The Equivalence of Half-Quadratic Minimization and the Gradient Linearization Iteration
A popular way to restore images comprising edges is to minimize a cost function combining a quadratic data-fidelity term and an edge-preserving (possibly nonconvex) regularization term. Mainly because of the latter term, the calculation of the solution is slow and cumbersome. Half-quadratic (HQ) min...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on image processing Jg. 16; H. 6; S. 1623 - 1627 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.06.2007
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1057-7149, 1941-0042 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A popular way to restore images comprising edges is to minimize a cost function combining a quadratic data-fidelity term and an edge-preserving (possibly nonconvex) regularization term. Mainly because of the latter term, the calculation of the solution is slow and cumbersome. Half-quadratic (HQ) minimization (multiplicative form) was pioneered by Geman and Reynolds (1992) in order to alleviate the computational task in the context of image reconstruction with nonconvex regularization. By promoting the idea of locally homogeneous image models with a continuous-valued line process, they reformulated the optimization problem in terms of an augmented cost function which is quadratic with respect to the image and separable with respect to the line process, hence the name "half quadratic." Since then, a large amount of papers were dedicated to HQ minimization and important results-including edge-preservation along with convex regularization and convergence-have been obtained. In this paper, we show that HQ minimization (multiplicative form) is equivalent to the most simple and basic method where the gradient of the cost function is linearized at each iteration step. In fact, both methods give exactly the same iterations. Furthermore, connections of HQ minimization with other methods, such as the quasi-Newton method and the generalized Weiszfeld's method, are straightforward |
|---|---|
| AbstractList | By promoting the idea of locally homogeneous image models with a continuous-valued line process, they reformulated the optimization problem in terms of an augmented cost function which is quadratic with respect to the image and separable with respect to the line process, hence the name "half quadratic." [...] a large amount of papers were dedicated to HQ minimization and important results-including edge-preservation along with convex regularization and convergence-have been obtained. A popular way to restore images comprising edges is to minimize a cost function combining a quadratic data-fidelity term and an edge-preserving (possibly nonconvex) regularization term. Mainly because of the latter term, the calculation of the solution is slow and cumbersome. Half-quadratic (HQ) minimization (multiplicative form) was pioneered by Geman and Reynolds (1992) in order to alleviate the computational task in the context of image reconstruction with nonconvex regularization. By promoting the idea of locally homogeneous image models with a continuous-valued line process, they reformulated the optimization problem in terms of an augmented cost function which is quadratic with respect to the image and separable with respect to the line process, hence the name "half quadratic." Since then, a large amount of papers were dedicated to HQ minimization and important results-including edge-preservation along with convex regularization and convergence-have been