primary_10_1016_j_scitotenv_2021_146361
crossref_primary_10_1111_gcb_15214
crossref_primary_10_3390_fire6050215
crossref_primary_10_1038_s41558_023_01851_w
crossref_primary_10_1038_s41558_021_01016_7
crossref_primary_10_1016_j_atmosres_2025_108369
crossref_primary_10_1126_sciadv_adt5088
crossref_primary_10_3390_f15010216
crossref_primary_10_1038_s44284_025_00204_2
crossref_primary_10_1016_j_quascirev_2017_10_018
crossref_primary_10_1029_2024JD041806
crossref_primary_10_1139_cjfr_2018_0293
crossref_primary_10_3390_atmos16091085
crossref_primary_10_1073_pnas_1914135117
crossref_primary_10_1186_s40494_018_0186_1
crossref_primary_10_1016_j_gloplacha_2025_105076
crossref_primary_10_5194_bg_18_5053_2021
crossref_primary_10_1146_annurev_nucl_121423_101055
crossref_primary_10_1016_j_jag_2024_103776
crossref_primary_10_3390_rs13050897
crossref_primary_10_5194_acp_21_17529_2021
crossref_primary_10_1016_j_epsr_2024_110296
crossref_primary_10_1016_j_agrformet_2024_110081
crossref_primary_10_1080_07055900_2019_1576023
crossref_primary_10_3389_fenvs_2024_1460155
crossref_primary_10_1016_j_quascirev_2020_106697
crossref_primary_10_1029_2020JD032918
crossref_primary_10_1186_s40645_020_00366_8
crossref_primary_10_5194_acp_25_7719_2025
crossref_primary_10_1029_2020JG005720
crossref_primary_10_1007_s10021_019_00398_2
crossref_primary_10_3390_f12081023
crossref_primary_10_1002_ecs2_4344
crossref_primary_10_1029_2023GL103096
crossref_primary_10_5194_bg_16_3883_2019
crossref_primary_10_1039_c8pp90063a
crossref_primary_10_1016_j_oneear_2021_03_002
crossref_primary_10_1029_2022GL099669
crossref_primary_10_1088_1748_9326_ac59aa
crossref_primary_10_1038_s41598_021_81233_4
crossref_primary_10_5194_bg_20_1537_2023
crossref_primary_10_3390_fire5040106
crossref_primary_10_1016_j_foreco_2023_121615
crossref_primary_10_1134_S1995425524700446
crossref_primary_10_1016_j_palaeo_2024_112359
crossref_primary_10_1111_gcb_14380
crossref_primary_10_1029_2020RG000726
crossref_primary_10_1016_j_foreco_2022_120007
crossref_primary_10_1002_ecs2_2156
crossref_primary_10_1038_s41586_021_03437_y
crossref_primary_10_1088_1748_9326_ac98d7
crossref_primary_10_1155_2023_9953551
crossref_primary_10_1111_gcb_15591
crossref_primary_10_3390_su16030957
crossref_primary_10_5194_cp_16_799_2020
crossref_primary_10_1139_cjfr_2020_0466
crossref_primary_10_3390_rs14020313
crossref_primary_10_1002_adfm_202300403
crossref_primary_10_1007_s40641_020_00169_5
crossref_primary_10_1139_as_2022_0050
crossref_primary_10_3390_f10070534
crossref_primary_10_1071_WF24062
crossref_primary_10_1016_j_scitotenv_2022_153021
crossref_primary_10_3390_atmos14060957
crossref_primary_10_5194_bg_16_57_2019
crossref_primary_10_3390_f14081577
crossref_primary_10_1088_1748_9326_acacb2
crossref_primary_10_3390_fire8070282
crossref_primary_10_1007_s11783_024_1890_6
crossref_primary_10_1088_1748_9326_add754
crossref_primary_10_3390_fire6080301
crossref_primary_10_3390_rs13122311
crossref_primary_10_3390_rs15020413
crossref_primary_10_1016_j_jenvman_2018_07_097
crossref_primary_10_1029_2021JD035589
crossref_primary_10_3390_rs17152719
crossref_primary_10_1029_2021EF002560
crossref_primary_10_1002_2017GB005787
crossref_primary_10_5194_bg_20_2785_2023
crossref_primary_10_5194_bg_21_279_2024
crossref_primary_10_5194_nhess_24_445_2024
crossref_primary_10_1002_2017JG004080
crossref_primary_10_1038_s41559_025_02862_w
crossref_primary_10_1111_gcb_17151
crossref_primary_10_1155_2022_9102145
crossref_primary_10_1016_j_ecoinf_2021_101471
crossref_primary_10_1111_brv_12804
crossref_primary_10_1139_er_2021_0110
crossref_primary_10_1029_2018MS001368
crossref_primary_10_1080_07038992_2023_2216312
crossref_primary_10_1016_j_ecolmodel_2023_110367
crossref_primary_10_1038_d41586_020_03561_1
crossref_primary_10_3390_atmos11090956
crossref_primary_10_1088_1748_9326_ac6311
crossref_primary_10_1139_cjfr_2019_0094
crossref_primary_10_1016_j_chemgeo_2024_122022
crossref_primary_10_1088_1748_9326_aaea86
crossref_primary_10_3390_fire4030057
crossref_primary_10_1139_cjfas_2020_0141
crossref_primary_10_1016_j_quascirev_2018_12_003
crossref_primary_10_1016_j_scitotenv_2017_12_013
crossref_primary_10_1071_WF19023
crossref_primary_10_1177_0959683619846978
crossref_primary_10_3390_f11050516
crossref_primary_10_1016_j_gloplacha_2023_104076
crossref_primary_10_1029_2019MS001955
crossref_primary_10_5194_esd_14_223_2023
crossref_primary_10_1038_s41586_024_07878_z
crossref_primary_10_1016_j_rse_2018_06_020
crossref_primary_10_1029_2021GL096095
crossref_primary_10_1016_j_cliser_2025_100592
crossref_primary_10_3390_rs16173306
crossref_primary_10_1088_1748_9326_ac6886
crossref_primary_10_1088_1748_9326_ad63bf
crossref_primary_10_1111_pce_13916
crossref_primary_10_1029_2019RG000652
crossref_primary_10_1088_1748_9326_ac4c1e
crossref_primary_10_1016_j_dendro_2020_125727
crossref_primary_10_1177_0959683619865593
crossref_primary_10_1111_1365_2745_13446
crossref_primary_10_1029_2024JD042319
crossref_primary_10_1038_s41612_024_00781_4
crossref_primary_10_1016_j_scitotenv_2022_156550
crossref_primary_10_1139_as_2021_0042
crossref_primary_10_3389_fenvs_2022_949271
crossref_primary_10_1029_2024JD042674
crossref_primary_10_5194_esd_13_251_2022
crossref_primary_10_5194_acp_20_12813_2020
crossref_primary_10_1016_j_ecolind_2024_112841
crossref_primary_10_1016_j_jclimf_2024_100055
crossref_primary_10_1002_rse2_238
crossref_primary_10_1080_07038992_2019_1643707
crossref_primary_10_3390_fire5040096
crossref_primary_10_1071_WF19129
crossref_primary_10_1088_1748_9326_ace205
crossref_primary_10_1007_s41982_017_0002_6
crossref_primary_10_16993_tellusb_34
crossref_primary_10_1029_2020JG006078
crossref_primary_10_1029_2024GL112193
crossref_primary_10_1139_cjfr_2021_0353
crossref_primary_10_3390_f9040159
crossref_primary_10_1111_geb_12872
crossref_primary_10_1007_s10980_019_00780_4
crossref_primary_10_1093_biosci_biab139
Cites_doi 10.1126/science.1259100
10.5194/acp-10-6873-2010
10.1002/2013JG002502
10.1890/150063
10.5194/bg-11-3739-2014
10.1002/2015JG003033
10.1139/cjfr-2013-0499
10.1890/14-1430.1
10.1175/BAMS-87-3-343
10.1139/x02-214
10.5194/bg-13-3359-2016
10.1007/s10584-005-5935-y
10.1890/05-1021
10.1006/qres.1999.2123
10.1080/10106049109354290
10.1007/s10980-015-0306-1
10.1038/359716a0
10.2328/jnds.33.71
10.5194/bg-12-3579-2015
10.1111/ecog.02205
10.1002/2015GB005247
10.1111/j.1461-0248.2009.01355.x
10.1029/2004GL020876
10.1175/BAMS-D-11-00094.1
10.1139/cjfr-2013-0401
10.1126/science.1128834
10.1038/nature14338
10.1175/JCLI-D-11-00081.1
