The Equivalence of Half-Quadratic Minimization and the Gradient Linearization Iteration

A popular way to restore images comprising edges is to minimize a cost function combining a quadratic data-fidelity term and an edge-preserving (possibly nonconvex) regularization term. Mainly because of the latter term, the calculation of the solution is slow and cumbersome. Half-quadratic (HQ) min...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 16; číslo 6; s. 1623 - 1627
Hlavní autoři: Nikolova, M., Chan, R.H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.06.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1057-7149, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A popular way to restore images comprising edges is to minimize a cost function combining a quadratic data-fidelity term and an edge-preserving (possibly nonconvex) regularization term. Mainly because of the latter term, the calculation of the solution is slow and cumbersome. Half-quadratic (HQ) minimization (multiplicative form) was pioneered by Geman and Reynolds (1992) in order to alleviate the computational task in the context of image reconstruction with nonconvex regularization. By promoting the idea of locally homogeneous image models with a continuous-valued line process, they reformulated the optimization problem in terms of an augmented cost function which is quadratic with respect to the image and separable with respect to the line process, hence the name "half quadratic." Since then, a large amount of papers were dedicated to HQ minimization and important results-including edge-preservation along with convex regularization and convergence-have been obtained. In this paper, we show that HQ minimization (multiplicative form) is equivalent to the most simple and basic method where the gradient of the cost function is linearized at each iteration step. In fact, both methods give exactly the same iterations. Furthermore, connections of HQ minimization with other methods, such as the quasi-Newton method and the generalized Weiszfeld's method, are straightforward
AbstractList A popular way to restore images comprising edges is to minimize a cost function combining a quadratic data-fidelity term and an edge-preserving (possibly nonconvex) regularizalion term. Mainly because of the latter term, the calculation of the solution is slow and cumbersome. Half-quadratic (HQ) minimization (multiplicative form) was pioneered by Geman and Reynolds (1992) in order to alleviate the computational task in the context of image reconstruction with nonconvex regularization. By promoting the idea of locally homogeneous image models with a continuous-valued line process, they reformulated the optimization problem in terms of an augmented cost function which is quadratic with respect to the image and separable with respect to the line process, hence the name "half quadratic." Since then, a large amount of papers were dedicated to HQ minimization and important results--including edge-preservation along with convex regularization and convergence-have been obtained. In this paper, we show that HQ minimization (multiplicative form) is equivalent to the most simple and basic method where the gradient of the cost function is linearized at each iteration step. In fact, both methods give exactly the same iterations. Furthermore, connections of HQ minimization with other methods, such as the quasi-Newton method and the generalized Weiszfeld's method, are straightforward.
By promoting the idea of locally homogeneous image models with a continuous-valued line process, they reformulated the optimization problem in terms of an augmented cost function which is quadratic with respect to the image and separable with respect to the line process, hence the name "half quadratic." [...] a large amount of papers were dedicated to HQ minimization and important results-including edge-preservation along with convex regularization and convergence-have been obtained.
