A Novel Multi-Objective Competitive Swarm Optimization Algorithm

In this article, a new algorithm, namely the multi-objective competitive swarm optimizer (MOCSO), is introduced to handle multi-objective problems. The algorithm has been principally motivated from the competitive swarm optimizer (CSO) and the NSGA-II algorithm. In MOCSO, a pair wise competitive sce...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of applied metaheuristic computing Ročník 11; číslo 4; s. 114 - 129
Hlavní autoři: Dey, Nilanjan, Kumar, Ram, Mohapatra, Prabhujit, Das, Kedar Nath, Roy, Santanu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hershey IGI Global 01.10.2020
Témata:
ISSN:1947-8283, 1947-8291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this article, a new algorithm, namely the multi-objective competitive swarm optimizer (MOCSO), is introduced to handle multi-objective problems. The algorithm has been principally motivated from the competitive swarm optimizer (CSO) and the NSGA-II algorithm. In MOCSO, a pair wise competitive scenario is presented to achieve the dominance relationship between two particles in the population. In each pair wise competition, the particle that dominates the other particle is considered the winner and the other is consigned as the loser. The loser particles learn from the respective winner particles in each individual competition. The inspired CSO algorithm does not use any memory to remember the global best or personal best particles, hence, MOCSO does not need any external archive to store elite particles. The experimental results and statistical tests confirm the superiority of MOCSO over several state-of-the-art multi-objective algorithms in solving benchmark problems.
AbstractList In this article, a new algorithm, namely the multi-objective competitive swarm optimizer (MOCSO), is introduced to handle multi-objective problems. The algorithm has been principally motivated from the competitive swarm optimizer (CSO) and the NSGA-II algorithm. In MOCSO, a pair wise competitive scenario is presented to achieve the dominance relationship between two particles in the population. In each pair wise competition, the particle that dominates the other particle is considered the winner and the other is consigned as the loser. The loser particles learn from the respective winner particles in each individual competition. The inspired CSO algorithm does not use any memory to remember the global best or personal best particles, hence, MOCSO does not need any external archive to store elite particles. The experimental results and statistical tests confirm the superiority of MOCSO over several state-of-the-art multi-objective algorithms in solving benchmark problems.
Audience Academic
Author Mohapatra, Prabhujit
Roy, Santanu
Das, Kedar Nath
Dey, Nilanjan
Kumar, Ram
AuthorAffiliation Techno India College of Technology, West Bengal, India
NIT Silchar, Silchar, India
Katihar Engineering College, Katihar, India
VIT University, Vellore, Tamilnadu, India
AuthorAffiliation_xml – name: NIT Silchar, Silchar, India
– name: Techno India College of Technology, West Bengal, India
– name: Katihar Engineering College, Katihar, India
– name: VIT University, Vellore, Tamilnadu, India
Author_xml – sequence: 1
  givenname: Nilanjan
  surname: Dey
  fullname: Dey, Nilanjan
  organization: Techno India College of Technology, West Bengal, India
– sequence: 2
  givenname: Ram
  surname: Kumar
  fullname: Kumar, Ram
  organization: Katihar Engineering College, Katihar, India
– sequence: 3
  givenname: Prabhujit
  surname: Mohapatra
  fullname: Mohapatra, Prabhujit
  organization: VIT University, Vellore, Tamilnadu, India
– sequence: 4
  givenname: Kedar
  surname: Das
  middlename: Nath
  fullname: Das, Kedar Nath
  organization: NIT Silchar, Silchar, India
– sequence: 5
  givenname: Santanu
  surname: Roy
  fullname: Roy, Santanu
  organization: NIT Silchar, Silchar, India
