Regular Simple Queues of Protein Contact Maps

A protein fold can be viewed as a self-avoiding walk in certain lattice model, and its contact map is a graph that represents the patterns of contacts in the fold. Goldman, Istrail, and Papadimitriou showed that a contact map in the 2D square lattice can be decomposed into at most two stacks and one...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of mathematical biology Vol. 79; no. 1; pp. 21 - 35
Main Authors: Guo, Qiang-Hui, Sun, Lisa Hui, Wang, Jian
Format: Journal Article
Language:English
Published: New York Springer US 01.01.2017
Springer Nature B.V
Subjects:
ISSN:0092-8240, 1522-9602, 1522-9602
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A protein fold can be viewed as a self-avoiding walk in certain lattice model, and its contact map is a graph that represents the patterns of contacts in the fold. Goldman, Istrail, and Papadimitriou showed that a contact map in the 2D square lattice can be decomposed into at most two stacks and one queue. In the terminology of combinatorics, stacks and queues are noncrossing and nonnesting partitions, respectively. In this paper, we are concerned with 2-regular and 3-regular simple queues, for which the degree of each vertex is at most one and the arc lengths are at least 2 and 3, respectively. We show that 2-regular simple queues are in one-to-one correspondence with hill-free Motzkin paths, which have been enumerated by Barcucci, Pergola, Pinzani, and Rinaldi by using the Enumerating Combinatorial Objects method. We derive a recurrence relation for the generating function of Motzkin paths with k i peaks at level i , which reduces to the generating function for hill-free Motzkin paths. Moreover, we show that 3-regular simple queues are in one-to-one correspondence with Motzkin paths avoiding certain patterns. Then we obtain a formula for the generating function of 3-regular simple queues. Asymptotic formulas for 2-regular and 3-regular simple queues are derived based on the generating functions.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) A protein fold can be viewed as a self-avoiding walk in certain lattice model, and its contact map is a graph that represents the patterns of contacts in the fold. Goldman, Istrail, and Papadimitriou showed that a contact map in the 2D square lattice can be decomposed into at most two stacks and one queue. In the terminology of combinatorics, stacks and queues are noncrossing and nonnesting partitions, respectively. In this paper, we are concerned with 2-regular and 3-regular simple queues, for which the degree of each vertex is at most one and the arc lengths are at least 2 and 3, respectively. We show that 2-regular simple queues are in one-to-one correspondence with hill-free Motzkin paths, which have been enumerated by Barcucci, Pergola, Pinzani, and Rinaldi by using the Enumerating Combinatorial Objects method. We derive a recurrence relation for the generating function of Motzkin paths with ... peaks at level i, which reduces to the generating function for hill-free Motzkin paths. Moreover, we show that 3-regular simple queues are in one-to-one correspondence with Motzkin paths avoiding certain patterns. Then we obtain a formula for the generating function of 3-regular simple queues. Asymptotic formulas for 2-regular and 3-regular simple queues are derived based on the generating functions.
A protein fold can be viewed as a self-avoiding walk in certain lattice model, and its contact map is a graph that represents the patterns of contacts in the fold. Goldman, Istrail, and Papadimitriou showed that a contact map in the 2D square lattice can be decomposed into at most two stacks and one queue. In the terminology of combinatorics, stacks and queues are noncrossing and nonnesting partitions, respectively. In this paper, we are concerned with 2-regular and 3-regular simple queues, for which the degree of each vertex is at most one and the arc lengths are at least 2 and 3, respectively. We show that 2-regular simple queues are in one-to-one correspondence with hill-free Motzkin paths, which have been enumerated by Barcucci, Pergola, Pinzani, and Rinaldi by using the Enumerating Combinatorial Objects method. We derive a recurrence relation for the generating function of Motzkin paths with k i peaks at level i , which reduces to the generating function for hill-free Motzkin paths. Moreover, we show that 3-regular simple queues are in one-to-one correspondence with Motzkin paths avoiding certain patterns. Then we obtain a formula for the generating function of 3-regular simple queues. Asymptotic formulas for 2-regular and 3-regular simple queues are derived based on the generating functions.