10.1071/WF14167
10.1073/pnas.1409316111
10.1175/1520-0434(1991)006<0309:CCAOPO>2.0.CO;2
10.3137/ao.400208
10.1175/BAMS-D-16-0149.1
10.1080/17538940902951401
10.1029/2009JD012384
10.1073/pnas.1305069110
10.1890/09-2004.1
10.1111/j.1365-2486.2008.01679.x
10.1071/WF13015
10.1111/j.1654-1103.2005.tb02365.x
10.1007/s10584-011-0156-z
10.1029/2001JD000484
10.1175/JTECH-D-13-00261.1
10.1038/nature10283
10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2
10.1016/j.atmosres.2012.06.028
10.1175/1520-0442(1994)007<1484:TIOACC>2.0.CO;2
10.1038/ngeo1027
10.1002/joc.1556
10.1002/jgrd.50171
10.1029/2011JG001707
10.1046/j.1365-2486.2002.00528.x
10.1071/WF02023
10.3334/ORNLDAAC/1341
10.3137/ao.400104
10.1029/95JD02418
10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2
10.1126/science.292.5517.673
10.1111/j.1365-2486.2009.02051.x
10.1038/ngeo2352
10.5194/bg-10-699-2013
10.1002/2015JG003177
10.5194/gmd-6-643-2013
10.1139/x85-042
10.1890/08-0806.1
ContentType Journal Article
Copyright Springer Nature Limited 2017
Copyright Nature Publishing Group Jul 2017
Copyright_xml – notice: Springer Nature Limited 2017
– notice: Copyright Nature Publishing Group Jul 2017
DBID AAYXX
CITATION
3V.
7ST
7TG
7TN
7XB
88I
8AF
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
H97
HCIFZ
KL.
L.G
M2P
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
SOI
DOI 10.1038/nclimate3329
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
STEM Database
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Science Database (ProQuest)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1758-6798
EndPage 534
ExternalDocumentID 10_1038_nclimate3329
GeographicLocations North America
GeographicLocations_xml – name: North America
GroupedDBID 0R~
39C
3V.
4.4
53G
5BI
70F
88I
8AF
8FE
8FH
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACHQT
ADBBV
AENEX
AEUYN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHDO
AGHTU
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
D1K
DWQXO
EBS
EE.
EJD
EXGXG
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
K6-
M2P
NNMJJ
O9-
PCBAR
PQQKQ
PROAC
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
AFANA
AFFHD
AGSTI
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7ST
7TG
7TN
7XB
8FK
C1K
F1W
H96
H97
KL.
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
ID FETCH-LOGICAL-c405t-f7d650859b0c5c705b63c1b00a48a3501e7a8ea0836ca5b9bb9db6b96cf5ed6e3
IEDL.DBID BENPR
ISICitedReferencesCount 353
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404545400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1758-678X
IngestDate Wed Jul 16 16:01:48 EDT 2025
Sat Nov 29 04:24:59 EST 2025
Tue Nov 18 21:58:02 EST 2025
Fri Feb 21 02:38:28 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-f7d650859b0c5c705b63c1b00a48a3501e7a8ea0836ca5b9bb9db6b96cf5ed6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1362-5125
OpenAccessLink https://www.nature.com/articles/nclimate3329.pdf
PQID 1917964744
PQPubID 1056412
PageCount 6
ParticipantIDs proquest_journals_1917964744
crossref_primary_10_1038_nclimate3329
crossref_citationtrail_10_1038_nclimate3329
springer_journals_10_1038_nclimate3329
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature climate change
PublicationTitleAbbrev Nature Clim Change
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References FlanniganMGlobal wildland fire season severity in the 21st centuryFor. Ecol. Manag.20132945461
PetersonDWangJIchokuCRemerLAEffects of lightning and other meteorological factors on fire activity in the North American boreal forest: implications for fire weather forecastingAtmos. Chem. Phys.2010106873688810.5194/acp-10-6873-20101:CAS:528:DC%2BC3cXhtFKlt7vI
CarrollMLTownshendJRDiMiceliCMNoojipadyPSohlbergRAA new global raster water mask at 250 m resolutionInt. J. Digit. Earth2009229130810.1080/17538940902951401
RogersBMSojaAJGouldenMLRandersonJTInfluence of tree species on continental differences in boreal fires and climate feedbacksNat. Geosci.2015822823410.1038/ngeo23521:CAS:528:DC%2BC2MXhvFCnt7c%3D
TuretskyMRRecent acceleration of biomass burning and carbon losses in Alaskan forests and peatlandsNat. Geosci.20114273110.1038/ngeo10271:CAS:528:DC%2BC3cXhsF2jur3O
FarukhMAHayasakaHActive forest fire occurrences in severe lightning years in AlaskaJ. Nat. Disaster Sci.201233718410.2328/jnds.33.71
ParksSAHolsingerLMMillerCNelsonCRWildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progressionEcol. Appl.2015251478149210.1890/14-1430.1
PartainJLAn assessment of the role of anthropogenic climate change in the Alaska fire season of 2015Bull. Am. Meteorol. Soc.201697S14S1810.1175/BAMS-D-16-0149.1
BondTCBounding the role of black carbon in the climate system: a scientific assessmentJ. Geophys. Res.2013118538055521:CAS:528:DC%2BC3sXhtVyrtbrF
MackMCCarbon loss from an unprecedented Arctic tundra wildfireNature201147548949210.1038/nature102831:CAS:528:DC%2BC3MXpsFajtbg%3D
PriceCRindDThe impact of a 2 × CO2 climate on lightning-caused firesJ. Clim.199471484149410.1175/1520-0442(1994)007<1484:TIOACC>2.0.CO;2
MacDonaldGMHolocene treeline history and climate change across Northern EurasiaQuat. Res.20005330231110.1006/qres.1999.2123
HantsonSThe status and challenge of global fire modellingBiogeosciences2016133359337510.5194/bg-13-3359-2016
VeraverbekeSRogersBMRandersonJTDaily burned area and carbon emissions from boreal fires in AlaskaBiogeosciences2015123579360110.5194/bg-12-3579-20151:CAS:528:DC%2BC2MXhsVamsLrL
ReapRClimatological characteristics and objective prediction of thunderstorms over AlaskaWeather Forecast.1991630931910.1175/1520-0434(1991)006<0309:CCAOPO>2.0.CO;2
MesingerFNorth American regional reanalysisBull. Am. Meteorol. Soc.20068734336010.1175/BAMS-87-3-343
LegendrePLegendreLNumerical Ecology2012
EuskirchenESMcGuireADChapinFSYiSThompsonCCChanges in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacksEcol. Appl.2009191022104310.1890/08-0806.11:STN:280:DC%2BD1MvjsFGrsQ%3D%3D
KasischkeEWilliamsDBarryDAnalysis of the patterns of large fires in the boreal forest region of AlaskaInt. J. Wildl. Fire20021113114410.1071/WF02023
FowlerHJBlenkinsopSTebaldiCLinking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modellingInt. J. Climatol.2007271547157810.1002/joc.1556
PielkeRAVidalePLThe boreal forest and the polar frontJ. Geophys. Res.1995100257552575810.1029/95JD02418
Veraverbeke, S. et al. ABoVE: Ignitions, Burned Area and Emissions of Fires in AK, YT, and NWT, 2001–2015http://dx.doi.org/10.3334/ORNLDAAC/1341 (2017).