A popular way to restore images comprising edges is to minimize a cost function combining a quadratic data-fidelity term and an edge-preserving (possibly nonconvex) regularization term. Mainly because of the latter term, the calculation of the solution is slow and cumbersome. Half-quadratic (HQ) minimization (multiplicative form) was pioneered by Geman and Reynolds (1992) in order to alleviate the computational task in the context of image reconstruction with nonconvex regularization. By promoting the idea of locally homogeneous image models with a continuous-valued line process, they reformulated the optimization problem in terms of an augmented cost function which is quadratic with respect to the image and separable with respect to the line process, hence the name "half quadratic." Since then, a large amount of papers were dedicated to HQ minimization and important results-including edge-preservation along with convex regularization and convergence-have been obtained. In this paper, we show that HQ minimization (multiplicative form) is equivalent to the most simple and basic method where the gradient of the cost function is linearized at each iteration step. In fact, both methods give exactly the same iterations. Furthermore, connections of HQ minimization with other methods, such as the quasi-Newton method and the generalized Weiszfeld's method, are straightforward
A popular way to restore images comprising edges is to minimize a cost function combining a quadratic data-fidelity term and an edge-preserving (possibly nonconvex) regularizalion term. Mainly because of the latter term, the calculation of the solution is slow and cumbersome. Half-quadratic (HQ) minimization (multiplicative form) was pioneered by Geman and Reynolds (1992) in order to alleviate the computational task in the context of image reconstruction with nonconvex regularization. By promoting the idea of locally homogeneous image models with a continuous-valued line process, they reformulated the optimization problem in terms of an augmented cost function which is quadratic with respect to the image and separable with respect to the line process, hence the name "half quadratic." Since then, a large amount of papers were dedicated to HQ minimization and important results--including edge-preservation along with convex regularization and convergence-have been obtained. In this paper, we show that HQ minimization (multiplicative form) is equivalent to the most simple and basic method where the gradient of the cost function is linearized at each iteration step. In fact, both methods give exactly the same iterations. Furthermore, connections of HQ minimization with other methods, such as the quasi-Newton method and the generalized Weiszfeld's method, are straightforward.A popular way to restore images comprising edges is to minimize a cost function combining a quadratic data-fidelity term and an edge-preserving (possibly nonconvex) regularizalion term. Mainly because of the latter term, the calculation of the solution is slow and cumbersome. Half-quadratic (HQ) minimization (multiplicative form) was pioneered by Geman and Reynolds (1992) in order to alleviate the computational task in the context of image reconstruction with nonconvex regularization. By promoting the idea of locally homogeneous image models with a continuous-valued line process, they reformulated the optimization problem in terms of an augmented cost function