obtained. In this paper, we show that HQ minimization (multiplicative form) is equivalent to the most simple and basic method where the gradient of the cost function is linearized at each iteration step. In fact, both methods give exactly the same iterations. Furthermore, connections of HQ minimization with other methods, such as the quasi-Newton method and the generalized Weiszfeld's method, are straightforward A popular way to restore images comprising edges is to minimize a cost function combining a quadratic data-fidelity term and an edge-preserving (possibly nonconvex) regularizalion term. Mainly because of the latter term, the calculation of the solution is slow and cumbersome. Half-quadratic (HQ) minimization (multiplicative form) was pioneered by Geman and Reynolds (1992) in order to alleviate the computational task in the context of image reconstruction with nonconvex regularization. By promoting the idea of locally homogeneous image models with a continuous-valued line process, they reformulated the optimization problem in terms of an augmented cost function which is quadratic with respect to the image and separable with respect to the line process, hence the name "half quadratic." Since then, a large amount of papers were dedicated to HQ minimization and important results--including edge-preservation along with convex regularization and convergence-have been obtained. In this paper, we show that HQ minimization (multiplicative form) is equivalent to the most simple and basic method where the gradient of the cost function is linearized at each iteration step. In fact, both methods give exactly the same iterations. Furthermore, connections of HQ minimization with other methods, such as the quasi-Newton method and the generalized Weiszfeld's method, are straightforward. A popular way to restore images comprising edges is to minimize a cost function combining a quadratic data-fidelity term and an edge-preserving (possibly nonconvex) regularizalion term. Mainly because of the latter term, the calculation of the solution is slow and cumbersome. Half-quadratic (HQ) minimization (multiplicative form) was pioneered by Geman and Reynolds (1992) in order to alleviate the computational task in the context of image reconstruction with nonconvex regularization. By promoting the idea of locally homogeneous image models with a continuous-valued line process, they reformulated the optimization problem in terms of an augmented cost function which is quadratic with respect to the image and separable with respect to the line process, hence the name "half quadratic." Since then, a large amount of papers were dedicated to HQ minimization and important results--including edge-preservation along with convex regularization and convergence-have been obtained. In this paper, we show that HQ minimization (multiplicative form) is equivalent to the most simple and basic method where the gradient of the cost function is linearized at each iteration step. In fact, both methods give exactly the same iterations. Furthermore, connections of HQ minimization with other methods, such as the quasi-Newton method and the generalized Weiszfeld's method, are straightforward.A popular way to restore images comprising edges is to minimize a cost function combining a quadratic data-fidelity term and an edge-preserving (possibly nonconvex) regularizalion term. Mainly because of the latter term, the calculation of the solution is slow and cumbersome. Half-quadratic (HQ) minimization (multiplicative form) was pioneered by Geman and Reynolds (1992) in order to alleviate the computational task in the context of image reconstruction with nonconvex regularization. By promoting the idea of locally homogeneous image models with a continuous-valued line process, they reformulated the optimization problem in terms of an augmented cost function which is quadratic with respect to the image and separable with respect to the line process, hence the name "half quadratic." Since then, a large amount of papers were dedicated to HQ minimization and important results--including edge-preservation along with convex regularization and convergence-have been obtained. In this paper, we show that HQ minimization (multiplicative form) is equivalent to the most simple and basic method where the gradient of the cost function is linearized at each iteration step. In fact, both methods give exactly the same iterations. Furthermore, connections of HQ minimization with other methods, such as the quasi-Newton method and the generalized Weiszfeld's method, are straightforward. |
| Author | Nikolova, M. Chan, R.H. |
| Author_xml | – sequence: 1 givenname: M. surname: Nikolova fullname: Nikolova, M. organization: Centre de Mathematiques et de Leurs Applications, Cachan – sequence: 2 givenname: R.H. surname: Chan fullname: Chan, R.H. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18763663$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17547139$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kd1rFDEUxYNU7Ic--yDIICi-zDaZfE0epdR2YUWFFR_D3eQOpsxm2mRGsH99M91thYLmJRfyO4ebc47JQRwiEvKa0QVj1Jyul98WDaV60RqlmuYZOWJGsJpS0RyUmUpdaybMITnO-YpSJiRTL8gh01Joxs0R-bn-hdX5zRR-Q4_RYTV01SX0Xf19Ap9gDK76EmLYhtsyD7GC6KuxSC4S-IBxrFYhIqSH5-WI6X56SZ530Gd8tb9PyI_P5-uzy3r19WJ59mlVO0HlWHtgpkENDDjHtmuMdh01jaKyVb41gjIJZsNRUl5O6z0ocLQTTnabjfKSn5APO9_rNNxMmEe7Ddlh30PEYcpWU6ka3aoCfvwvyFQJRPBGzui7J-jVMKVYvmFbVTZhVM_Q2z00bbbo7XUKW0h_7EO0BXi_ByC7kmiC6EL-y7XFRCleOLnjXBpyTthZF8b7DMcEobeM2rlqW6q2c9V2V3XRnT7RPVr_U_FmpwiI-EiLGVGC3wFWQbEu |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1016_j_patcog_2023_110056 crossref_primary_10_3389_fgene_2019_01054 crossref_primary_10_1007_s10851_017_0731_7 crossref_primary_10_1007_s10489_022_04409_z crossref_primary_10_1016_j_jvcir_2014_08_004 crossref_primary_10_1109_TIP_2022_3186749 crossref_primary_10_1007_s11042_019_7625_1 crossref_primary_10_1016_j_neucom_2018_01_033 crossref_primary_10_1109_TGRS_2020_2999936 crossref_primary_10_1109_ACCESS_2018_2855958 crossref_primary_10_1007_s00034_021_01800_y crossref_primary_10_1007_s10444_007_9061_4 crossref_primary_10_1137_120898693 crossref_primary_10_3934_ipi_2016001 crossref_primary_10_1109_TMI_2008_927346 crossref_primary_10_1016_j_apnum_2020_07_006 crossref_primary_10_1109_ACCESS_2019_2903309 crossref_primary_10_1007_s11063_021_10480_3 crossref_primary_10_1016_j_cam_2022_114878 crossref_primary_10_1007_s11222_024_10440_6 crossref_primary_10_1007_s11280_021_00945_9 crossref_primary_10_1109_TNNLS_2015_2393886 crossref_primary_10_2971_jeos_2013_13072 crossref_primary_10_1016_j_patcog_2017_11_019 crossref_primary_10_1016_j_sigpro_2019_107325 crossref_primary_10_1137_110854746 crossref_primary_10_1109_LSP_2023_3322092 crossref_primary_10_1016_j_jelectrocard_2020_08_017 crossref_primary_10_1109_JSTARS_2021_3081984 crossref_primary_10_1007_s11063_020_10216_9 crossref_primary_10_1109_TPAMI_2017_2777841 crossref_primary_10_1145_3442204 crossref_primary_10_1016_j_knosys_2020_106054 crossref_primary_10_1016_j_sigpro_2021_108407 crossref_primary_10_1049_ipr2_12751 crossref_primary_10_1088_1361_6560_ac3842 