HewittREGetting to the root of the matter: landscape implications of plant-fungal interactions for tree migration in AlaskaLandsc. Ecol.20153189591110.1007/s10980-015-0306-1
PfeifferMSpessaAKaplanJOA model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0)Geosci. Model Dev.2013664368510.5194/gmd-6-643-20131:CAS:528:DC%2BC2MXkvFKruro%3D
KrawchukMACummingSGFlanniganMDWeinRWBiotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forestEcology20068745846810.1890/05-10211:STN:280:DC%2BD283jtVWrtA%3D%3D
BrownDRNInteractive effects of wildfire and climate on permafrost degradation in Alaskan lowland forestsJ. Geophys. Res.20151201619163710.1002/2015JG003033
MeinshausenMThe RCP greenhouse gas concentrations and their extensions from 1765 to 2300Climatic Change201110921324110.1007/s10584-011-0156-z1:CAS:528:DC%2BC3MXht12gsbfL
FrenchNHFFire in arctic tundra of Alaska: past fire activity, future fire potential, and significance for land management and ecologyInt. J. Wildl. Fire2015241045106110.1071/WF14167
HuFSTundra burning in Alaska: linkages to climatic change and sea ice retreatJ. Geophys. Res.2010115G0400210.1029/2009JD012384
BurrowsWRLightning occurrence patterns over Canada and adjacent United States from lightning detection network observationsAtmos. Ocean200240598010.3137/ao.400104
López GarcíaMJCasellesVMapping burns and natural reforestation using thematic Mapper dataGeocarto Int.19916313710.1080/10106049109354290
KasischkeESQuantifying burned area for North American forests: Implications for direct reduction of carbon stocksJ. Geophys. Res.2011116G0400310.1029/2011JG0017071:CAS:528:DC%2BC38XovV2ntLk%3D
HansenMCGlobal percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithmEarth Interact.2003711510.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2
VenevskySThonickeKSitchSCramerWSimulating fire regimes in human-dominated ecosystems: Iberian Peninsula case studyGlob. Change Biol.2002898499810.1046/j.1365-2486.2002.00528.x
WalkerDAThe Circumpolar Arctic vegetation mapJ. Veg. Sci.20051626728210.1111/j.1654-1103.2005.tb02365.x
YoungAMHigueraPEDuffyPAHuFSClimatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate changeEcography20164060661710.1111/ecog.02205
SedanoFRandersonJTMulti-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystemsBiogeosciences2014113739375510.5194/bg-11-3739-2014
TaylorKEStoufferRJMeehlGAAn overview of CMIP5 and the experiment designBull. Am. Meteorol. Soc.20129348549810.1175/BAMS-D-11-00094.1
Van WagnerCEDevelopment and Structure of the Canadian Forest Fire Weather Index System1987
DissingDVerbylaDLSpatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetationCan. J. For. Res.20033377078210.1139/x02-214
HéonJArseneaultDParisienM-AResistance of the boreal forest to high burn ratesProc. Natl Acad. Sci. USA2014111138881389310.1073/pnas.14093161111:CAS:528:DC%2BC2cXhsFSju7vN
RompsDMSeeleyJTVollaroDMolinariJProjected increase in lightning strikes in the United States due to global warmingScience201434685185410.1126/science.12591001:CAS:528:DC%2BC2cXhvV2nt7fK
KasischkeESTuretskyMRRecent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and AlaskaGeophys. Res. Lett.200633L09703
HuFSArctic tundra fires: natural variability and responses to climate changeFront. Ecol. Environ.20151336937710.1890/150063
PayetteSFilionLWhite spruce expansion at the tree line and recent climatic changeCan. J. For. Res.19851524125110.1139/x85-042
Nowacki, G. & Brock, T. Ecoregions and Subregions of Alaska, EcoMap Version 2.0 (map) (USDA Forest Service, 1995).