which is quadratic with respect to the image and separable with respect to the line process, hence the name "half quadratic." Since then, a large amount of papers were dedicated to HQ minimization and important results--including edge-preservation along with convex regularization and convergence-have been obtained. In this paper, we show that HQ minimization (multiplicative form) is equivalent to the most simple and basic method where the gradient of the cost function is linearized at each iteration step. In fact, both methods give exactly the same iterations. Furthermore, connections of HQ minimization with other methods, such as the quasi-Newton method and the generalized Weiszfeld's method, are straightforward.
Author Nikolova, M.
Chan, R.H.
Author_xml – sequence: 1
  givenname: M.
  surname: Nikolova
  fullname: Nikolova, M.
  organization: Centre de Mathematiques et de Leurs Applications, Cachan
– sequence: 2
  givenname: R.H.
  surname: Chan
  fullname: Chan, R.H.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18763663$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17547139$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1rFDEUxYNU7Ic--yDIICi-zDaZfE0epdR2YUWFFR_D3eQOpsxm2mRGsH99M91thYLmJRfyO4ebc47JQRwiEvKa0QVj1Jyul98WDaV60RqlmuYZOWJGsJpS0RyUmUpdaybMITnO-YpSJiRTL8gh01Joxs0R-bn-hdX5zRR-Q4_RYTV01SX0Xf19Ap9gDK76EmLYhtsyD7GC6KuxSC4S-IBxrFYhIqSH5-WI6X56SZ530Gd8tb9PyI_P5-uzy3r19WJ59mlVO0HlWHtgpkENDDjHtmuMdh01jaKyVb41gjIJZsNRUl5O6z0ocLQTTnabjfKSn5APO9_rNNxMmEe7Ddlh30PEYcpWU6ka3aoCfvwvyFQJRPBGzui7J-jVMKVYvmFbVTZhVM_Q2z00bbbo7XUKW0h_7EO0BXi_ByC7kmiC6EL-y7XFRCleOLnjXBpyTthZF8b7DMcEobeM2rlqW6q2c9V2V3XRnT7RPVr_U_FmpwiI-EiLGVGC3wFWQbEu
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_patcog_2023_110056
crossref_primary_10_3389_fgene_2019_01054
crossref_primary_10_1007_s10851_017_0731_7
crossref_primary_10_1007_s10489_022_04409_z
crossref_primary_10_1016_j_jvcir_2014_08_004
crossref_primary_10_1109_TIP_2022_3186749
crossref_primary_10_1007_s11042_019_7625_1
crossref_primary_10_1016_j_neucom_2018_01_033
crossref_primary_10_1109_TGRS_2020_2999936
crossref_primary_10_1109_ACCESS_2018_2855958
crossref_primary_10_1007_s00034_021_01800_y
crossref_primary_10_1007_s10444_007_9061_4
crossref_primary_10_1137_120898693
crossref_primary_10_3934_ipi_2016001
crossref_primary_10_1109_TMI_2008_927346
crossref_primary_10_1016_j_apnum_2020_07_006
crossref_primary_10_1109_ACCESS_2019_2903309
crossref_primary_10_1007_s11063_021_10480_3
crossref_primary_10_1016_j_cam_2022_114878
crossref_primary_10_1007_s11222_024_10440_6
crossref_primary_10_1007_s11280_021_00945_9
crossref_primary_10_1109_TNNLS_2015_2393886
crossref_primary_10_2971_jeos_2013_13072
crossref_primary_10_1016_j_patcog_2017_11_019
crossref_primary_10_1016_j_sigpro_2019_107325
crossref_primary_10_1137_110854746
crossref_primary_10_1109_LSP_2023_3322092
crossref_primary_10_1016_j_jelectrocard_2020_08_017
crossref_primary_10_1109_JSTARS_2021_3081984
crossref_primary_10_1007_s11063_020_10216_9
crossref_primary_10_1109_TPAMI_2017_2777841
crossref_primary_10_1145_3442204
crossref_primary_10_1016_j_knosys_2020_106054
crossref_primary_10_1016_j_sigpro_2021_108407
crossref_primary_10_1049_ipr2_12751
crossref_primary_10_1088_1361_6560_ac3842
crossref_primary_10_1137_140967982
crossref_primary_10_3390_math11112556
crossref_primary_10_1007_s11075_022_01322_x
crossref_primary_10_1088_0266_5611_27_8_085010
crossref_primary_10_1109_TSP_2019_2952057