crossref_primary_10_1137_140967982 crossref_primary_10_3390_math11112556 crossref_primary_10_1007_s11075_022_01322_x crossref_primary_10_1088_0266_5611_27_8_085010 crossref_primary_10_1109_TSP_2019_2952057 crossref_primary_10_1016_j_knosys_2019_104898 crossref_primary_10_1016_j_camwa_2020_04_030 crossref_primary_10_1007_s10851_009_0149_y crossref_primary_10_1007_s10589_013_9583_2 crossref_primary_10_1016_j_dsp_2014_01_007 crossref_primary_10_1109_TCYB_2020_3000799 crossref_primary_10_1137_070696143 crossref_primary_10_1016_j_jfranklin_2023_01_039 crossref_primary_10_1007_s10915_014_9860_y crossref_primary_10_1109_ACCESS_2019_2915947 crossref_primary_10_1137_11086077X crossref_primary_10_1109_TIP_2016_2601262 crossref_primary_10_1016_j_ymssp_2018_06_047 crossref_primary_10_1016_j_neucom_2015_09_133 crossref_primary_10_1109_ACCESS_2020_3010862 crossref_primary_10_1007_s10851_010_0203_9 crossref_primary_10_1016_j_eswa_2024_126102 crossref_primary_10_1371_journal_pcbi_1012339 crossref_primary_10_1109_JBHI_2021_3110766 crossref_primary_10_1007_s11063_021_10483_0 crossref_primary_10_1109_TIP_2015_2456508 crossref_primary_10_1137_140971518 crossref_primary_10_1016_j_patcog_2023_109676 crossref_primary_10_1109_TNNLS_2020_3009632 crossref_primary_10_1109_TCSVT_2016_2629466 crossref_primary_10_1109_TPAMI_2017_2669034 crossref_primary_10_1109_TIP_2012_2217346 crossref_primary_10_1137_140987845 crossref_primary_10_1016_j_patcog_2011_05_002 crossref_primary_10_3934_ipi_2008_2_187 crossref_primary_10_1002_mrm_24116 crossref_primary_10_1007_s11045_011_0146_3 crossref_primary_10_1007_s11063_020_10257_0 crossref_primary_10_1109_TCSVT_2022_3200451 crossref_primary_10_1007_s10915_015_0162_9 crossref_primary_10_1109_LSP_2019_2952290 |
| Cites_doi | 10.1109/34.56205 10.1137/030600862 10.1109/34.120331 10.1016/S0165-1684(02)00163-9 10.1137/S003614299529230X 10.1109/29.45551 10.1109/83.679423 10.1109/LSP.2004.833511 10.1023/A:1008318126505 10.1080/02664768900000049 10.1023/B:JMIV.0000035180.40477.bd 10.1109/83.392335 10.1137/040619582 10.1137/0917016 10.1515/9781400873173 10.1109/ICIP.1995.529749 10.1109/ICIP.1994.413553 10.1109/TPAMI.1984.4767596 10.1109/83.551699 10.1109/83.661189 10.1109/83.660997 10.1007/978-4-431-66933-3 10.1137/S0036142997327075 10.1109/83.236536 10.1109/34.387504 10.7551/mitpress/7132.001.0001 10.1109/TIP.2005.864173 10.1007/b97428 10.1007/BF00131148 10.1109/83.931094 |
| ContentType | Journal Article |
| Copyright | 2007 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
| Copyright_xml | – notice: 2007 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
| DOI | 10.1109/TIP.2007.896622 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database Technology Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics |
| EISSN | 1941-0042 |
| EndPage | 1627 |
| ExternalDocumentID | 2339090891 17547139 18763663 10_1109_TIP_2007_896622 4200764 |
| Genre | orig-research Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION IQODW RIG AAYOK CGR CUY CVF ECM EIF NPM PKN Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
| ID | FETCH-LOGICAL-c405t-da192e7a1a33e8f297cf09260586d894015a9b3e5033338dda6ac0f4c5fbb6d53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 108 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000246641600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 |