JohnstoneJFHollingsworthTNChapinFSMackMCChanges in fire regime break the legacy lock on successional trajectories in Alaskan boreal forestGlob. Change Biol.2010161281129510.1111/j.1365-2486.2009.02051.x
DavisMBShawRGRange shifts and adaptive responses to Quaternary climate changeScience200129267367910.1126/science.292.5517.6731:CAS:528:DC%2BD3MXjt1elsrY%3D
BalshiMSAssessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approachGlob. Change Biol.20091557860010.1111/j.1365-2486.2008.01679.x
KochtubajdaBStewartREGyakumJRFlanniganMDSummer convection and lightning over the Mackenzie river basin and their impacts during 1994 and 1995Atmos. Ocean20024019922010.3137/ao.400208
BonanGBPollardDThompsonSLEffects of boreal forest vegetation on global climateNature199235971671810.1038/359716a0
FrenchNHFWhitleyMAJenkinsLKFire disturbance effects on land surface albedo in Alaskan tundraJ. Geophys. Res.201612184185410.1002/2015JG003177
KrauseAKlosterSWilkenskjeldSPaethHThe sensitivity of global wildfires to simulated past, present, and future lightning frequencyJ. Geophys. Res.201411931232210.1002/2013JG002502
ScharlemannJPTannerEVHiedererRKaposVGlobal soil carbon: understanding and managing the largest terrestrial carbon poolCarbon Manag.2014581911:CAS:528:DC%2BC2cXht1emtrw%3D
DaleVHClimate change and forest disturbancesBioscience20015172373410.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2
MoutevaGOBlack carbon aerosol dynamics and isotopic composition in Alaska linked with boreal fire emissions and depth of burn in organic soilsGlob. Biogeochem. Cycles2015291977200010.1002/2015GB0052471:CAS:528:DC%2BC2MXhvFemsb7O
CecilDJBuechlerDEBlakesleeRJGridded lightning climatology from TRMM-LIS and OTD: dataset descriptionAtmos. Res.2014135–13640441410.1016/j.atmosres.2012.06.028
StocksBJLarge forest fires in Canada, 1959–1997J. Geophys. Res.2002108814910.1029/2001JD000484
KochtubajdaBLightning and fires in the Northwest Territories and responses to future climate changeArctic200659211221
WesterlingALHidalgoHGCayanDRSwetnamTWWarming and earlier spring increase western US forest wildfire activityScience200631394094310.1126/science.11288341:CAS:528:DC%2BD28XotFCitbo%3D
SchuurEAGClimate change and the permafrost carbon feedbackNature201552017117910.1038/nature143381:CAS:528:DC%2BC2MXmt1Sms7s%3D
ListonGEHiemstraCAThe changing cryosphere: pan-Arctic snow trends (1979–2009)J. Clim.2011245691571210.1175/JCLI-D-11-00081.1
KuuselaKThe Dynamics of Boreal Coniferous Forests1992
GillettNPWeaverAJZwiersFWFlanniganMDDetecting the effect of climate change on Canadian forest firesGeophys. Res. Lett.200431L1821110.1029/2004GL020876
FlanniganMDLoganKAAmiroBDSkinnerWRStocksBJFuture area burned in CanadaClimatic Change20057211610.1007/s10584-005-5935-y1:CAS:528:DC%2BD2MXhtVyisrzM
KrawchukMACummingSGEffects of biotic feedback an
B Kochtubajda (BFnclimate3329_CR54) 2002; 40
JL Partain (BFnclimate3329_CR26) 2016; 97
D Dissing (BFnclimate3329_CR14) 2003; 33
K Kuusela (BFnclimate3329_CR1) 1992
MA Krawchuk (BFnclimate3329_CR20) 2011; 21
NP Gillett (BFnclimate3329_CR5) 2004; 31
RA Pielke (BFnclimate3329_CR34) 1995; 100
M Meinshausen (BFnclimate3329_CR52) 2011; 109
BJ Stocks (BFnclimate3329_CR13) 2002; 108
MD Flannigan (BFnclimate3329_CR7) 2005; 72
MA Farukh (BFnclimate3329_CR56) 2012; 33
MC Hansen (BFnclimate3329_CR67) 2003; 7
BM Rogers (BFnclimate3329_CR3) 2015; 8
S Venevsky (BFnclimate3329_CR11) 2002; 8
DRN Brown (BFnclimate3329_CR46) 2015; 120
BFnclimate3329_CR59
JP Scharlemann (BFnclimate3329_CR2) 2014; 5
F Sedano (BFnclimate3329_CR25) 2014; 11
MJ López García (BFnclimate3329_CR62) 1991; 6
S Hantson (BFnclimate3329_CR48) 2016; 13
GO Mouteva (BFnclimate3329_CR44) 2015; 29
A Krause (BFnclimate3329_CR22) 2014; 119
MB Davis (BFnclimate3329_CR35) 2001; 292
BM Rogers (BFnclimate3329_CR31) 2013; 10
GB Bonan (BFnclimate3329_CR39) 1992; 359
BI Magi (BFnclimate3329_CR30) 2015; 32
KE Taylor (BFnclimate3329_CR51) 2012; 93
DM Romps (BFnclimate3329_CR21) 2014; 346
ES Euskirchen (BFnclimate3329_CR40) 2009; 19
S Veraverbeke (BFnclimate3329_CR23) 2015; 12
ML Carroll (BFnclimate3329_CR69) 2009; 2
B Kochtubajda (BFnclimate3329_CR55) 2006; 59
TC Bond (BFnclimate3329_CR45) 2013; 118
DA Walker (BFnclimate3329_CR68) 2005; 16
FS Hu (BFnclimate3329_CR15) 2015; 13
ES Kasischke (BFnclimate3329_CR66) 2011; 116
F Mesinger (BFnclimate3329_CR50) 2006; 87
SJ Prichard (BFnclimate3329_CR64) 2014; 44
ES Kasischke (BFnclimate3329_CR4) 2006; 33
E Kasischke (BFnclimate3329_CR12) 2002; 11
GM MacDonald (BFnclimate3329_CR32) 2000; 53
RE Hewitt (BFnclimate3329_CR37) 2015; 31
S Payette (BFnclimate3329_CR38) 1985; 15
MC Mack (BFnclimate3329_CR43) 2011; 475
CE Van Wagner (BFnclimate3329_CR65) 1987
FS Hu (BFnclimate3329_CR10) 2010; 115
MA Harsch (BFnclimate3329_CR33) 2009; 12
S Veraverbeke (BFnclimate3329_CR61) 2014; 23
R Reap (BFnclimate3329_CR58) 1991; 6
J Héon (BFnclimate3329_CR16) 2014; 111
R Kelly (BFnclimate3329_CR17) 2013; 110
P Legendre (BFnclimate3329_CR70) 2012
BFnclimate3329_CR73
NHF French (BFnclimate3329_CR9) 2015; 24
MA Krawchuk (BFnclimate3329_CR41) 2006; 87
HJ Fowler (BFnclimate3329_CR53) 2007; 27
EAG Schuur (BFnclimate3329_CR47) 2015; 520
NHF French (BFnclimate3329_CR42) 2016; 121
AM Young (BFnclimate3329_CR8) 2016; 40
MS Balshi (BFnclimate3329_CR6) 2009; 15
VH Dale (BFnclimate3329_CR36) 2001; 51
SA Parks (BFnclimate3329_CR19) 2015; 25
AL Westerling (BFnclimate3329_CR29) 2006; 313
M Pfeiffer (BFnclimate3329_CR49) 2013; 6
A Beaudoin (BFnclimate3329_CR63) 2014; 44
JF Johnstone (BFnclimate3329_CR18) 2010; 16
MR Turetsky (BFnclimate3329_CR24) 2011; 4
GE Liston (BFnclimate3329_CR28) 2011; 24
C Price (BFnclimate3329_CR71) 1994; 7
M Flannigan (BFnclimate3329_CR27) 2013; 294
WR Burrows (BFnclimate3329_CR57) 2002; 40
DJ Cecil (BFnclimate3329_CR60) 2014; 135–136
D Peterson (BFnclimate3329_CR72) 2010; 10
References_xml – reference: PfeifferMSpessaAKaplanJOA model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0)Geosci. Model Dev.2013664368510.5194/gmd-6-643-20131:CAS:528:DC%2BC2MXkvFKruro%3D
– reference: HansenMCGlobal percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithmEarth Interact.2003711510.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2
– reference: MesingerFNorth American regional reanalysisBull. Am. Meteorol. Soc.20068734336010.1175/BAMS-87-3-343
– reference: FrenchNHFFire in arctic tundra of Alaska: past fire activity, future fire potential, and significance for land management and ecologyInt. J. Wildl. Fire2015241045106110.1071/WF14167
– reference: KrauseAKlosterSWilkenskjeldSPaethHThe sensitivity of global wildfires to simulated past, present, and future lightning frequencyJ. Geophys. Res.201411931232210.1002/2013JG002502
– reference: RogersBMRandersonJTBonanGBHigh-latitude cooling associated with landscape changes from North American boreal forest firesBiogeosciences20131069971810.5194/bg-10-699-2013
– reference: FrenchNHFWhitleyMAJenkinsLKFire disturbance effects on land surface albedo in Alaskan tundraJ. Geophys. Res.201612184185410.1002/2015JG003177
– reference: VeraverbekeSMapping the daily progression of large wildland fires using MODIS active fire dataInt. J. Wildl. Fire20142365566710.1071/WF13015
– reference: KasischkeESQuantifying burned area for North American forests: Implications for direct reduction of carbon stocksJ. Geophys. Res.2011116G0400310.1029/2011JG0017071:CAS:528:DC%2BC38XovV2ntLk%3D
– reference: ScharlemannJPTannerEVHiedererRKaposVGlobal soil carbon: understanding and managing the largest terrestrial carbon poolCarbon Manag.2014581911:CAS:528:DC%2BC2cXht1emtrw%3D
– reference: GillettNPWeaverAJZwiersFWFlanniganMDDetecting the effect of climate change on Canadian forest firesGeophys. Res. Lett.200431L1821110.1029/2004GL020876
– reference: Nowacki, G. & Brock, T. Ecoregions and Subregions of Alaska, EcoMap Version 2.0 (map) (USDA Forest Service, 1995).