A protein fold can be viewed as a self-avoiding walk in certain lattice model, and its contact map is a graph that represents the patterns of contacts in the fold. Goldman, Istrail, and Papadimitriou showed that a contact map in the 2D square lattice can be decomposed into at most two stacks and one queue. In the terminology of combinatorics, stacks and queues are noncrossing and nonnesting partitions, respectively. In this paper, we are concerned with 2-regular and 3-regular simple queues, for which the degree of each vertex is at most one and the arc lengths are at least 2 and 3, respectively. We show that 2-regular simple queues are in one-to-one correspondence with hill-free Motzkin paths, which have been enumerated by Barcucci, Pergola, Pinzani, and Rinaldi by using the Enumerating Combinatorial Objects method. We derive a recurrence relation for the generating function of Motzkin paths with [Formula: see text] peaks at level i, which reduces to the generating function for hill-free Motzkin paths. Moreover, we show that 3-regular simple queues are in one-to-one correspondence with Motzkin paths avoiding certain patterns. Then we obtain a formula for the generating function of 3-regular simple queues. Asymptotic formulas for 2-regular and 3-regular simple queues are derived based on the generating functions.
A protein fold can be viewed as a self-avoiding walk in certain lattice model, and its contact map is a graph that represents the patterns of contacts in the fold. Goldman, Istrail, and Papadimitriou showed that a contact map in the 2D square lattice can be decomposed into at most two stacks and one queue. In the terminology of combinatorics, stacks and queues are noncrossing and nonnesting partitions, respectively. In this paper, we are concerned with 2-regular and 3-regular simple queues, for which the degree of each vertex is at most one and the arc lengths are at least 2 and 3, respectively. We show that 2-regular simple queues are in one-to-one correspondence with hill-free Motzkin paths, which have been enumerated by Barcucci, Pergola, Pinzani, and Rinaldi by using the Enumerating Combinatorial Objects method. We derive a recurrence relation for the generating function of Motzkin paths with [Formula: see text] peaks at level i, which reduces to the generating function for hill-free Motzkin paths. Moreover, we show that 3-regular simple queues are in one-to-one correspondence with Motzkin paths avoiding certain patterns. Then we obtain a formula for the generating function of 3-regular simple queues. Asymptotic formulas for 2-regular and 3-regular simple queues are derived based on the generating functions.A protein fold can be viewed as a self-avoiding walk in certain lattice model, and its contact map is a graph that represents the patterns of contacts in the fold. Goldman, Istrail, and Papadimitriou showed that a contact map in the 2D square lattice can be decomposed into at most two stacks and one queue. In the terminology of combinatorics, stacks and queues are noncrossing and nonnesting partitions, respectively. In this paper, we are concerned with 2-regular and 3-regular simple queues, for which the degree of each vertex is at most one and the arc lengths are at least 2 and 3, respectively. We show that 2-regular simple queues are in one-to-one correspondence with hill-free Motzkin paths, which have been enumerated by Barcucci, Pergola, Pinzani, and Rinaldi by using the Enumerating Combinatorial Objects method. We derive a recurrence relation for the generating function of Motzkin paths with [Formula: see text] peaks at level i, which reduces to the generating function for hill-free Motzkin paths. Moreover, we show that 3-regular simple queues are in one-to-one correspondence with Motzkin paths avoiding certain patterns. Then we obtain a formula for the generating function of 3-regular simple queues. Asymptotic formulas for 2-regular and 3-regular simple queues are derived based on the generating functions.