| IngestDate | Sat Sep 27 22:38:22 EDT 2025 Sun Sep 28 06:11:49 EDT 2025 Sun Nov 30 04:59:31 EST 2025 Wed Feb 19 02:11:52 EST 2025 Mon Jul 21 09:14:45 EDT 2025 Tue Nov 18 22:27:34 EST 2025 Sat Nov 29 03:20:39 EST 2025 Tue Aug 26 16:46:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Cost minimization Variational methods Image processing Quasi Newton method Iterative method Image restoration Gradient linearization Optimization Image reconstruction Inverse problem signal and image restoration Signal restoration inverse problems Cost function Gradient method half-quadratic (HQ) regularization Quadratic function Linearization |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c405t-da192e7a1a33e8f297cf09260586d894015a9b3e5033338dda6ac0f4c5fbb6d53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 |
| PMID | 17547139 |
| PQID | 865031076 |
| PQPubID | 85429 |
| PageCount | 5 |
| ParticipantIDs | pascalfrancis_primary_18763663 ieee_primary_4200764 proquest_miscellaneous_70562786 proquest_miscellaneous_1671343256 crossref_citationtrail_10_1109_TIP_2007_896622 pubmed_primary_17547139 proquest_journals_865031076 crossref_primary_10_1109_TIP_2007_896622 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-06-01 |
| PublicationDateYYYYMMDD | 2007-06-01 |
| PublicationDate_xml | – month: 06 year: 2007 text: 2007-06-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2007 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 ref14 ref33 ref32 ref10 ref1 ref16 li (ref17) 1995 ref19 ref18 geman (ref7) 1990; 1427 tarantola (ref2) 1987 ref24 ref23 ref26 ref25 ref20 ref22 aubert (ref3) 2002 ref21 blake (ref11) 1987 ref28 ref29 ref8 rockafellar (ref30) 1970 ref9 tarel (ref27) 2002; 2350 ref6 ref5 tikhonov (ref4) 1977 brezis (ref31) 1992 |
| References_xml | – ident: ref12 doi: 10.1109/34.56205 – ident: ref15 doi: 10.1137/030600862 – ident: ref8 doi: 10.1109/34.120331 – ident: ref32 doi: 10.1016/S0165-1684(02)00163-9 – ident: ref24 doi: 10.1137/S003614299529230X – ident: ref1 doi: 10.1109/29.45551 – ident: ref29 doi: 10.1109/83.679423 – volume: 1427 start-page: 117 year: 1990 ident: ref7 publication-title: Random Fields and Inverse Problems in Imaging – volume: 2350 start-page: 492 year: 2002 ident: ref27 article-title: using robust estimation algorithms for tracking explicit curves publication-title: Proc ECCV – ident: ref26 doi: 10.1109/LSP.2004.833511 – ident: ref22 doi: 10.1023/A:1008318126505 – ident: ref6 doi: 10.1080/02664768900000049 – ident: ref18 doi: 10.1023/B:JMIV.0000035180.40477.bd – ident: ref10 doi: 10.1109/83.392335 – year: 1992 ident: ref31 publication-title: Analyse fonctionnelle – ident: ref19 doi: 10.1137/040619582 – ident: ref35 doi: 10.1137/0917016 – year: 1970 ident: ref30 publication-title: Convex Analysis doi: 10.1515/9781400873173 – ident: ref34 doi: 10.1109/ICIP.1995.529749 – ident: ref20 doi: 10.1109/ICIP.1994.413553 – ident: ref5 doi: 10.1109/TPAMI.1984.4767596 – ident: ref13 doi: 10.1109/83.551699 – ident: ref14 doi: 10.1109/83.661189 – ident: ref21 doi: 10.1109/83.660997 – year: 1995 ident: ref17 publication-title: Markov Random Field Modeling in Computer Vision doi: 10.1007/978-4-431-66933-3 – ident: ref25 doi: 10.1137/S0036142997327075 – year: 1977 ident: ref4 publication-title: Solutions of Ill-posed Problems – ident: ref9 doi: 10.1109/83.236536 – ident: ref33 doi: 10.1109/34.387504 – year: 1987 ident: ref11 publication-title: Visual Reconstruction doi: 10.7551/mitpress/7132.001.0001 – ident: ref28 doi: 10.1109/TIP.2005.864173 – year: 2002 ident: ref3 publication-title: Mathematical Problems in Images Processing doi: 10.1007/b97428 – ident: ref16 doi: 10.1007/BF00131148 – year: 1987 ident: ref2 publication-title: Inverse Problem Theory Methods for Data Fitting and Model Parameter Estimation – ident: ref23 doi: 10.1109/83.931094 |