– reference: StocksBJLarge forest fires in Canada, 1959–1997J. Geophys. Res.2002108814910.1029/2001JD000484
– reference: WalkerDAThe Circumpolar Arctic vegetation mapJ. Veg. Sci.20051626728210.1111/j.1654-1103.2005.tb02365.x
– reference: HéonJArseneaultDParisienM-AResistance of the boreal forest to high burn ratesProc. Natl Acad. Sci. USA2014111138881389310.1073/pnas.14093161111:CAS:528:DC%2BC2cXhsFSju7vN
– reference: JohnstoneJFHollingsworthTNChapinFSMackMCChanges in fire regime break the legacy lock on successional trajectories in Alaskan boreal forestGlob. Change Biol.2010161281129510.1111/j.1365-2486.2009.02051.x
– reference: MeinshausenMThe RCP greenhouse gas concentrations and their extensions from 1765 to 2300Climatic Change201110921324110.1007/s10584-011-0156-z1:CAS:528:DC%2BC3MXht12gsbfL
– reference: CecilDJBuechlerDEBlakesleeRJGridded lightning climatology from TRMM-LIS and OTD: dataset descriptionAtmos. Res.2014135–13640441410.1016/j.atmosres.2012.06.028
– reference: DavisMBShawRGRange shifts and adaptive responses to Quaternary climate changeScience200129267367910.1126/science.292.5517.6731:CAS:528:DC%2BD3MXjt1elsrY%3D
– reference: HewittREGetting to the root of the matter: landscape implications of plant-fungal interactions for tree migration in AlaskaLandsc. Ecol.20153189591110.1007/s10980-015-0306-1
– reference: KasischkeESTuretskyMRRecent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and AlaskaGeophys. Res. Lett.200633L09703
– reference: SedanoFRandersonJTMulti-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystemsBiogeosciences2014113739375510.5194/bg-11-3739-2014
– reference: TuretskyMRRecent acceleration of biomass burning and carbon losses in Alaskan forests and peatlandsNat. Geosci.20114273110.1038/ngeo10271:CAS:528:DC%2BC3cXhsF2jur3O
– reference: López GarcíaMJCasellesVMapping burns and natural reforestation using thematic Mapper dataGeocarto Int.19916313710.1080/10106049109354290
– reference: DaleVHClimate change and forest disturbancesBioscience20015172373410.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2
– reference: FlanniganMDLoganKAAmiroBDSkinnerWRStocksBJFuture area burned in CanadaClimatic Change20057211610.1007/s10584-005-5935-y1:CAS:528:DC%2BD2MXhtVyisrzM
– reference: KellyRRecent burning of boreal forests exceeds fire regime limits of the past 10,000 yearsProc. Natl Acad. Sci. USA2013110130551306010.1073/pnas.1305069110
– reference: VeraverbekeSRogersBMRandersonJTDaily burned area and carbon emissions from boreal fires in AlaskaBiogeosciences2015123579360110.5194/bg-12-3579-20151:CAS:528:DC%2BC2MXhsVamsLrL
– reference: FlanniganMGlobal wildland fire season severity in the 21st centuryFor. Ecol. Manag.20132945461
– reference: RogersBMSojaAJGouldenMLRandersonJTInfluence of tree species on continental differences in boreal fires and climate feedbacksNat. Geosci.2015822823410.1038/ngeo23521:CAS:528:DC%2BC2MXhvFCnt7c%3D
– reference: BonanGBPollardDThompsonSLEffects of boreal forest vegetation on global climateNature199235971671810.1038/359716a0
– reference: MagiBIGlobal lightning parameterization from CMIP5 climate model outputJ. Atmos. Ocean. Technol.20153243445210.1175/JTECH-D-13-00261.1
– reference: KrawchukMACummingSGFlanniganMDWeinRWBiotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forestEcology20068745846810.1890/05-10211:STN:280:DC%2BD283jtVWrtA%3D%3D
– reference: BeaudoinAMapping attributes of Canada’s forests at moderate resolution through k NN and MODIS imageryCan. J. For. Res.20144452153210.1139/cjfr-2013-0401
– reference: SchuurEAGClimate change and the permafrost carbon feedbackNature201552017117910.1038/nature143381:CAS:528:DC%2BC2MXmt1Sms7s%3D
– reference: EuskirchenESMcGuireADChapinFSYiSThompsonCCChanges in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacksEcol. Appl.2009191022104310.1890/08-0806.11:STN:280:DC%2BD1MvjsFGrsQ%3D%3D
– reference: PayetteSFilionLWhite spruce expansion at the tree line and recent climatic changeCan. J. For. Res.19851524125110.1139/x85-042
– reference: Veraverbeke, S. et al. ABoVE: Ignitions, Burned Area and Emissions of Fires in AK, YT, and NWT, 2001–2015http://dx.doi.org/10.3334/ORNLDAAC/1341 (2017).