BookMark eNp9kc1PwyAYxonRxKm7e2zixYOd0EJLbzaLTo26g3om0NKOpV8CndG_XuzMliwqEHgPv-d9yfMcgf2mbSQApwhOMET08u4-fZxOAhhABN2J9sAIJTj2aZCg_U1Nw0MwNmYJ3SI4jiEZgavUe2pXsvIe-8oqfy6WMrNqJb1pW3fSqqF-fue69uadVbX65Fa1jZdWZauVXdQn4KDglZHjn_cYvN5cv0xv_Yf57G6aPvgZhsT6OeUYCVpw7KqARCiLcR5CJGIpiBBQ5iigMSwIDCkWRZaIGOWYJHkgokRAER6Ds3XfTrdvvTSWLdteN24kC5IQ0QiHEXHUxZoqeSWZ6I1qpHGXUeXCmpL3xrA0JknkNqEOh2s8060xWhas06rm-oMhyL6dZYOzbOusk0Q7kkzZwROruar-E56vhapU27_vYqzLC4fOfkFdSmxIiW1SYkNKf41EKPwC3SGhzQ
CitedBy_id crossref_primary_10_1038_s41598_024_60821_0
crossref_primary_10_1016_j_swevo_2024_101543
Cites_doi 10.1007/978-3-540-31880-4_4
10.1109/TEVC.2007.892759
10.1109/TEVC.2005.861417
10.1109/CEC.2001.934295
10.1007/978-3-540-31880-4_35
10.1109/MCI.2017.2742868
10.1016/j.ins.2017.10.037
10.1162/106365600568202
10.1016/j.ejor.2015.06.071
10.1145/2001576.2001587
10.1109/TCYB.2014.2322602
10.1109/TEVC.2007.894202
10.1109/ICNN.1995.488968
10.1109/CEC.2006.1688406
10.1109/4235.585893
10.1162/EVCO_a_00009
10.1016/j.ins.2015.07.018
10.1109/MCDM.2009.4938830
10.1007/s40747-017-0057-5
10.1109/4235.996017
10.1109/TEVC.2013.2281525
10.1016/j.amc.2014.12.006
10.1109/CEC.2002.1004388
ContentType Journal Article
Copyright COPYRIGHT 2020 IGI Global
Copyright IGI Global 2020
Copyright_xml – notice: COPYRIGHT 2020 IGI Global
– notice: Copyright IGI Global 2020
DBID AAYXX
CITATION
N95
7SC
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.4018/IJAMC.2020100106
DatabaseName CrossRef
Gale Business: Insights
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1947-8291
EndPage 129
ExternalDocumentID A759696958
10_4018_IJAMC_2020100106
vel_Multi_Objective_Compe10_4018_IJAMC_202010010611
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 0R
ABEPT
ADEKF
ALMA_UNASSIGNED_HOLDINGS
COVLG
EBS
HZ
JRD
MV1
NEEBM
O9-
RIF
0R~
4.4
AAYVP
AAYXX
ADMLS
AFFHD
AFKRA
ARAPS
BAAKF
BENPR
BGLVJ
BYHXH
CBWLS
CCPQU
CDTDJ
CIGCI
CITATION
CKMBR
CNQXE
CTSEY
H13
HCIFZ
HZ~
IAO
ICD
ITC
K7-
N95
PHGZM
PHGZT
PQGLB
7SC
8FD
8FE
8FG
AZQEC
DWQXO
EJD
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c405t-d8a41b8fa4d8a2561c74d301b7eb5bb0ed12870f50384bfc9b71d459d2b69b0b3
IEDL.DBID K7-
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000568375000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1947-8283
IngestDate Sun Nov 09 07:02:56 EST 2025
Sat Nov 29 08:43:16 EST 2025
Sat Nov 29 02:52:00 EST 2025
Tue Nov 18 22:16:51 EST 2025
Tue Jan 05 23:29:30 EST 2021
Fri Jan 15 00:04:31 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-d8a41b8fa4d8a2561c74d301b7eb5bb0ed12870f50384bfc9b71d459d2b69b0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8437-498X
PQID 2931864365
PQPubID 2045863
PageCount 16
ParticipantIDs gale_businessinsightsgauss_A759696958
igi_journals_vel_Multi_Objective_Compe10_4018_IJAMC_202010010611
proquest_journals_2931864365
crossref_primary_10_4018_IJAMC_2020100106
crossref_citationtrail_10_4018_IJAMC_2020100106
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle International journal of applied metaheuristic computing
PublicationYear 2020
Publisher IGI Global
Publisher_xml – name: IGI Global
References IJAMC.2020100106-26
IJAMC.2020100106-25
IJAMC.2020100106-24
IJAMC.2020100106-23
IJAMC.2020100106-22
K.Deb (IJAMC.2020100106-7) 2002
IJAMC.2020100106-21
IJAMC.2020100106-20
IJAMC.2020100106-1
IJAMC.2020100106-0
IJAMC.2020100106-15
IJAMC.2020100106-14
IJAMC.2020100106-13
IJAMC.2020100106-12
IJAMC.2020100106-11
IJAMC.2020100106-10
IJAMC.2020100106-5
IJAMC.2020100106-6
IJAMC.2020100106-3
IJAMC.2020100106-4
IJAMC.2020100106-9
IJAMC.2020100106-19
E.Zitzler (IJAMC.2020100106-28) 2001
IJAMC.2020100106-18
IJAMC.2020100106-17
D.Brockhoff (IJAMC.2020100106-2) 2007
IJAMC.2020100106-8
W.Peng (IJAMC.2020100106-16) 2008
E.Zitzler (IJAMC.2020100106-27) 2004
References_xml – ident: IJAMC.2020100106-8
  doi: 10.1007/978-3-540-31880-4_4
– ident: IJAMC.2020100106-22
  doi: 10.1109/TEVC.2007.892759
– ident: IJAMC.2020100106-10
  doi: 10.1109/TEVC.2005.861417
– ident: IJAMC.2020100106-0
  doi: 10.1109/CEC.2001.934295
– start-page: 534
  year: 2008
  ident: IJAMC.2020100106-16
  article-title: A decomposition-based multi-objective particle swarm optimization algorithm for continuous optimization problems.