Author Guo, Qiang-Hui
Wang, Jian
Sun, Lisa Hui
Author_xml – sequence: 1
  givenname: Qiang-Hui
  surname: Guo
  fullname: Guo, Qiang-Hui
  organization: Center for Combinatorics, LPMC, Nankai University
– sequence: 2
  givenname: Lisa Hui
  orcidid: 0000-0002-0901-9539
  surname: Sun
  fullname: Sun, Lisa Hui
  email: sunhui@nankai.edu.cn
  organization: Center for Combinatorics, LPMC, Nankai University, Center for Applied Mathematics, Tianjin University
– sequence: 3
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  organization: Center for Combinatorics, LPMC, Nankai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27844300$$D View this record in MEDLINE/PubMed
BookMark eNqNkctKxDAUhoMozkUfwI0U3LiJnlzaJEsZvMGI93VI23To0GnHpF3M25vSGZABxVXg8H0_J-efoMO6qS1CZwSuCIC49oTETGIgCQZKKN4coDGJKcUqAXqIxgCKYkk5jNDE-yUERzF1jEZUSM4ZwBjhN7voKuOi93K1rmz02tnO-qgpohfXtLaso1lTtyZroyez9ifoqDCVt6fbd4o-724_Zg94_nz_OLuZ44xD3OJc5UYoIygv0ixTgqUxsYIakicxM4qzNKFW5ZZKmZOiUIWKi5wYHoaKgcjZFF0OuWvXfIV9Wr0qfWarytS26bwmMlZcSUrVP1CmBAciSUAv9tBl07k6fKQPjIElMukDz7dUl65srteuXBm30bubBUAMQOYa750tdFa2pi3DnZwpK01A9-3ooR0d2tF9O3oTTLJn7sL_cujg-MDWC-t-LP2r9A2rzJ6k
CitedBy_id crossref_primary_10_1089_cmb_2021_0421
crossref_primary_10_1016_j_aam_2024_102722
crossref_primary_10_1016_j_aam_2023_102491
crossref_primary_10_1016_j_disc_2024_114317
Cites_doi 10.1089/cmb.2014.0133
10.1089/cmb.2007.0004
10.1016/0097-3165(77)90020-6
10.1016/j.tcs.2003.10.037
10.1017/CBO9780511609589
10.1016/S0378-4371(00)00410-6
10.1016/S1359-0278(97)00041-2
10.1007/s00285-012-0594-x
10.1016/S0166-218X(97)00118-2
10.1093/bioinformatics/btr220
10.1137/0403019
10.1016/j.ejc.2011.09.039
10.1016/j.disc.2004.04.001
10.1016/0166-218X(92)00038-N
10.1016/j.ejc.2004.02.009
10.1090/S0002-9947-06-04210-3
10.1007/s11538-007-9240-y
10.1007/s11538-007-9265-2
10.1089/cmb.2013.0022
10.1145/369133.369199
10.4310/CIS.2009.v9.n4.a2
10.1109/SFFCS.1999.814624
ContentType Journal Article
Copyright Society for Mathematical Biology 2016
Bulletin of Mathematical Biology is a copyright of Springer, 2017.
Copyright_xml – notice: Society for Mathematical Biology 2016
– notice: Bulletin of Mathematical Biology is a copyright of Springer, 2017.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7SS
7TK
7X7
7XB
88A
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L6V
LK8
M0S
M1P
M2P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
7SN
C1K
DOI 10.1007/s11538-016-0212-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
Ecology Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
Ecology Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Computer Science Database

MEDLINE
MEDLINE - Academic
Ecology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1522-9602
EndPage 35
ExternalDocumentID 4292399261
27844300
10_1007_s11538_016_0212_y
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.GJ
.VR
06D
0R~
0VY
199
1B1
1N0
1RT
1~5
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3O-
3V.
4.4
406
408
40D
40E
4G.