crossref_primary_10_1016_j_knosys_2019_104898
crossref_primary_10_1016_j_camwa_2020_04_030
crossref_primary_10_1007_s10851_009_0149_y
crossref_primary_10_1007_s10589_013_9583_2
crossref_primary_10_1016_j_dsp_2014_01_007
crossref_primary_10_1109_TCYB_2020_3000799
crossref_primary_10_1137_070696143
crossref_primary_10_1016_j_jfranklin_2023_01_039
crossref_primary_10_1007_s10915_014_9860_y
crossref_primary_10_1109_ACCESS_2019_2915947
crossref_primary_10_1137_11086077X
crossref_primary_10_1109_TIP_2016_2601262
crossref_primary_10_1016_j_ymssp_2018_06_047
crossref_primary_10_1016_j_neucom_2015_09_133
crossref_primary_10_1109_ACCESS_2020_3010862
crossref_primary_10_1007_s10851_010_0203_9
crossref_primary_10_1016_j_eswa_2024_126102
crossref_primary_10_1371_journal_pcbi_1012339
crossref_primary_10_1109_JBHI_2021_3110766
crossref_primary_10_1007_s11063_021_10483_0
crossref_primary_10_1109_TIP_2015_2456508
crossref_primary_10_1137_140971518
crossref_primary_10_1016_j_patcog_2023_109676
crossref_primary_10_1109_TNNLS_2020_3009632
crossref_primary_10_1109_TCSVT_2016_2629466
crossref_primary_10_1109_TPAMI_2017_2669034
crossref_primary_10_1109_TIP_2012_2217346
crossref_primary_10_1137_140987845
crossref_primary_10_1016_j_patcog_2011_05_002
crossref_primary_10_3934_ipi_2008_2_187
crossref_primary_10_1002_mrm_24116
crossref_primary_10_1007_s11045_011_0146_3
crossref_primary_10_1007_s11063_020_10257_0
crossref_primary_10_1109_TCSVT_2022_3200451
crossref_primary_10_1007_s10915_015_0162_9
crossref_primary_10_1109_LSP_2019_2952290
Cites_doi 10.1109/34.56205
10.1137/030600862
10.1109/34.120331
10.1016/S0165-1684(02)00163-9
10.1137/S003614299529230X
10.1109/29.45551
10.1109/83.679423
10.1109/LSP.2004.833511
10.1023/A:1008318126505
10.1080/02664768900000049
10.1023/B:JMIV.0000035180.40477.bd
10.1109/83.392335
10.1137/040619582
10.1137/0917016
10.1515/9781400873173
10.1109/ICIP.1995.529749
10.1109/ICIP.1994.413553
10.1109/TPAMI.1984.4767596
10.1109/83.551699
10.1109/83.661189
10.1109/83.660997
10.1007/978-4-431-66933-3
10.1137/S0036142997327075
10.1109/83.236536
10.1109/34.387504
10.7551/mitpress/7132.001.0001
10.1109/TIP.2005.864173
10.1007/b97428
10.1007/BF00131148
10.1109/83.931094
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
Copyright_xml – notice: 2007 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TIP.2007.896622
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Technology Research Database

MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1941-0042
EndPage 1627
ExternalDocumentID 2339090891
17547139
18763663
10_1109_TIP_2007_896622
4200764
Genre orig-research
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c405t-da192e7a1a33e8f297cf09260586d894015a9b3e5033338dda6ac0f4c5fbb6d53
IEDL.DBID RIE
ISICitedReferencesCount 108
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000246641600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
IngestDate Sat Sep 27 22:38:22 EDT 2025
Sun Sep 28 06:11:49 EDT 2025
Sun Nov 30 04:59:31 EST 2025
Wed Feb 19 02:11:52 EST 2025
Mon Jul 21 09:14:45 EDT 2025
Tue Nov 18 22:27:34 EST 2025
Sat Nov 29 03:20:39 EST 2025
Tue Aug 26 16:46:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Cost minimization
Variational methods
Image processing
Quasi Newton method
Iterative method
Image restoration
Gradient linearization
Optimization
Image reconstruction
Inverse problem
signal and image restoration
Signal restoration
inverse problems
Cost function
Gradient method
half-quadratic (HQ) regularization
Quadratic function
Linearization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-da192e7a1a33e8f297cf09260586d894015a9b3e5033338dda6ac0f4c5fbb6d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
PMID 17547139
PQID 865031076
PQPubID 85429
PageCount 5
ParticipantIDs pascalfrancis_primary_18763663
ieee_primary_4200764
proquest_miscellaneous_70562786
proquest_miscellaneous_1671343256
crossref_citationtrail_10_1109_TIP_2007_896622
pubmed_primary_17547139
proquest_journals_865031076
crossref_primary_10_1109_TIP_2007_896622
PublicationCentury 2000
PublicationDate 2007-06-01
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-06-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2007
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref33
ref32
ref10
ref1
ref16
li (ref17) 1995
ref19
ref18
geman (ref7) 1990; 1427
tarantola (ref2) 1987
ref24
ref23
ref26
ref25
ref20
ref22
aubert (ref3) 2002
ref21
blake (ref11) 1987
ref28
ref29
ref8
rockafellar (ref30) 1970
ref9
tarel (ref27) 2002; 2350
ref6
ref5
tikhonov (ref4) 1977
brezis (ref31) 1992
References_xml – ident: ref12
  doi: 10.1109/34.56205
– ident: ref15
  doi: 10.1137/030600862
– ident: ref8
  doi: 10.1109/34.120331
– ident: ref32
  doi: 10.1016/S0165-1684(02)00163-9
– ident: ref24
  doi: 10.1137/S003614299529230X
– ident: ref1
  doi: 10.1109/29.45551
– ident: ref29
  doi: 10.1109/83.679423
– volume: 1427
  start-page: 117
  year: 1990
  ident: ref7
  publication-title: Random Fields and Inverse Problems in Imaging
– volume: 2350
  start-page: 492
  year: 2002
  ident: ref27
  article-title: using robust estimation algorithms for tracking explicit curves
  publication-title: Proc ECCV
– ident: ref26
  doi: 10.1109/LSP.2004.833511
– ident: ref22
  doi: 10.1023/A:1008318126505
– ident: ref6
  doi: 10.1080/02664768900000049
– ident: ref18
  doi: 10.1023/B:JMIV.0000035180.40477.bd
– ident: ref10
  doi: 10.1109/83.392335
– year: 1992
  ident: ref31
  publication-title: Analyse fonctionnelle
– ident: ref19
  doi: 10.1137/040619582
– ident: ref35
  doi: 10.1137/0917016
– year: 1970
  ident: ref30
  publication-title: Convex Analysis
  doi: 10.1515/9781400873173
– ident: ref34
  doi: 10.1109/ICIP.1995.529749
– ident: ref20
  doi: 10.1109/ICIP.1994.413553
– ident: ref5
  doi: 10.1109/TPAMI.1984.4767596
– ident: ref13
  doi: 10.1109/83.551699
– ident: ref14
  doi: 10.1109/83.661189
– ident: ref21
  doi: 10.1109/83.660997
– year: 1995
  ident: ref17
  publication-title: Markov Random Field Modeling in Computer Vision
  doi: 10.1007/978-4-431-66933-3
– ident: ref25
  doi: 10.1137/S0036142997327075
– year: 1977
  ident: ref4
  publication-title: Solutions of Ill-posed Problems
– ident: ref9
  doi: 10.1109/83.236536
– ident: ref33
  doi: 10.1109/34.387504
– year: 1987
  ident: ref11
  publication-title: Visual Reconstruction
  doi: 10.7551/mitpress/7132.001.0001
– ident: ref28
  doi: 10.1109/TIP.2005.864173
– year: 2002
  ident: ref3
  publication-title: Mathematical Problems in Images Processing
  doi: 10.1007/b97428
– ident: ref16
  doi: 10.1007/BF00131148
– year: 1987
  ident: ref2
  publication-title: Inverse Problem Theory Methods for Data Fitting and Model Parameter Estimation
– ident: ref23
  doi: 10.1109/83.931094
SSID ssj0014516
Score 2.260836
Snippet A popular way to restore images comprising edges is to minimize a cost function combining a quadratic data-fidelity term and an edge-preserving (possibly...