– reference: MoutevaGOBlack carbon aerosol dynamics and isotopic composition in Alaska linked with boreal fire emissions and depth of burn in organic soilsGlob. Biogeochem. Cycles2015291977200010.1002/2015GB0052471:CAS:528:DC%2BC2MXhvFemsb7O
– reference: RompsDMSeeleyJTVollaroDMolinariJProjected increase in lightning strikes in the United States due to global warmingScience201434685185410.1126/science.12591001:CAS:528:DC%2BC2cXhvV2nt7fK
– reference: HantsonSThe status and challenge of global fire modellingBiogeosciences2016133359337510.5194/bg-13-3359-2016
– reference: KuuselaKThe Dynamics of Boreal Coniferous Forests1992
– reference: YoungAMHigueraPEDuffyPAHuFSClimatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate changeEcography20164060661710.1111/ecog.02205
– reference: PetersonDWangJIchokuCRemerLAEffects of lightning and other meteorological factors on fire activity in the North American boreal forest: implications for fire weather forecastingAtmos. Chem. Phys.2010106873688810.5194/acp-10-6873-20101:CAS:528:DC%2BC3cXhtFKlt7vI
– reference: PartainJLAn assessment of the role of anthropogenic climate change in the Alaska fire season of 2015Bull. Am. Meteorol. Soc.201697S14S1810.1175/BAMS-D-16-0149.1
– reference: BondTCBounding the role of black carbon in the climate system: a scientific assessmentJ. Geophys. Res.2013118538055521:CAS:528:DC%2BC3sXhtVyrtbrF
– reference: ListonGEHiemstraCAThe changing cryosphere: pan-Arctic snow trends (1979–2009)J. Clim.2011245691571210.1175/JCLI-D-11-00081.1
– reference: PrichardSJEvaluation of the CONSUME and FOFEM fuel consumption models in pine and mixed hardwood forests of the eastern United StatesCan. J. For. Res.20144478479510.1139/cjfr-2013-0499
– reference: HuFSArctic tundra fires: natural variability and responses to climate changeFront. Ecol. Environ.20151336937710.1890/150063
– reference: KochtubajdaBLightning and fires in the Northwest Territories and responses to future climate changeArctic200659211221
– reference: CarrollMLTownshendJRDiMiceliCMNoojipadyPSohlbergRAA new global raster water mask at 250 m resolutionInt. J. Digit. Earth2009229130810.1080/17538940902951401
– reference: VenevskySThonickeKSitchSCramerWSimulating fire regimes in human-dominated ecosystems: Iberian Peninsula case studyGlob. Change Biol.2002898499810.1046/j.1365-2486.2002.00528.x
– reference: ReapRClimatological characteristics and objective prediction of thunderstorms over AlaskaWeather Forecast.1991630931910.1175/1520-0434(1991)006<0309:CCAOPO>2.0.CO;2
– reference: DissingDVerbylaDLSpatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetationCan. J. For. Res.20033377078210.1139/x02-214
– reference: HuFSTundra burning in Alaska: linkages to climatic change and sea ice retreatJ. Geophys. Res.2010115G0400210.1029/2009JD012384
– reference: TaylorKEStoufferRJMeehlGAAn overview of CMIP5 and the experiment designBull. Am. Meteorol. Soc.20129348549810.1175/BAMS-D-11-00094.1
– reference: Van WagnerCEDevelopment and Structure of the Canadian Forest Fire Weather Index System1987
– reference: MacDonaldGMHolocene treeline history and climate change across Northern EurasiaQuat. Res.20005330231110.1006/qres.1999.2123
– reference: FowlerHJBlenkinsopSTebaldiCLinking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modellingInt. J. Climatol.2007271547157810.1002/joc.1556
– reference: HarschMAHulmePEMcGloneMSDuncanRPAre treelines advancing? A global meta-analysis of treeline response to climate warmingEcol. Lett.2009121040104910.1111/j.1461-0248.2009.01355.x
– reference: PielkeRAVidalePLThe boreal forest and the polar frontJ. Geophys. Res.1995100257552575810.1029/95JD02418
– reference: FarukhMAHayasakaHActive forest fire occurrences in severe lightning years in AlaskaJ. Nat. Disaster Sci.201233718410.2328/jnds.33.71
– reference: MackMCCarbon loss from an unprecedented Arctic tundra wildfireNature201147548949210.1038/nature102831:CAS:528:DC%2BC3MXpsFajtbg%3D
– reference: LegendrePLegendreLNumerical Ecology2012
– reference: BurrowsWRLightning occurrence patterns over Canada and adjacent United States from lightning detection network observationsAtmos. Ocean200240598010.3137/ao.400104
– reference: PriceCRindDThe impact of a 2 × CO2 climate on lightning-caused firesJ. Clim.199471484149410.1175/1520-0442(1994)007<1484:TIOACC>2.0.CO;2
– reference: ParksSAHolsingerLMMillerCNelsonCRWildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progressionEcol. Appl.2015251478149210.1890/14-1430.1
– reference: KochtubajdaBStewartREGyakumJRFlanniganMDSummer convection and lightning over the Mackenzie river basin and their impacts during 1994 and 1995Atmos. Ocean20024019922010.3137/ao.400208
– reference: BalshiMSAssessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approachGlob. Change Biol.20091557860010.1111/j.1365-2486.2008.01679.x
– reference: KasischkeEWilliamsDBarryDAnalysis of the patterns of large fires in the boreal forest region of AlaskaInt. J. Wildl. Fire20021113114410.1071/WF02023
– reference: BrownDRNInteractive effects of wildfire and climate on permafrost degradation in Alaskan lowland forestsJ. Geophys. Res.20151201619163710.1002/2015JG003033
– reference: KrawchukMACummingSGEffects of biotic feedback and harvest management on boreal forest fire activity under climate changeEcol. Appl.20112112213610.1890/09-2004.1
– reference: WesterlingALHidalgoHGCayanDRSwetnamTWWarming and earlier spring increase western US forest wildfire activityScience200631394094310.1126/science.11288341:CAS:528:DC%2BD28XotFCitbo%3D
– volume: 346
  start-page: 851
  year: 2014
  ident: BFnclimate3329_CR21
  publication-title: Science
  doi: 10.1126/science.1259100
– volume: 10
  start-page: 6873
  year: 2010
  ident: BFnclimate3329_CR72
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-10-6873-2010
– volume: 119
  start-page: 312
  year: 2014
  ident: BFnclimate3329_CR22
  publication-title: J. Geophys. Res.
  doi: 10.1002/2013JG002502
– volume: 13
  start-page: 369
  year: 2015
  ident: BFnclimate3329_CR15
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/150063
– volume: 11
  start-page: 3739
  year: 2014
  ident: BFnclimate3329_CR25
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-3739-2014
– volume: 120
  start-page: 1619
  year: 2015
  ident: BFnclimate3329_CR46
  publication-title: J. Geophys. Res.
  doi: 10.1002/2015JG003033
– volume: 44
  start-page: 784
  year: 2014
  ident: BFnclimate3329_CR64
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2013-0499
– volume: 59
  start-page: 211
  year: 2006
  ident: BFnclimate3329_CR55
  publication-title: Arctic
– volume: 25
  start-page: 1478
  year: 2015
  ident: BFnclimate3329_CR19
  publication-title: Ecol. Appl.
  doi: 10.1890/14-1430.1
– volume: 87
  start-page: 343
  year: 2006
  ident: BFnclimate3329_CR50
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-87-3-343
– volume: 33
  start-page: 770
  year: 2003
  ident: BFnclimate3329_CR14
  publication-title: Can. J. For. Res.
  doi: 10.1139/x02-214
– volume: 13
  start-page: 3359
  year: 2016
  ident: BFnclimate3329_CR48
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-3359-2016
– volume: 72
  start-page: 1
  year: 2005
  ident: BFnclimate3329_CR7
  publication-title: Climatic Change
  doi: 10.1007/s10584-005-5935-y
– volume: 87
  start-page: 458
  year: 2006
  ident: BFnclimate3329_CR41
  publication-title: Ecology
  doi: 10.1890/05-1021
– volume: 53
  start-page: 302
  year: 2000
  ident: BFnclimate3329_CR32
  publication-title: Quat. Res.
  doi: 10.1006/qres.1999.2123
– volume: 6
  start-page: 31
  year: 1991
  ident: BFnclimate3329_CR62
  publication-title: Geocarto Int.