53G
5GY
5RE
5VS
67Z
6J9
6NX
7-5
71M
78A
7X7
88A
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AACTN
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALCJ
AALRI
AANZL
AAQFI
AAQXK
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMAC
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACRPL
ACZOJ
ADBBV
ADFGL
ADHIR
ADINQ
ADKNI
ADKPE
ADMUD
ADNMO
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHHHB
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AITUG
AJBLW
AJRNO
AJZVZ
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DM4
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FDB
FEDTE
FERAY
FFXSO
FGOYB
FIGPU
FINBP
FIRID
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-2
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG5
HG6
HLV
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K6V
K7-
KDC
KOV
L6V
LG5
LK8
LLZTM
LW8
M0L
M1P
M4Y
M7P
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O-L
O9-
O93
O9G
O9I
O9J
OZT
P19
P2P
P62
P9R
PF0
PKN
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOS
R2-
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAB
SAP
SCLPG
SDD
SDH
SDM
SEW
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSZ
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
WUQ
XPP
XSW
YLTOR
Z45
Z7U
Z83
ZGI
ZMT
ZMTXR
ZWQNP
ZXP
~A9
~EX
~KM
9DU
AAPKM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUFD
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIGII
AIXLP
AMVHM
ATHPR
AYFIA
AZQEC
CITATION
DWQXO
GNUQQ
M2P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TK
7XB
8FK
JQ2
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
7SN
C1K
ID FETCH-LOGICAL-c405t-d9da79a724fbcc973b51e72a1d653a943b62e9de288d1ff9f95fd1a42e99307d3
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392195500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0092-8240
1522-9602
IngestDate Tue Oct 07 08:01:15 EDT 2025
Thu Oct 02 07:53:45 EDT 2025
Sat Nov 29 14:39:17 EST 2025
Wed Feb 19 02:41:15 EST 2025
Sat Nov 29 03:48:41 EST 2025
Tue Nov 18 22:31:54 EST 2025
Fri Feb 21 02:39:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Motzkin path
92B05
Contact map
Queue
05A15
Stack
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-d9da79a724fbcc973b51e72a1d653a943b62e9de288d1ff9f95fd1a42e99307d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0901-9539
PMID 27844300
PQID 1855036869
PQPubID 55445
PageCount 15
ParticipantIDs proquest_miscellaneous_1859498229
proquest_miscellaneous_1839740181
proquest_journals_1855036869
pubmed_primary_27844300
crossref_citationtrail_10_1007_s11538_016_0212_y
crossref_primary_10_1007_s11538_016_0212_y
springer_journals_10_1007_s11538_016_0212_y
PublicationCentury 2000
PublicationDate 20170100
2017-1-00
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 1
  year: 2017
  text: 20170100
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle A Journal Devoted to Research at the Junction of Computational, Theoretical and Experimental Biology Official Journal of The Society for Mathematical Biology
PublicationTitle Bulletin of mathematical biology
PublicationTitleAbbrev Bull Math Biol
PublicationTitleAlternate Bull Math Biol
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Dos̆lić, Svrtan, Veljan (CR10) 2004; 285
Barcucci, Pergola, Pinzani, Rinaldi (CR3) 2001; 46
Chen, Guo, Sun, Wang (CR6) 2014; 21
CR14
Chen, Deng, Du, Stanley, Yan (CR5) 2007; 359