| SSID | ssj0014516 |
| Score | 2.260836 |
| Snippet | A popular way to restore images comprising edges is to minimize a cost function combining a quadratic data-fidelity term and an edge-preserving (possibly... By promoting the idea of locally homogeneous image models with a continuous-valued line process, they reformulated the optimization problem in terms of an... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1623 |
| SubjectTerms | Algorithms Applied sciences Computer Simulation Cost function Detection, estimation, filtering, equalization, prediction Equivalence Exact sciences and technology Gradient linearization half-quadratic (HQ) regularization Image converters Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Image reconstruction Image restoration Information, signal and communications theory Inverse problems Iterative methods Linear Models Mathematical models Mathematics Minimization Minimization methods Noise reduction Numerical Analysis, Computer-Assisted Optimization Optimization methods Regularization Signal and communications theory signal and image restoration Signal processing Signal Processing, Computer-Assisted Signal, noise Studies Telecommunications and information theory Tomography variational methods |
| Title | The Equivalence of Half-Quadratic Minimization and the Gradient Linearization Iteration |
| URI | https://ieeexplore.ieee.org/document/4200764 https://www.ncbi.nlm.nih.gov/pubmed/17547139 https://www.proquest.com/docview/865031076 https://www.proquest.com/docview/1671343256 https://www.proquest.com/docview/70562786 |
| Volume | 16 |
| WOSCitedRecordID | wos000246641600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9RAFH4B4gEPoKBQ0XVMPHiwMLudXz0aA0IiBBPAvTXT-ZFsol3dbv37fTOdLZC4B29t-tpO-t5rv9c3830A76Ximqla5boWImeFYLlmzOTeGm2l98xHSZa7r_LqSk2n5fUGfBzWwjjn4uQzdxw2Yy_fzk0XfpWdsPBjTbBN2JRS9mu1ho5BEJyNnU0uc4mwP9H4jGl5cnNx3XMVKsT2k6hfIzm-lINA-IOPUVRXCXMjdYuPx_e6FuuBZ_wAne3-39CfwU4CmuRTHxnPYcM1e7CbQCdJKd3uwdMHjIS4dznQuLb78B2DiJz-7mYYjsGczD05x0Hn3zptQ-gYcjlrZj_TWk6iG0vwdPJlESeSLQlWuphJq8MXkcEZt17A7dnpzefzPCkx5AYB3TK3GoGgk3qsi8IpPyml8bQMpZASVpVYo3Fd1oULPVGsea3VQhvqmeG-roXlxUvYauaNOwQiuPeBtL-k1DEvdD2x-A6ghlPLuHQ8g-OVSyqTaMqDWsaPKpYrtKzQnUE8U1a9OzP4MJzwq2foWG-6HzwzmCWnZDB65PP7ywS6PoRkGRytgqBKKd5WCrEtYmMpMng3HMXcDA0X3bh511ZjEVbqFogqM3i7xkYGBCoVWhz00XV_9xSkr_496iPYXs1dpOPXsLVcdO4NPDF_lrN2McIUmapRTJG_qE4Ktg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB2VggQcKLSlmEK7SBw44NaO98tHhFoSkURFCtCbtd4PKRI4JU74_cyuN26RyIGbLY_tlWfGfuPZfQ_grZBMUVnLVNWcp7TgNFWU6tQZrYxwjrogyfJtLKZTeX1dXu3A-34tjLU2TD6zZ34z9PLNQq_9r7Jz6n-scXoP7jNKB3m3WqvvGXjJ2dDbZCIVCPwjkU-eleez0VXHVigR3Q-Cgo1g-Fr2EuF3PkdBX8XPjlQtPiDXKVtsh57hE3S593-DfwpPItQkH7rYeAY7ttmHvQg7SUzqdh8e3-EkxL1JT-TaHsB3DCNy8Ws9x4D05mThyBAHnX5ZK-ODR5PJvJn_jKs5iWoMwdPJp2WYSrYiWOtiLm0OjwKHM24dwtfLi9nHYRq1GFKNkG6VGoVQ0AqVq6Kw0g1KoV1W-mJIciNLrNKYKuvC-q4oVr3GKK505qhmrq65YcVz2G0WjX0BhDPnPG1_mWWWOq7qgcG3QKZZZigTliVwtnFJpSNRudfL-FGFgiUrK3Snl88UVefOBN71J9x0HB3bTQ-8Z3qz6JQETv7y-e1lPGEfgrIEjjdBUMUkbyuJ6BbRseAJvOmPYnb6lotq7GLdVjn3a3ULxJUJnG6xER6DCokWR1103d49BunLf4_6FB4OZ5NxNR5NPx_Do81Mxix_Bbur5dq-hgf692reLk9CovwBXf4NFQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+equivalence+of+half-quadratic+minimization+and+the+gradient+linearization+iteration&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Nikolova%2C+Mila&rft.au=Chan%2C+Raymond+H&rft.date=2007-06-01&rft.issn=1057-7149&rft.volume=16&rft.issue=6&rft.spage=1623&rft_id=info:doi/10.1109%2Ftip.2007.896622&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |