LapFormer: surgical tool detection in laparoscopic surgical video using transformer architecture

One of the most essential steps in the surgical workflow analysis is recognition of surgical tool presence. We propose a method to detect the presence of surgical tools in laparoscopic surgery videos, called LapFormer. The novelty of LapFormer is to use a Transformer architecture, which is a feed-fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization Jg. 9; H. 3; S. 302 - 307
1. Verfasser: Kondo, Satoshi
Format: Journal Article
Sprache:Englisch
Japanisch
Veröffentlicht: Taylor & Francis 04.05.2021
Informa UK Limited
Schlagworte:
ISSN:2168-1163, 2168-1171
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract One of the most essential steps in the surgical workflow analysis is recognition of surgical tool presence. We propose a method to detect the presence of surgical tools in laparoscopic surgery videos, called LapFormer. The novelty of LapFormer is to use a Transformer architecture, which is a feed-forward neural network architecture with attention mechanism, growing in popularity for natural language processing, for analysing inter-frame correlation in videos instead of using recurrent neural network families. To the best of our knowledge, no methods using a Transformer architecture for analysing laparoscopic surgery videos have been proposed. We evaluate our method on a dataset called Cholec80, which contains 80 videos of cholecystectomy surgeries. We confirm that our proposed method outperforms the conventional methods such as single-frame analysis with convolutional neural networks or multiple frame analysis with recurrent neural networks by 20.3 and 17.3 points in macro-F1 score, respectively. We also conduct an ablation study on how hyper-parameters for Transformer block in our proposed method affect the performance of the detection.
AbstractList One of the most essential steps in the surgical workflow analysis is recognition of surgical tool presence. We propose a method to detect the presence of surgical tools in laparoscopic surgery videos, called LapFormer. The novelty of LapFormer is to use a Transformer architecture, which is a feed-forward neural network architecture with attention mechanism, growing in popularity for natural language processing, for analysing inter-frame correlation in videos instead of using recurrent neural network families. To the best of our knowledge, no methods using a Transformer architecture for analysing laparoscopic surgery videos have been proposed. We evaluate our method on a dataset called Cholec80, which contains 80 videos of cholecystectomy surgeries. We confirm that our proposed method outperforms the conventional methods such as single-frame analysis with convolutional neural networks or multiple frame analysis with recurrent neural networks by 20.3 and 17.3 points in macro-F1 score, respectively. We also conduct an ablation study on how hyper-parameters for Transformer block in our proposed method affect the performance of the detection.
Author Kondo, Satoshi
Author_xml – sequence: 1
  givenname: Satoshi
  surname: Kondo
  fullname: Kondo, Satoshi
  email: satoshi.kondo@konicaminolta.com
  organization: Konica Minolta, Inc
BackLink https://cir.nii.ac.jp/crid/1871991017630640896$$DView record in CiNii
BookMark eNqFkEFPwyAYhomZiXPuJ5hw8NoJpVDQi2ZxarLEi56RAp2YrjTQafbvpW5q4kE5AHnzPR98zzEYtb61AJxiNMOIo_McM44xI7Mc5SnihFKKDsB4yDOMSzz6vjNyBKYxvqK0OGOE0TF4Xqpu4cPahgsYN2HltGpg730Dje2t7p1voWthozoVfNS-c_qn7s0Z6-EmunYF-6DaWH92giroFzfQm2BPwGGtmmin-3MCnhY3j_O7bPlwez-_Xma6QLTPLM8LhEydq7LShbCozEWlLTe65KgUWleVqVMuKKmJMYYSTThGAleFULTiZALorq9O_4zB1rILbq3CVmIkB1Pyy5QcTMm9qcRd_uK069Uwd5rINf_SZzu6dS6Bw455iYXACJeMIFYgLlgqu9qVuXZQpN59aIzs1bbxoU7itIuS_P3SB15xkAI
CitedBy_id crossref_primary_10_1002_rcs_70089
crossref_primary_10_1109_TPAMI_2023_3243465
crossref_primary_10_1080_21681163_2022_2145238
crossref_primary_10_1038_s43856_024_00581_0
crossref_primary_10_1002_rcs_2445
crossref_primary_10_3390_bioengineering9120737
crossref_primary_10_1109_TMI_2023_3335406
crossref_primary_10_1109_TMI_2023_3279838
crossref_primary_10_1007_s11548_022_02691_3
crossref_primary_10_1093_bjsopen_zraf073
crossref_primary_10_1109_TIM_2023_3298396
crossref_primary_10_1007_s13042_023_01875_w
crossref_primary_10_1080_21681163_2022_2152371
crossref_primary_10_1007_s00371_025_04161_8
crossref_primary_10_1049_htl2_12060
crossref_primary_10_1109_TMI_2022_3177077
Cites_doi 10.1007/s11263-015-0816-y
10.1109/CVPR.2015.7298594
10.1016/j.media.2019.101572
10.1109/CBMI.2015.7153616
10.3115/v1/D14-1179
10.1016/j.ipm.2009.03.002
10.1109/CVPR.2019.00033
10.1109/CVPR.2016.90
10.1162/neco.1997.9.8.1735
10.1109/TMI.2016.2593957
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
DBID RYH
AAYXX
CITATION
DOI 10.1080/21681163.2020.1835550
DatabaseName CiNii Complete
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-1171
EndPage 307
ExternalDocumentID 10_1080_21681163_2020_1835550
1835550
Genre Research Article
GroupedDBID 0BK
30N
4.4
AAGDL
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABLIJ
ABPAQ
ABXUL
ABXYU
ACGFS
ADCVX
ADGTB
ADMLS
AEISY
AFRVT
AGDLA
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQTUD
ARCSS
BLEHA
CCCUG
EBS
EUPTU
GTTXZ
H13
HZ~
KYCEM
LJTGL
M4Z
O9-
RIG
RNANH
ROSJB
RTWRZ
SNACF
SOJIQ
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
RYH
AAYXX
CITATION
ID FETCH-LOGICAL-c405t-e82400df2a7bc49e0729bce8dc78079ccbbdf49e953f3ddd53c381091b49a5b83
IEDL.DBID TFW
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000581900900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-1163
IngestDate Sat Nov 29 06:34:10 EST 2025
Tue Nov 18 21:09:46 EST 2025
Mon Nov 10 09:14:55 EST 2025
Mon Oct 20 23:47:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-e82400df2a7bc49e0729bce8dc78079ccbbdf49e953f3ddd53c381091b49a5b83
ORCID 0000-0002-4941-4920
OpenAccessLink https://cir.nii.ac.jp/crid/1871991017630640896
PageCount 6
ParticipantIDs nii_cinii_1871991017630640896
crossref_primary_10_1080_21681163_2020_1835550
informaworld_taylorfrancis_310_1080_21681163_2020_1835550
crossref_citationtrail_10_1080_21681163_2020_1835550
PublicationCentury 2000
PublicationDate 2021-05-04
PublicationDateYYYYMMDD 2021-05-04
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-04
  day: 04
PublicationDecade 2020
PublicationTitle Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization
PublicationYear 2021
Publisher Taylor & Francis
Informa UK Limited
Publisher_xml – name: Taylor & Francis
– name: Informa UK Limited
References cit0011
cit0012
cit0010
Kitaev N (cit0007) 2020
Ba JL (cit0001) 2016; 1607
Namazi B (cit0009) 2019; 1905
cit0008
cit0006
cit0004
cit0015
cit0005
cit0016
cit0002
cit0013
cit0003
cit0014
References_xml – ident: cit0011
  doi: 10.1007/s11263-015-0816-y
– ident: cit0013
  doi: 10.1109/CVPR.2015.7298594
– ident: cit0006
  doi: 10.1016/j.media.2019.101572
– volume-title: International Conference on Learning Representaitons (ICLR), Virtual Conference, Formerly Addis Ababa, Ethiopia
  year: 2020
  ident: cit0007
– ident: cit0010
  doi: 10.1109/CBMI.2015.7153616
– ident: cit0002
  doi: 10.3115/v1/D14-1179
– ident: cit0008
– ident: cit0015
– ident: cit0016
– ident: cit0012
  doi: 10.1016/j.ipm.2009.03.002
– ident: cit0003
  doi: 10.1109/CVPR.2019.00033
– ident: cit0004
  doi: 10.1109/CVPR.2016.90
– ident: cit0005
  doi: 10.1162/neco.1997.9.8.1735
– ident: cit0014
  doi: 10.1109/TMI.2016.2593957
– volume: 1905
  start-page: 08983
  year: 2019
  ident: cit0009
  publication-title: arXiv
– volume: 1607
  start-page: 06450
  year: 2016
  ident: cit0001
  publication-title: arXiv
SSID ssj0000866365
ssib044168314
ssib039557987
ssib024195514
Score 2.317325
Snippet One of the most essential steps in the surgical workflow analysis is recognition of surgical tool presence. We propose a method to detect the presence of...
SourceID crossref
nii
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 302
SubjectTerms Laparoscopy
surgical workflow analysis
transformer
Title LapFormer: surgical tool detection in laparoscopic surgical video using transformer architecture
URI https://www.tandfonline.com/doi/abs/10.1080/21681163.2020.1835550
https://cir.nii.ac.jp/crid/1871991017630640896
Volume 9
WOSCitedRecordID wos000581900900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 2168-1171
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866365
  issn: 2168-1163
  databaseCode: TFW
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0SBIg-sgSTOw2ZDiIihqhiK6BbiR1CkKqmSlN_PXR6lHVAHWDJYOcu6OHffl5y_I-RWC9cVQcItBuQDCArzIQ4GjqUDm-lUKJ3y5qDwOJxM-GwmXrtqwqorq0QOnbZCEU2sxpc7kVVfEXfvOgF3AEcAu3NhCDCE37B2SP3Yw2Aava--sgBgD1jTTxKNLLTqj_H8NtFGgtqQL4X0k2fZWvqJDv9h4UfkoMOe9LHdLMdkx-QnZH9NkfCUfIyTRQRLMeUDrZZlExZpXRRzqk3dVG3lNMvpHFIsymAWi0z93IdH-gqKlfSftO4BsSnp-s-KM_IWPU-fXqyuCYOlAMvVluFYZapTNwml8oRBpXGpDNcq5HYolJJSpzAufJYyrbXPFIqGCUd6IvElZ-dkkBe5uSDUS2QaAOIQPDEeB-ZmJww4sgoZA2PlDInXez5WnUI5NsqYx04nZNo7MEYHxp0Dh-RuZbZoJTq2GYj1xxrXzbeRtG1kErMttiPYA7A8vDrANgFfQ1ALkMjZXASXf5j7iuy5WDGD5ZTeNRnU5dKMyK76qrOqvGk29jd0t_AU
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4NAEN6YaqIefBurVvfgFQWWx643YyQ11p5q7A1hdzEkDTSU-vudoVDpwfSgFw6E2WyGYWa-ZeYbQm6UsG3hRdxgAD4AoDAX_KBnGcozmUqEVAmvGoUH_nDIx2PR7oXBskrE0MmCKKLy1fhx42F0UxJ3Z1setyCRAHhnwy1IIlyE7ZsuxFq08lHwvjxngZTdY9VESZQyUKxp5PltpZUQtUJgCgEoS9NWAAr2_2PrB2SvTj_pw8JeDsmGzo7IbouU8Jh8DKJpAHvRxT2dzYvKM9IyzydU6bIq3MpomtEJRFlkwsynqfx5Drv6corF9J-0bHJiXdD2_4oT8hY8jR77Rj2HwZCQzpWG5lhoqhI78mPpCI1k47HUXEmfm76QMo5VAveFyxKmlHKZRN4wYcWOiNyYs1PSyfJMnxHqRHHiQdIheKQdDuDNjBjAZOkzBsLS6hKnUX0oa5JynJUxCa2ay7RRYIgKDGsFdsntUmy6YOlYJyDa7zUsq-ORZDHLJGRrZHtgBLA9vFoAOCHFBr_mIZYzufDO_7D2Ndnuj14H4eB5-HJBdmwsoMHqSueSdMpirntkS36V6ay4qqz8G8LG9D8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4NAEN4YNUYPvo31uQevaGFh2fVmVKKxaXrQ2BvCPgxJAw2l_n5nKNR6MB70wmHDbDbDMvN9MPsNIRdaep7kiXAYkA8gKCyAOMhdR_Mu01YqbUV9ULgX9vtiOJSDpppw0pRVIoe2M6GIOlbjyz3Wtq2Iu_JcLlzAEcDuPBgCDBEga18B6MyRfz1Hr_PPLIDYOasbSqKVg2btOZ6fZvqWob7pl0L-ybNsIf9EW_-w8m2y2YBPejPbLTtkyeS7ZGNBknCPvPWScQRLMeU1nUzLOi7SqihGVJuqLtvKaZbTEeRY1MEsxpn6ug_P9BUUS-nfadUiYlPSxb8V--Qlun--fXCaLgyOAjBXOUZgmam2XhKmypcGpcZTZYRWoeiGUqk01RbGZcAs01oHTKFqmHRTXyZBKtgBWc6L3BwS6iep5QA5pEiML4C6dRMGJFmFjIGxcjvEbz0fq0aiHDtljGK3UTJtHRijA-PGgR1yOTcbzzQ6fjOQi481ruqPI3bWySRmv9iewh6A5eHVBboJABuiGkcm1xWSH_1h7nOyNriL4t5j_-mYrHtYPYOllf4JWa7KqTklq-qjyiblWb3HPwHZYvLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LapFormer%3A+surgical+tool+detection+in+laparoscopic+surgical+video+using+transformer+architecture&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering.&rft.au=Kondo%2C+Satoshi&rft.date=2021-05-04&rft.pub=Taylor+%26+Francis&rft.issn=2168-1163&rft.eissn=2168-1171&rft.volume=9&rft.issue=3&rft.spage=302&rft.epage=307&rft_id=info:doi/10.1080%2F21681163.2020.1835550&rft.externalDocID=1835550
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-1163&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-1163&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-1163&client=summon