  publication-title: Proceedings of IEEE International Conference on Granular Computing
– ident: IJAMC.2020100106-18
  doi: 10.1007/978-3-540-31880-4_35
– ident: IJAMC.2020100106-19
  doi: 10.1109/MCI.2017.2742868
– ident: IJAMC.2020100106-24
  doi: 10.1016/j.ins.2017.10.037
– ident: IJAMC.2020100106-26
  doi: 10.1162/106365600568202
– ident: IJAMC.2020100106-13
  doi: 10.1016/j.ejor.2015.06.071
– ident: IJAMC.2020100106-14
  doi: 10.1145/2001576.2001587
– start-page: 2086
  year: 2007
  ident: IJAMC.2020100106-2
  article-title: Improving hyper volume-based multi objective evolutionary algorithms by using objective reduction methods.
  publication-title: Proc. IEEE Congr. Evol. Comput.,
– ident: IJAMC.2020100106-3
  doi: 10.1109/TCYB.2014.2322602
– ident: IJAMC.2020100106-23
  doi: 10.1109/TEVC.2007.894202
– ident: IJAMC.2020100106-11
  doi: 10.1109/ICNN.1995.488968
– ident: IJAMC.2020100106-25
  doi: 10.1109/CEC.2006.1688406
– start-page: 95
  year: 2001
  ident: IJAMC.2020100106-28
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm.
  publication-title: Proceedings of IEEE Conference on Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems
– year: 2004
  ident: IJAMC.2020100106-27
  publication-title: Indicator-Based Selection in Multi objective Search
– start-page: 825
  year: 2002
  ident: IJAMC.2020100106-7
  article-title: Scalable multi objective optimization test problems.
  publication-title: Proceedings of IEEE Congress on Evolutionary Computation
– ident: IJAMC.2020100106-21
  doi: 10.1109/4235.585893
– ident: IJAMC.2020100106-1
  doi: 10.1162/EVCO_a_00009
– ident: IJAMC.2020100106-5
  doi: 10.1016/j.ins.2015.07.018
– ident: IJAMC.2020100106-15
  doi: 10.1109/MCDM.2009.4938830
– ident: IJAMC.2020100106-20
  doi: 10.1007/s40747-017-0057-5
– ident: IJAMC.2020100106-12
  doi: 10.1016/j.ejor.2015.06.071
– ident: IJAMC.2020100106-6
  doi: 10.1109/4235.996017
– ident: IJAMC.2020100106-17
  doi: 10.1109/TEVC.2013.2281525
– ident: IJAMC.2020100106-9
  doi: 10.1016/j.amc.2014.12.006
– ident: IJAMC.2020100106-4
  doi: 10.1109/CEC.2002.1004388
SSID ssj0000547705
Score 2.149597
Snippet In this article, a new algorithm, namely the multi-objective competitive swarm optimizer (MOCSO), is introduced to handle multi-objective problems. The...