Jin, Reidys (CR18) 2008; 70
CR12
Donaghey, Shapiro (CR9) 1977; 23
Anderson, Penner, Reidys, Waterman (CR2) 2013; 67
Domany (CR8) 2000; 288
Agarwal, Mustafa, Wang (CR1) 2007; 14
Schmitt, Waterman (CR23) 1994; 51
Chen, Deng, Du (CR4) 2005; 26
Klazar (CR19) 1998; 82
Jin, Qin, Reidys (CR17) 2008; 70
Stanley (CR25) 1999
Höner zu Siederdissen, Bernhart, Stadler, Hofacker (CR15) 2011; 27
CR24
CR20
Chen, Fan, Zhao (CR7) 2012; 33
Flajolet, Odlyzko (CR13) 1990; 3
Parkin, Chamorro, Varmus (CR22) 1991; 89
Duchi, Fédou, Rinaldi (CR11) 2004; 314
Vendruscolo, Kussell, Domany (CR26) 1997; 2
Istrail, Lam (CR16) 2009; 9
Müller, Nebel (CR21) 2015; 22
E Domany (212_CR8) 2000; 288
212_CR12
WYC Chen (212_CR5) 2007; 359
212_CR14
S Istrail (212_CR16) 2009; 9
M Vendruscolo (212_CR26) 1997; 2
EY Jin (212_CR18) 2008; 70
P Flajolet (212_CR13) 1990; 3
PK Agarwal (212_CR1) 2007; 14
WR Schmitt (212_CR23) 1994; 51
E Barcucci (212_CR3) 2001; 46
WYC Chen (212_CR7) 2012; 33
WYC Chen (212_CR4) 2005; 26
212_CR20
212_CR24
JE Anderson (212_CR2) 2013; 67
E Duchi (212_CR11) 2004; 314
R Donaghey (212_CR9) 1977; 23
M Klazar (212_CR19) 1998; 82
N Parkin (212_CR22) 1991; 89
C Höner zu Siederdissen (212_CR15) 2011; 27
EY Jin (212_CR17) 2008; 70
T Dos̆lić (212_CR10) 2004; 285
WYC Chen (212_CR6) 2014; 21
RP Stanley (212_CR25) 1999
R Müller (212_CR21) 2015; 22
References_xml – volume: 21
  start-page: 915
  issue: 12
  year: 2014
  end-page: 935
  ident: CR6
  article-title: Zigzag stacks and -regular linear stacks
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2014.0133
– ident: CR14
– ident: CR12
– volume: 14
  start-page: 131
  issue: 2
  year: 2007
  end-page: 143
  ident: CR1
  article-title: Fast molecular shape matching using contact maps
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2007.0004
– volume: 23
  start-page: 291
  year: 1977
  end-page: 301
  ident: CR9
  article-title: Motzkin numbers
  publication-title: J Comb Theory Ser A
  doi: 10.1016/0097-3165(77)90020-6
– volume: 314
  start-page: 57
  year: 2004
  end-page: 95
  ident: CR11
  article-title: From object grammars to ECO systems
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2003.10.037
– year: 1999
  ident: CR25
  publication-title: Enumerative combinatorics
  doi: 10.1017/CBO9780511609589
– volume: 288
  start-page: 1
  year: 2000
  end-page: 9
  ident: CR8
  article-title: Protein folding in contact map space
  publication-title: Phys A
  doi: 10.1016/S0378-4371(00)00410-6
– volume: 2
  start-page: 295
  issue: 5
  year: 1997
  end-page: 306
  ident: CR26
  article-title: Recovery of protein structure from contact maps
  publication-title: Fold Des
  doi: 10.1016/S1359-0278(97)00041-2
– volume: 67
  start-page: 1261
  year: 2013
  end-page: 1278
  ident: CR2
  article-title: Topological classification and enumeration of RNA structures by genus
  publication-title: J Math Biol
  doi: 10.1007/s00285-012-0594-x
– volume: 82
  start-page: 263
  year: 1998
  end-page: 269
  ident: CR19
  article-title: On trees and noncrossing partitions
  publication-title: Discrete Appl Math
  doi: 10.1016/S0166-218X(97)00118-2
– volume: 46
  start-page: B46b
  year: 2001
  ident: CR3
  article-title: ECO method and hill-free generalized Motzkin paths
  publication-title: Sem Loth Comb
– volume: 27
  start-page: 129
  issue: 13
  year: 2011
  end-page: 136
  ident: CR15