  doi: 10.1080/10106049109354290
– volume: 31
  start-page: 895
  year: 2015
  ident: BFnclimate3329_CR37
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-015-0306-1
– ident: BFnclimate3329_CR59
– volume-title: Development and Structure of the Canadian Forest Fire Weather Index System
  year: 1987
  ident: BFnclimate3329_CR65
– volume: 359
  start-page: 716
  year: 1992
  ident: BFnclimate3329_CR39
  publication-title: Nature
  doi: 10.1038/359716a0
– volume: 33
  start-page: 71
  year: 2012
  ident: BFnclimate3329_CR56
  publication-title: J. Nat. Disaster Sci.
  doi: 10.2328/jnds.33.71
– volume: 12
  start-page: 3579
  year: 2015
  ident: BFnclimate3329_CR23
  publication-title: Biogeosciences
  doi: 10.5194/bg-12-3579-2015
– volume: 40
  start-page: 606
  year: 2016
  ident: BFnclimate3329_CR8
  publication-title: Ecography
  doi: 10.1111/ecog.02205
– volume: 29
  start-page: 1977
  year: 2015
  ident: BFnclimate3329_CR44
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1002/2015GB005247
– volume: 12
  start-page: 1040
  year: 2009
  ident: BFnclimate3329_CR33
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2009.01355.x
– volume: 31
  start-page: L18211
  year: 2004
  ident: BFnclimate3329_CR5
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2004GL020876
– volume: 93
  start-page: 485
  year: 2012
  ident: BFnclimate3329_CR51
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-11-00094.1
– volume: 44
  start-page: 521
  year: 2014
  ident: BFnclimate3329_CR63
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2013-0401
– volume: 313
  start-page: 940
  year: 2006
  ident: BFnclimate3329_CR29
  publication-title: Science
  doi: 10.1126/science.1128834
– volume: 520
  start-page: 171
  year: 2015
  ident: BFnclimate3329_CR47
  publication-title: Nature
  doi: 10.1038/nature14338
– volume: 24
  start-page: 5691
  year: 2011
  ident: BFnclimate3329_CR28
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-11-00081.1
– volume: 24
  start-page: 1045
  year: 2015
  ident: BFnclimate3329_CR9
  publication-title: Int. J. Wildl. Fire
  doi: 10.1071/WF14167
– volume: 111
  start-page: 13888
  year: 2014
  ident: BFnclimate3329_CR16
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1409316111
– volume: 6
  start-page: 309
  year: 1991
  ident: BFnclimate3329_CR58
  publication-title: Weather Forecast.
  doi: 10.1175/1520-0434(1991)006<0309:CCAOPO>2.0.CO;2
– volume: 40
  start-page: 199
  year: 2002
  ident: BFnclimate3329_CR54
  publication-title: Atmos. Ocean
  doi: 10.3137/ao.400208
– volume: 97
  start-page: S14
  year: 2016
  ident: BFnclimate3329_CR26
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-16-0149.1
– volume: 2
  start-page: 291
  year: 2009
  ident: BFnclimate3329_CR69
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538940902951401
– volume: 115
  start-page: G04002
  year: 2010
  ident: BFnclimate3329_CR10
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JD012384
– volume: 110
  start-page: 13055
  year: 2013
  ident: BFnclimate3329_CR17
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1305069110
– volume: 5
  start-page: 81
  year: 2014
  ident: BFnclimate3329_CR2
  publication-title: Carbon Manag.
– volume: 21
  start-page: 122
  year: 2011
  ident: BFnclimate3329_CR20
  publication-title: Ecol. Appl.
  doi: 10.1890/09-2004.1
– volume: 15
  start-page: 578
  year: 2009
  ident: BFnclimate3329_CR6
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2008.01679.x
– volume: 23
  start-page: 655
  year: 2014
  ident: BFnclimate3329_CR61
  publication-title: Int. J. Wildl. Fire
  doi: 10.1071/WF13015
– volume: 16
  start-page: 267
  year: 2005
  ident: BFnclimate3329_CR68
  publication-title: J. Veg. Sci.
  doi: 10.1111/j.1654-1103.2005.tb02365.x
– volume: 33
  start-page: L09703
  year: 2006
  ident: BFnclimate3329_CR4
  publication-title: Geophys. Res. Lett.
– volume: 109
  start-page: 213
  year: 2011
  ident: BFnclimate3329_CR52
  publication-title: Climatic Change
  doi: 10.1007/s10584-011-0156-z
– volume: 108
  start-page: 8149
  year: 2002
  ident: BFnclimate3329_CR13
  publication-title: J. Geophys. Res.
  doi: 10.1029/2001JD000484
– volume: 32
  start-page: 434
  year: 2015
  ident: BFnclimate3329_CR30
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-13-00261.1
– volume-title: The Dynamics of Boreal Coniferous Forests
  year: 1992
  ident: BFnclimate3329_CR1
– volume: 475
  start-page: 489
  year: 2011
  ident: BFnclimate3329_CR43
  publication-title: Nature
  doi: 10.1038/nature10283
– volume: 7
  start-page: 1
  year: 2003
  ident: BFnclimate3329_CR67
  publication-title: Earth Interact.
  doi: 10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2
– volume: 135–136
  start-page: 404
  year: 2014
  ident: BFnclimate3329_CR60
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2012.06.028
– volume: 7
  start-page: 1484
  year: 1994
  ident: BFnclimate3329_CR71
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(1994)007<1484:TIOACC>2.0.CO;2
– volume: 4
  start-page: 27
  year: 2011
  ident: BFnclimate3329_CR24
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1027
– volume: 27
  start-page: 1547
  year: 2007
  ident: BFnclimate3329_CR53
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.1556
– volume-title: Numerical Ecology
  year: 2012
  ident: BFnclimate3329_CR70
– volume: 118
  start-page: 5380
  year: 2013
  ident: BFnclimate3329_CR45
  publication-title: J. Geophys. Res.
  doi: 10.1002/jgrd.50171
– volume: 116
  start-page: G04003
  year: 2011
  ident: BFnclimate3329_CR66
  publication-title: J. Geophys. Res.
  doi: 10.1029/2011JG001707
– volume: 8
  start-page: 984
  year: 2002
  ident: BFnclimate3329_CR11
  publication-title: Glob. Change Biol.
  doi: 10.1046/j.1365-2486.2002.00528.x
– volume: 11
  start-page: 131
  year: 2002
  ident: BFnclimate3329_CR12
  publication-title: Int. J. Wildl. Fire
  doi: 10.1071/WF02023
– ident: BFnclimate3329_CR73
  doi: 10.3334/ORNLDAAC/1341
– volume: 40
  start-page: 59
  year: 2002
  ident: BFnclimate3329_CR57
  publication-title: Atmos. Ocean
  doi: 10.3137/ao.400104
– volume: 100
  start-page: 25755
  year: 1995
  ident: BFnclimate3329_CR34
  publication-title: J. Geophys. Res.
  doi: 10.1029/95JD02418
– volume: 51
  start-page: 723
  year: 2001
  ident: BFnclimate3329_CR36
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2
– volume: 292
  start-page: 673
  year: 2001
  ident: BFnclimate3329_CR35
  publication-title: Science
  doi: 10.1126/science.292.5517.673
– volume: 16
  start-page: 1281
  year: 2010
  ident: BFnclimate3329_CR18
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2009.02051.x
– volume: 294
  start-page: 54
  year: 2013
  ident: BFnclimate3329_CR27
  publication-title: For. Ecol. Manag.
– volume: 8
  start-page: 228
  year: 2015
  ident: BFnclimate3329_CR3
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2352
– volume: 10
  start-page: 699
  year: 2013
  ident: BFnclimate3329_CR31
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-699-2013
– volume: 121
  start-page: 841
  year: 2016
  ident: BFnclimate3329_CR42
  publication-title: J. Geophys. Res.
  doi: 10.1002/2015JG003177
– volume: 6
  start-page: 643
  year: 2013
  ident: BFnclimate3329_CR49
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-6-643-2013
– volume: 15
  start-page: 241
  year: 1985
  ident: BFnclimate3329_CR38
  publication-title: Can. J. For. Res.
  doi: 10.1139/x85-042
– volume: 19
  start-page: 1022
  year: 2009
  ident: BFnclimate3329_CR40
  publication-title: Ecol. Appl.
  doi: 10.1890/08-0806.1
SSID ssj0000716369
Score 2.6360066
Snippet Changes in climate and fire regimes are transforming the boreal forest, the world’s largest biome. Boreal North America recently experienced two years with...
Changes in climate and fire regimes are transforming the boreal forest, the world's largest biome. Boreal North America recently experienced two years with...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 529
SubjectTerms 704/158/2454
704/158/2465
Annual variations
Area
Boreal ecosystems
Boreal forests
Burning
Carbon
Climate
Climate Change
Climate Change/Climate Change Impacts
Combustion
Dynamics
Environment
Environmental Law/Policy/Ecojustice
Fires
Forests
Ignition
Interannual variability
Lightning
Precipitation
Temperature effects
Treeline
Vegetation
Title Lightning as a major driver of recent large fire years in North American boreal forests
URI https://link.springer.com/article/10.1038/nclimate3329
https://www.proquest.com/docview/1917964744
Volume 7
WOSCitedRecordID wos000404545400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1758-6798
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0000716369
  issn: 1758-678X
  databaseCode: PCBAR
  dateStart: 20070601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1758-6798
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0000716369
  issn: 1758-678X
  databaseCode: BENPR
  dateStart: 20070601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1758-6798
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0000716369
  issn: 1758-678X
  databaseCode: M2P
  dateStart: 20070601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VpYdeKH2JpRTNAbhUEbux401OFaxAPcBqhfrYWzR2HGmrbQLJgsS_Z2wcWFXApZcoVizL8rw-z0xmAPaGsVZ2KEyk4zKLpC10pAU_KKVUkjRa-wp8v85Gk0k6m2XT4HBrQ1plpxO9oi5q43zkh-5e4f6alPLb5VXkuka56GpoobEG665SmezB-vHJZHrx4GVhA6qE72vHZjKNWDPPQvb7QKSHlVnMGRdaITzCXLFLj2Dzn_ioNzunb_93w5uwEQAnHt1zyDt4Zav30D9nrFw33qWOBzj2G_SjD_D7zN3XnbsEqUXCv_SnbrBoXAIH1iWyimRDhQuXQo4la0y8ZWlpcV6hDwJhFwRCZi-GociwmHfdfoSfpyc_xt-j0H4hMozillE5Khx8SzI9MIkZDRKthBmymJJMycUj7YhSS668taFEZ1pnhVY6U6ZMbKGs-AS9qq7sFiBjNlIFCaMUSdKG34wsjNQxSVUq6sPX7vBzE2qTuxYZi9zHyEWar5KqD_sPsy_va3I8M2-no0weJLPNH8nSh4OOtiufn1hn--V1PsOb2Nl6n8O7A71lc22_wGtzs5y3zW7gyF1YO4-nPJqOj48u7gC67vHk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9RAFH5BINELIkpcRXwH4WIadjvT2fZAjEEIhN0NB9S91TfTabJmbbFdNPxT_o28mW1hY4QbBy9Nm04mmZlv5n3vx7wH8K4XamV7wgQ6zJNA2kwHWvCDYoolSaO1z8D3ZdAfjeLxODlbgj_tXRgXVtmeif6gzkrjbOR7Tq9wtyal_HDxM3BVo5x3tS2hMYfFqb36zSpbvX_yidd3JwyPDs8PjoOmqkBgmJzMgryfOVYSJbprItPvRloJ02P0kYzJudlsn2JLLmuzoUgnWieZVjpRJo9spqzgfh_BimRNyO2rYXh2Y9Nhca2Er6LHQjkOWA6Mm1j7roj3CjOdMAu1Qng-uyAFb6ntX95YL-SOnv5v07MOaw2dxo9z_D-DJVtsQGfImkBZeYcB7uKBnxD_9Ry-Dpw1whmDkGok_EHfywqzyoWnYJkjCwAWwzh1AfKYszzAKx5VjZMCvYsLWxcX8uZhko1M-nmW6hfw-UHGuQnLRVnYl4DMSEllJIxSJEkbfjMyM1KHJFWuqAPv28VOTZN53RUAmaY-AkDE6SI0OrBz0_pinnHkjnZbLRLS5typ01sYdGC3xdLC73_08-r-ft7C4-Pz4SAdnIxOX8OT0LEaH628Bcuz6tK-gVXzazapq22_FxC-PTS6rgFnfUxT
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglAvvFEXCsyB9oKi3Y0dJzlUFWpZUXW72gOPvYWx40iLtkmbLKD-NX4dY2_SrhBw64FLlCiWJdufPd88PAPwehhqZYfCBDos0kDaXAda8IMSSiRJo7XPwPdpHE8myWyWTjfgZ3cXxoVVdmeiP6jzyjgbed_pFe7WpJT9og2LmB6NDs4vAldBynlau3IaK4ic2MsfrL41-8dHvNa7YTh69-HwfdBWGAgME5VlUMS5YyhRqgcmMvEg0kqYISORZELO5WZjSiy5DM6GIp1qneZa6VSZIrK5soL7vQW3YxlFLpzwNJxe2XdYdCvhK-qxgE4ClgmzNu5-IJJ-aRZzZqRWCM9t1yTiNc39zTPrBd7o_v88VQ_gXkuz8e1qXzyEDVs-gt4pawhV7R0JuIeHfnL812P4PHZWCmckQmqQ8Iy-VjXmtQtbwapAFgwsnnHhAuexYDmBlzyqBucletcXdq4v5E3F5BtZGeAZa57AxxsZ51PYLKvSbgMyUyWVkzBKkSRt-M3I3EgdklSFoh686RY-M21GdlcYZJH5yACRZOsw6cHuVevzVSaSv7Tb6VCRtedRk11Dogd7Ha7Wfv-hn2f_7ucV3GVQZePjyclz2Aod2fFBzDuwuay_2Rdwx3xfzpv6pd8WCF9uGly_AFPOVRk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightning+as+a+major+driver+of+recent+large+fire+years+in+North+American+boreal+forests&rft.jtitle=Nature+climate+change&rft.au=Veraverbeke%2C+Sander&rft.au=Rogers%2C+Brendan+M&rft.au=Goulden%2C+Mike+L&rft.au=Jandt%2C+Randi+R&rft.date=2017-07-01&rft.pub=Nature+Publishing+Group&rft.issn=1758-678X&rft.eissn=1758-6798&rft.volume=7&rft.issue=7&rft.spage=529&rft_id=info:doi/10.1038%2Fnclimate3329&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-678X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-678X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-678X&client=summon