SourceID proquest
gale
crossref
igi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114
SubjectTerms Algorithms
Analysis
Archives & records
Business metrics
Competition
Decomposition
Efficiency
Genetic algorithms
Mathematical optimization
Multiple objective analysis
Objectives
Optimization algorithms
Optimization techniques
Statistical tests
Title A Novel Multi-Objective Competitive Swarm Optimization Algorithm
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAMC.2020100106
https://www.proquest.com/docview/2931864365
Volume 11
WOSCitedRecordID wos000568375000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1947-8291
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0000547705
  issn: 1947-8283
  databaseCode: K7-
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1947-8291
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0000547705
  issn: 1947-8283
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgM98EYEShUkOHCwtk6c2D7RZdUKLtuKh9SbFb-WRfvqZlv-PmPHu0tV0QuXKFIcx5pxvnl6BuCdY8ah6KBE6EYQVjtGpC4dkd5alD5eNE7EZhN8OBQXF_I8OdzalFa5xsQI1HZugo-8h2KJChSfdfVxcUlC16gQXU0tNHZgjxYIwiEoy8nGx4LqCOcxixFNdR5OTJddpBKNCtH7grA2QAsxxIODZXRDMiV83hmPxrdQOoqe00f_u-jH8DApnXm_2yVP4J6bPYX9v0oRPoPjfj6cX7tJHk_kkjP9q0PCfBAV65hhlH_73Syn-RmizDQd38z7kxF-cPVz-hx-nJ58H3wmqbsCMaikrYgVDaNa-IbhHSo-1HBm8XfX3OlK6yNnaQiC-lAvhmlvpObUskraQtdSH-nyBezO5jP3EnLvCi2NpKywJWtELbymdUVRmSkN84XMoLemrDKp9HjogDFRaIIEXqjIC7XlRQYfNm8surIbd4x9H5ilUtdOvLTBr9GOmqu2VX1ehQJAshIZvEVuqvSPtrfmUQvrMzi-MQbpriLd1YbuKtL9X4uhNIOD9V7YzrPdCK_ufvwaHoTJunTBA9hdLa_cG7hvrlfjdnkIe59OhudfD-M2_wO6FP65
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61WyTKgTciUCBI9MAh2jpxEvuA6LK06qolraBIvblxbG8X7YvNthV_it_I2El2qSp664FLFCnOKJ6ZzDfjsWcA3mlaaIQOEjCZs4AmmgZcRjrgRilEH8NyzVyziTTL2MkJP1qB381ZGLutsrGJzlCrSWHXyNsIS4QhfCbxx-nPwHaNstnVpoVGpRb7-tclhmzlh95nlO9mGO7uHHf3grqrQFCgczIPFMspkczkFO8Q8EmRUoVqLlMtYym3tCI2-WdsnRQqTcFlShSNuQplwuWWjJDuKqzRiCZxC9Y-7WRHXxerOugApanbN0k4Te0Z7ajKjWIYw9o9NKRdjEltBtrGYlewsEaE1UF_cA0XHNjtPvjf2PQQ7tdutd-p_oNHsKLHj-HeX8UWn8B2x88mF3rouzPHwaH8Udl6v-tCB7eHyv92mc9G_iHa0VF9QNXvDPs4wfnZ6Cl8v5UpPIPWeDLWz8E3OpS84ISGKqI5S5iRJIkJumtRQU3IPWg3khRFXVzd9vgYCgyyrOyFk71Yyt6D94s3plVhkRvGblrlEHVfUryUduWm7OfnZSk6aWxLHPGYefAWtUfUVqi8RkdMlfFg-8oY5LtwfBcLvgvH9399DCEebDS6t6SzVLwXNz9-A3f3jr8ciINetv8S1i3hanPkBrTms3P9Cu4UF_NBOXtd_1w-nN62ov4BfctcUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Multi-Objective+Competitive+Swarm+Optimization+Algorithm&rft.jtitle=International+journal+of+applied+metaheuristic+computing&rft.au=Dey%2C+Nilanjan&rft.au=Kumar%2C+Ram&rft.au=Mohapatra%2C+Prabhujit&rft.au=Das%2C+Kedar&rft.date=2020-10-01&rft.pub=IGI+Global&rft.issn=1947-8283&rft.eissn=1947-8291&rft.volume=11&rft.issue=4&rft.spage=114&rft.epage=129&rft_id=info:doi/10.4018%2FIJAMC.2020100106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-8283&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-8283&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-8283&client=summon