  article-title: A folding algorithm for extended RNA secondary structures
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr220
– volume: 3
  start-page: 216
  issue: 2
  year: 1990
  end-page: 240
  ident: CR13
  article-title: Singularity analysis of generating functions
  publication-title: SIAM J Discrete Math
  doi: 10.1137/0403019
– volume: 33
  start-page: 491
  year: 2012
  end-page: 504
  ident: CR7
  article-title: Partitions and partial matchings avoiding neighbor patterns
  publication-title: Eur J Comb
  doi: 10.1016/j.ejc.2011.09.039
– volume: 285
  start-page: 67
  year: 2004
  end-page: 82
  ident: CR10
  article-title: Enumerative aspects of secondary structures
  publication-title: Discrete Math
  doi: 10.1016/j.disc.2004.04.001
– volume: 9
  start-page: 303
  issue: 4
  year: 2009
  end-page: 346
  ident: CR16
  article-title: Combinatorial algorithms for protein folding in lattice models: a survey of mathematical results
  publication-title: Commun Inf Syst
– volume: 51
  start-page: 317
  year: 1994
  end-page: 323
  ident: CR23
  article-title: Linear trees and RNA secondary structure
  publication-title: Discrete Appl Math
  doi: 10.1016/0166-218X(92)00038-N
– volume: 26
  start-page: 237
  year: 2005
  end-page: 243
  ident: CR4
  article-title: Reduction of -regular noncrossing partitions
  publication-title: Eur J Comb
  doi: 10.1016/j.ejc.2004.02.009
– volume: 89
  start-page: 713
  year: 1991
  end-page: 717
  ident: CR22
  article-title: An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA
  publication-title: J Proc Natl Acad Sci USA
– ident: CR24
– volume: 359
  start-page: 1555
  year: 2007
  end-page: 1575
  ident: CR5
  article-title: Crossings and nestings of matchings and partitions
  publication-title: Trans Am Math Soc
  doi: 10.1090/S0002-9947-06-04210-3
– volume: 70
  start-page: 45
  year: 2008
  end-page: 67
  ident: CR17
  article-title: Combinatorics of RNA structures with pseudoknots
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-007-9240-y
– volume: 70
  start-page: 951
  year: 2008
  end-page: 970
  ident: CR18
  article-title: Asymptotic enumeration of RNA structures with pseudoknots
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-007-9265-2
– ident: CR20
– volume: 22
  start-page: 619
  issue: 7
  year: 2015
  end-page: 648
  ident: CR21
  article-title: Combinatorics of RNA secondary structures with base triples
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2013.0022
– volume: 51
  start-page: 317
  year: 1994
  ident: 212_CR23
  publication-title: Discrete Appl Math
  doi: 10.1016/0166-218X(92)00038-N
– volume: 26
  start-page: 237
  year: 2005
  ident: 212_CR4
  publication-title: Eur J Comb
  doi: 10.1016/j.ejc.2004.02.009
– volume: 3
  start-page: 216
  issue: 2
  year: 1990
  ident: 212_CR13
  publication-title: SIAM J Discrete Math
  doi: 10.1137/0403019
– volume: 82
  start-page: 263
  year: 1998
  ident: 212_CR19
  publication-title: Discrete Appl Math
  doi: 10.1016/S0166-218X(97)00118-2
– volume-title: Enumerative combinatorics
  year: 1999
  ident: 212_CR25
  doi: 10.1017/CBO9780511609589
– volume: 22
  start-page: 619
  issue: 7
  year: 2015
  ident: 212_CR21
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2013.0022
– volume: 70
  start-page: 45
  year: 2008
  ident: 212_CR17
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-007-9240-y
– ident: 212_CR24
– volume: 285
  start-page: 67
  year: 2004
  ident: 212_CR10
  publication-title: Discrete Math
  doi: 10.1016/j.disc.2004.04.001
– ident: 212_CR20
  doi: 10.1145/369133.369199
– volume: 21
  start-page: 915
  issue: 12
  year: 2014
  ident: 212_CR6
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2014.0133
– volume: 27
  start-page: 129
  issue: 13
  year: 2011
  ident: 212_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr220
– volume: 359
  start-page: 1555
  year: 2007
  ident: 212_CR5
  publication-title: Trans Am Math Soc
  doi: 10.1090/S0002-9947-06-04210-3
– ident: 212_CR12
– volume: 67
  start-page: 1261
  year: 2013
  ident: 212_CR2
  publication-title: J Math Biol
  doi: 10.1007/s00285-012-0594-x
– volume: 33
  start-page: 491
  year: 2012
  ident: 212_CR7
  publication-title: Eur J Comb
  doi: 10.1016/j.ejc.2011.09.039
– volume: 70
  start-page: 951
  year: 2008
  ident: 212_CR18
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-007-9265-2
– volume: 9
  start-page: 303
  issue: 4
  year: 2009
  ident: 212_CR16
  publication-title: Commun Inf Syst
  doi: 10.4310/CIS.2009.v9.n4.a2
– volume: 23
  start-page: 291
  year: 1977
  ident: 212_CR9
  publication-title: J Comb Theory Ser A
  doi: 10.1016/0097-3165(77)90020-6
– volume: 2
  start-page: 295
  issue: 5
  year: 1997
  ident: 212_CR26
  publication-title: Fold Des
  doi: 10.1016/S1359-0278(97)00041-2
– volume: 89
  start-page: 713
  year: 1991
  ident: 212_CR22
  publication-title: J Proc Natl Acad Sci USA
– volume: 46
  start-page: B46b
  year: 2001
  ident: 212_CR3
  publication-title: Sem Loth Comb
– volume: 314
  start-page: 57
  year: 2004
  ident: 212_CR11
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2003.10.037
– volume: 14
  start-page: 131
  issue: 2
  year: 2007
  ident: 212_CR1
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2007.0004
– ident: 212_CR14
  doi: 10.1109/SFFCS.1999.814624
– volume: 288
  start-page: 1
  year: 2000
  ident: 212_CR8
  publication-title: Phys A
  doi: 10.1016/S0378-4371(00)00410-6
SSID ssj0007939
Score 2.1564775
Snippet A protein fold can be viewed as a self-avoiding walk in certain lattice model, and its contact map is a graph that represents the patterns of contacts in the...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) A protein fold can be viewed as a self-avoiding walk in certain lattice model, and...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).A protein fold can be viewed as a self-avoiding walk in certain lattice model, and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21
SubjectTerms Algorithms
Cell Biology
Life Sciences
Mathematical and Computational Biology
Mathematical Concepts
Mathematics
Mathematics and Statistics
Models, Molecular
Nucleic Acid Conformation
Original Article
Protein Folding
Protein Interaction Mapping - statistics & numerical data
Protein Interaction Maps
Proteins - chemistry
RNA - chemistry
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61lEpwaIHyWNiiIHGiskhiJ45PqEJFvSxaXhK3yIltaSWUXTa7SPvvmclrQah76TVxkpE9M_7isb8P4NRiWrRxrJjIEs1EbgXDHOgz6WItiJ_cJLXYhLy-Th4f1bBZcCubbZVtTqwStRnntEZ-HhDzFo-TWF1MnhmpRlF1tZHQ-AxfENkEtKVrEA67TIy-V8NfhVGPU1db1ayOzlWhjoCHEck5W7yflz6AzQ-F0mr-ufr-v5ZvwbcGeXq_a1fZhk-22IGvtRblYgc2Bx2Ba_kD2G2lUT_17kZEH-zdzC1-0Rs7b0jEDqPCI1ornc-8gZ6Uu_Bw9ef-8i9rlBVYjgBtxowyWiotQ-GyPFeSZ1FgZagDE0dcK8GzOLTK2DBJTOCccipyJtACLypMCobvwVoxLuwBeIGUymaI82SGyMq5REntK80FdxH-6fIe-G2_pnlDO07qF0_pkjCZhiKlrWY0FOmiB2fdI5Oac2NV437b62kTfmW67PIenHS3MXCoGqILO55TG4RigvjKVrWJlCCGQ3zPfu0InUVUsRXc93vwq_WMNwb8y9zD1eYewUZIuKFa4-nD2mw6tz9hPX-ZjcrpceXdrxyt-7o
  priority: 102
  providerName: ProQuest
Title Regular Simple Queues of Protein Contact Maps
URI https://link.springer.com/article/10.1007/s11538-016-0212-y
https://www.ncbi.nlm.nih.gov/pubmed/27844300
https://www.proquest.com/docview/1855036869
https://www.proquest.com/docview/1839740181
https://www.proquest.com/docview/1859498229
Volume 79
WOSCitedRecordID wos000392195500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: M7P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1522-9602
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007939
  issn: 0092-8240
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_6sUH3sK7d2qXrggt72hDYlmxJj-toKZQEL9lG2IuRbQkCwylxUsh_vzt_daNboX05sH0Wh6Q7_eyTfgfwwWJYtHGsmciUYSK3gmEM9Jl0sRHET16optiEHI_VbKaT9hx31e1271KSdaS-O-xWOydCFEa05GyzDbu42imq1zCZ_ujDL064BvNqdHVcr7pU5r-a-Hsxuocw72VH60Xncv9J5r6Cly3G9D43k-IAtmx5CM-bqpObQ3gx6qlaq9fAJnU1-qU3nRNRsPd1bdE6b-G8hCgc5qVHBFYmX3kjc1O9ge-XF9--XLG2hgLLEYqtWKELI7WRoXBZnmvJsyiwMjRBEUfcaMGzOLS6sKFSReCcdjpyRWAE3tTo_gU_gp1yUdq34AVSapshopMZYijnlJbG14YL7iL8puUD8LvOTPOWYJzqXPxK76iRqU9S2lRGfZJuBvCxf-WmYdd4SPm0G6G0dbQqDYiQjccq1gM46x-ji1Dew5R2sSYdBF2CmMke0om0IC5DbOe4Gf3eIsrNCu77A_jUDfUfBvzP3JNHab-DvZAAQ_1z5xR2Vsu1fQ_P8tvVvFoOYVvOZC3VEHbPL8bJBK-uJUM5ChOSspFTlEn0c1j7xG-u3PnT
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VAgIOLZSvpS0YCS5FFknsxPEBIQRUrdpdLdBKvaVObKOVUHZpdlvtn-I3MpNsUlDF3nrgmjjWJDN-fvHYbwBeOYRFlySayzw1XBZOcsTAgCufGEn65DZtik2owSA9OdHDFfjVnoWhbZUtJtZAbccFrZG_DUl5SyRpot9PfnKqGkXZ1baERhMWB25-gb9s1bv9T-jf11G0-_no4x5fVBXgBZKTKbfaGqWNiqTPi0IrkcehU5EJbRILo6XIk8hp66I0taH32uvY29BIvKhxQFiB_d6Am5KUxWirYDTskB9jvaHbGlEGp8o2i1of1auhBQkWJ1F1Pv97HrxCbq8kZuv5bnf9f_tS92FtwazZh2YoPIAVV27A7abW5nwD7vU7gdrqIfCv7jttwGXfRiSPzL7MHL4hG3s2JOGKUclItssUU9Y3k-oRHF-L5Y9htRyX7imwUCntcuSxKkfm6H2qlQm0EVL4GP_kRQ-C1o9ZsZBVp-oeP7JLQWhyfUZb6cj12bwHO90jk0ZTZFnjrdbL2QJequzSxT142d1GYKBsjyndeEZtkGpK0mNb1ibWkhQcsZ8nTeB1FlFGWoog6MGbNhL_MOBf5j5bbu4LuLN31D_MDvcHB5twNyKOVK9nbcHq9GzmtuFWcT4dVWfP65HF4PS6A_Q3pOhZ1w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VChU9UB6FLmzbIHECWSSxE8dHBKxaAastL3GLnNiWVkLZ1SZbaf99PXltEQ8JcU0m1sieGX_OjL8B2Nc2LOowFIQlkSQs1YzYGOgSbkLJkJ9cRVWzCd7vR_f3YlD3Oc2bavcmJVndaUCWpqw4GitzNL_4VjqqhSsEKcrJbAE-Mqyjx-P69V0biq3xVfhXWLe3e1eT1nxuiMcb0xO0-SRTWm5AvS_vVn0NVmvs6RxXxrIOH3S2ActVN8rZBny-bClc800gV2WX-olzPUQCYefPVFtNnZFxBkjtMMwcJLaSaeFcynH-FW57Zzcnv0jdW4GkFqIVRAkluZDcZyZJU8FpEnia-9JTYUClYDQJfS2U9qNIecYIIwKjPMnsQ2HDgqJbsJiNMv0NHI9zoROL9HhisZUxkeDSFZIyagJ71qUdcJuJjdOaeBz7XzzEc8pknJMYi81wTuJZBw7aT8YV68Zrwt1mteLaAfPYQ6I2Gkah6MBe-9q6DuZDZKZHU5SxYIwhY9lrMoFgyHFox9muLKHVCHO2jLpuBw6bZf9PgZfU3XmT9E_4NDjtxRe_--e7sOIjpij__3RhsZhM9XdYSv8Ww3zyozT8f-Nb_YU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regular+Simple+Queues+of+Protein+Contact+Maps&rft.jtitle=Bulletin+of+mathematical+biology&rft.au=Guo%2C+Qiang-Hui&rft.au=Sun%2C+Lisa+Hui&rft.au=Wang%2C+Jian&rft.date=2017-01-01&rft.pub=Springer+US&rft.issn=0092-8240&rft.eissn=1522-9602&rft.volume=79&rft.issue=1&rft.spage=21&rft.epage=35&rft_id=info:doi/10.1007%2Fs11538-016-0212-y&rft.externalDocID=10_1007_s11538_016_0212_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8240&client=summon