By promoting the idea of locally homogeneous image models with a continuous-valued line process, they reformulated the optimization problem in terms of an...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1623
SubjectTerms Algorithms
Applied sciences
Computer Simulation
Cost function
Detection, estimation, filtering, equalization, prediction
Equivalence
Exact sciences and technology
Gradient linearization
half-quadratic (HQ) regularization
Image converters
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image reconstruction
Image restoration
Information, signal and communications theory
Inverse problems
Iterative methods
Linear Models
Mathematical models
Mathematics
Minimization
Minimization methods
Noise reduction
Numerical Analysis, Computer-Assisted
Optimization
Optimization methods
Regularization
Signal and communications theory
signal and image restoration
Signal processing
Signal Processing, Computer-Assisted
Signal, noise
Studies
Telecommunications and information theory
Tomography
variational methods
Title The Equivalence of Half-Quadratic Minimization and the Gradient Linearization Iteration
URI https://ieeexplore.ieee.org/document/4200764
https://www.ncbi.nlm.nih.gov/pubmed/17547139
https://www.proquest.com/docview/865031076
https://www.proquest.com/docview/1671343256
https://www.proquest.com/docview/70562786
Volume 16
WOSCitedRecordID wos000246641600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4B4sAeltcuGx7FSBw4bCBumtg5IsTrAAIJRG-R7ThSJUh3m4bfz4zjBpDogUuVKJPW6szE32Ts7wM4TLk2SR89kHKuQ5yhdShNiR9RrLmWyibSOLEJcXsrh8PsbgH-dnthrLVu8Zk9pkPXyy_GpqFXZScDerGWDhZhUQjR7tXqOgYkOOs6m4kIBcJ-T-PDo-zk4fqu5SqUiO37Tr9GJPhQJoHwD5ORU1ehtZGqxr-nbHUt5gNPNwFdrH5v6Gvw0wNNdtpGxjos2GoDVj3oZD6l6w348YGREM9uOhrXehOeMIjY-f9mhOFI5mxcsiscdHjfqIJCx7CbUTV68Xs5maoKhrezy4lbSDZlWOliJs0uXzsGZzz6BY8X5w9nV6FXYggNArppWCgEglYoruLYyrKfCVNGGZVCMi1khjVaojIdW-qJYs1bFCpVJioHJim1Tosk_g1L1biyf4DhrJlIhY-1gYoRinFFjO90Lo02mscBHM9ckhtPU05qGc-5K1eiLEd3knimyFt3BnDU3fCvZeiYb7pJnunMvFMC6H3y-fvXEF0fQrIAdmZBkPsUr3OJ2BaxsUgDOOiuYm5Sw0VVdtzUOU9pp26MqDKA_Tk2ghCokGix1UbX-6_7IN3-etQ7sDJbuxjxXViaThq7B8vmdTqqJz1MkaHsuRR5A2Q5CcY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NgcR4YLDxIww2I_HAA9niJo6dR4Q2WrFWQypib5HtOFIlSEfT8Pdz57jZkOgDL1WiXFqrdxd_l7O_D-Bdzo0VI_RAzrmJcYY2sbI1fiSp4UZpJ5T1YhNyNlPX18XVDnwY9sI45_ziM3dKh76XXy1tR6_KzjJ6sZZn9-C-yLIR73drDT0Dkpz1vU0hY4nAPxD58KQ4m0-uerZCheh-5BVspMDHMkmE35mOvL4KrY7ULf5Bda9ssR16-inoYv__Bv8EHgeoyT72sfEUdlxzAPsBdrKQ1O0BPLrDSYhn04HItT2E7xhG7PxXt8CAJHO2rNkYBx1_7XRFwWPZdNEsfobdnEw3FcPb2eeVX0q2ZljrYi5tLk88hzMePYNvF-fzT-M4aDHEFiHdOq40QkEnNddp6lQ9KqStk4KKIZVXqsAqTejCpI66olj1VpXOtU3qzIramLwS6XPYbZaNewkM502hND7YMp0iGOOaON_pXFljDU8jON24pLSBqJz0Mn6UvmBJihLdSfKZsuzdGcH74YabnqNju-kheWYwC06J4Pgvn99-DRH2ISiL4GgTBGVI8rZUiG4RHcs8grfDVcxOarnoxi27tuQ57dVNEVdGcLLFRhIGlQotXvTRdfvrIUhf_XvUJ_BwPJ9elpeT2Zcj2NusZEz4a9hdrzr3Bh7Y3-tFuzr2ifIHE2MMJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+equivalence+of+half-quadratic+minimization+and+the+gradient+linearization+iteration&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Nikolova%2C+Mila&rft.au=Chan%2C+Raymond+H&rft.date=2007-06-01&rft.issn=1057-7149&rft.volume=16&rft.issue=6&rft.spage=1623&rft_id=info:doi/10.1109%2Ftip.2007.896622&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon