Using LiDAR to develop high-resolution reference models of forest structure and spatial pattern
•LiDAR can be used to accurately quantify overstory structure and pattern at tree-neighborhood, stand, and landscape scales.•Forest structure and spatial pattern vary significantly across topographic settings in a reference forested landscape.•Considering landscape context is essential to the develo...
Gespeichert in:
| Veröffentlicht in: | Forest ecology and management Jg. 434; S. 318 - 330 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
28.02.2019
|
| Schlagworte: | |
| ISSN: | 0378-1127, 1872-7042 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •LiDAR can be used to accurately quantify overstory structure and pattern at tree-neighborhood, stand, and landscape scales.•Forest structure and spatial pattern vary significantly across topographic settings in a reference forested landscape.•Considering landscape context is essential to the development of successful restoration and management plans and treatments.
Successful restoration of degraded forest landscapes requires reference models that adequately capture structural heterogeneity at multiple spatial scales and for specific landforms. Despite this need, managers often lack access to reliable reference information, in large part because field-based methods for assessing variation in forest structure are costly and inherently suffer from limited replication and spatial coverage and, therefore, yield limited insights about the ecological structure of reference forests at landscape scales. LiDAR is a cost-effective alternative that can provide high-resolution characterizations of variation in forest structure among landform types. However, managers and researchers have been reluctant to use LiDAR for characterizing structure because of low confidence in its capacity to approximate actual tree distributions. By calculating bias in LiDAR estimates for a range of tree-height cutoffs, we improved LiDAR’s ability to capture structural variability in terms of individual trees. We assessed bias in the processed LiDAR data by comparing datasets of field-measured and LiDAR-detected trees of various height classes in terms of overall number of trees and estimates of structure and spatial pattern in an important contemporary reference forest, the Sierra de San Pedro Martir National Park, Baja California, Mexico. Agreement between LiDAR- and field-based estimates of tree density, as well as estimates of forest structure and spatial pattern, was maximized by removing trees less than 12 m tall. We applied this height cutoff to LiDAR-detected trees of our study landscape, and asked if forest structure and spatial pattern varied across topographic settings. We found that canyons, shallow northerly, and shallow southerly slopes were structurally similar; each had a greater number of all trees, large trees, and large tree clumps than steep southerly slopes and ridges. Steep northerly slopes supported unique structures, with taller trees than ridges and shorter trees than canyons and shallow southerly slopes. Our results show that characterizations of forest structure based on LiDAR-detected trees are reasonably accurate when the focus is narrowed to the overstory. In addition, our finding of strong variation of forest structure and spatial pattern across topographic settings demonstrates the importance of developing reference models at the landscape scale, and highlights the need for replicated sampling among stands and landforms. Methods developed here should be useful to managers interested in using LiDAR to characterize distributions of medium and large overstory trees, particularly for the development of landscape-scale reference models. |
|---|---|
| AbstractList | Successful restoration of degraded forest landscapes requires reference models that adequately capture structural heterogeneity at multiple spatial scales and for specific landforms. Despite this need, managers often lack access to reliable reference information, in large part because field-based methods for assessing variation in forest structure are costly and inherently suffer from limited replication and spatial coverage and, therefore, yield limited insights about the ecological structure of reference forests at landscape scales. LiDAR is a cost-effective alternative that can provide high-resolution characterizations of variation in forest structure among landform types. However, managers and researchers have been reluctant to use LiDAR for characterizing structure because of low confidence in its capacity to approximate actual tree distributions. By calculating bias in LiDAR estimates for a range of tree-height cutoffs, we improved LiDAR’s ability to capture structural variability in terms of individual trees. We assessed bias in the processed LiDAR data by comparing datasets of field-measured and LiDAR-detected trees of various height classes in terms of overall number of trees and estimates of structure and spatial pattern in an important contemporary reference forest, the Sierra de San Pedro Martir National Park, Baja California, Mexico. Agreement between LiDAR- and field-based estimates of tree density, as well as estimates of forest structure and spatial pattern, was maximized by removing trees less than 12 m tall. We applied this height cutoff to LiDAR-detected trees of our study landscape, and asked if forest structure and spatial pattern varied across topographic settings. We found that canyons, shallow northerly, and shallow southerly slopes were structurally similar; each had a greater number of all trees, large trees, and large tree clumps than steep southerly slopes and ridges. Steep northerly slopes supported unique structures, with taller trees than ridges and shorter trees than canyons and shallow southerly slopes. Our results show that characterizations of forest structure based on LiDAR-detected trees are reasonably accurate when the focus is narrowed to the overstory. In addition, our finding of strong variation of forest structure and spatial pattern across topographic settings demonstrates the importance of developing reference models at the landscape scale, and highlights the need for replicated sampling among stands and landforms. Methods developed here should be useful to managers interested in using LiDAR to characterize distributions of medium and large overstory trees, particularly for the development of landscape-scale reference models. •LiDAR can be used to accurately quantify overstory structure and pattern at tree-neighborhood, stand, and landscape scales.•Forest structure and spatial pattern vary significantly across topographic settings in a reference forested landscape.•Considering landscape context is essential to the development of successful restoration and management plans and treatments. Successful restoration of degraded forest landscapes requires reference models that adequately capture structural heterogeneity at multiple spatial scales and for specific landforms. Despite this need, managers often lack access to reliable reference information, in large part because field-based methods for assessing variation in forest structure are costly and inherently suffer from limited replication and spatial coverage and, therefore, yield limited insights about the ecological structure of reference forests at landscape scales. LiDAR is a cost-effective alternative that can provide high-resolution characterizations of variation in forest structure among landform types. However, managers and researchers have been reluctant to use LiDAR for characterizing structure because of low confidence in its capacity to approximate actual tree distributions. By calculating bias in LiDAR estimates for a range of tree-height cutoffs, we improved LiDAR’s ability to capture structural variability in terms of individual trees. We assessed bias in the processed LiDAR data by comparing datasets of field-measured and LiDAR-detected trees of various height classes in terms of overall number of trees and estimates of structure and spatial pattern in an important contemporary reference forest, the Sierra de San Pedro Martir National Park, Baja California, Mexico. Agreement between LiDAR- and field-based estimates of tree density, as well as estimates of forest structure and spatial pattern, was maximized by removing trees less than 12 m tall. We applied this height cutoff to LiDAR-detected trees of our study landscape, and asked if forest structure and spatial pattern varied across topographic settings. We found that canyons, shallow northerly, and shallow southerly slopes were structurally similar; each had a greater number of all trees, large trees, and large tree clumps than steep southerly slopes and ridges. Steep northerly slopes supported unique structures, with taller trees than ridges and shorter trees than canyons and shallow southerly slopes. Our results show that characterizations of forest structure based on LiDAR-detected trees are reasonably accurate when the focus is narrowed to the overstory. In addition, our finding of strong variation of forest structure and spatial pattern across topographic settings demonstrates the importance of developing reference models at the landscape scale, and highlights the need for replicated sampling among stands and landforms. Methods developed here should be useful to managers interested in using LiDAR to characterize distributions of medium and large overstory trees, particularly for the development of landscape-scale reference models. |
| Author | Wiggins, Haley L. Nelson, Cara R. Larson, Andrew J. Safford, Hugh D. |
| Author_xml | – sequence: 1 givenname: Haley L. surname: Wiggins fullname: Wiggins, Haley L. email: haley.wiggins@umontana.edu organization: W. A. Franke College of Forestry and Conservation, 32 Campus Drive, University of Montana, Missoula, Montana 59812 USA – sequence: 2 givenname: Cara R. surname: Nelson fullname: Nelson, Cara R. organization: W. A. Franke College of Forestry and Conservation, 32 Campus Drive, University of Montana, Missoula, Montana 59812 USA – sequence: 3 givenname: Andrew J. surname: Larson fullname: Larson, Andrew J. organization: W. A. Franke College of Forestry and Conservation, 32 Campus Drive, University of Montana, Missoula, Montana 59812 USA – sequence: 4 givenname: Hugh D. surname: Safford fullname: Safford, Hugh D. organization: USDA Forest Service, Pacific Southwest Region, 1323 Club Drive, Vallejo, CA 94592 USA |
| BookMark | eNqFkDFv2zAQhYkiBWo7-QcZOGaRymMoieoQwHCTpoCBAkEzEzR5dGjIoktSBvrvS8GdOjTL3fLeu3vfklyNYURCboHVwKD9fKhdiGhCzRnIGnjNgH8gC5Adrzom-BVZsPtOVgC8-0SWKR0YY00j5IKo1-THPd36r-sXmgO1eMYhnOib379VEVMYpuzDSCM6jDgapMdgcUg0ODofTZmmHCeTp4hUj5amk85eD7SsjHG8Jh-dHhLe_N0r8vr0-HPzXG1_fPu-WW8rI1iTK8t6IyRI4zSIHXKpLbCWtVYL4SwHq9u-A1fGbiegaXvtSgHpdNc4sevM_YrcXXJPMfyaylvq6JPBYdAjhikpDrJvRNe2fZF-uUhNDCmVYsr4rOeWOWo_KGBqpqoO6kJVzVQVcFWoFrP4x3yK_qjj7_dsDxdbQYdnj1El42ec1hdtVjb4_wf8AV10lxw |
| CitedBy_id | crossref_primary_10_1007_s10980_022_01461_5 crossref_primary_10_3390_f10060465 crossref_primary_10_3390_drones7070455 crossref_primary_10_1186_s42408_023_00218_y crossref_primary_10_1016_j_foreco_2020_118548 crossref_primary_10_1007_s10980_020_00983_0 crossref_primary_10_1016_j_jag_2021_102506 crossref_primary_10_1007_s10661_021_09095_x crossref_primary_10_1016_j_foreco_2023_121478 crossref_primary_10_1016_j_rsase_2025_101733 crossref_primary_10_3390_f12030327 crossref_primary_10_3390_f16081347 crossref_primary_10_1016_j_foreco_2023_121155 crossref_primary_10_1139_cjfr_2020_0506 crossref_primary_10_1186_s42408_024_00324_5 crossref_primary_10_3390_rs13142731 crossref_primary_10_1080_01431161_2019_1648900 crossref_primary_10_1007_s10980_023_01663_5 crossref_primary_10_3390_f13071002 crossref_primary_10_1016_j_fecs_2022_100082 crossref_primary_10_1088_1755_1315_540_1_012012 crossref_primary_10_1016_j_foreco_2019_117659 crossref_primary_10_1016_j_foreco_2020_118220 crossref_primary_10_1093_jofore_fvac020 crossref_primary_10_1111_rec_13889 crossref_primary_10_1002_rse2_70019 crossref_primary_10_14358_PERS_23_00006R2 crossref_primary_10_1016_j_foreco_2021_119872 crossref_primary_10_3390_rs14010235 crossref_primary_10_1002_hyp_14432 crossref_primary_10_1371_journal_pone_0274153 crossref_primary_10_1111_rec_13035 crossref_primary_10_3390_ijgi11080423 crossref_primary_10_1002_ecs2_3177 crossref_primary_10_3390_rs12213554 crossref_primary_10_1016_j_ecolmodel_2020_109030 crossref_primary_10_1007_s13595_020_0924_x crossref_primary_10_1016_j_compag_2021_106579 |
| Cites_doi | 10.14358/PERS.78.1.75 10.1016/j.foreco.2014.07.029 10.1016/j.foreco.2018.05.028 10.1016/j.foreco.2009.05.024 10.1109/34.87344 10.1139/X09-146 10.1016/j.rse.2013.07.041 10.1086/342823 10.1016/j.foreco.2004.10.003 10.1016/j.foreco.2012.11.007 10.1139/x03-031 10.1016/j.foreco.2014.06.044 10.1002/9781118329726.ch4 10.1890/1051-0761(2000)010[0085:MTEOFM]2.0.CO;2 10.1016/j.foreco.2009.08.017 10.3390/rs4040950 10.1890/1051-0761(2003)013[0704:SPACOH]2.0.CO;2 10.1016/j.foreco.2017.09.012 10.1023/A:1008183331604 10.1093/jofore/fvy023 10.1007/s10021-012-9573-8 10.1371/journal.pone.0036131 10.1016/j.foreco.2012.02.013 10.1890/14-1430.1 10.1007/s00267-010-9556-5 10.1046/j.1365-2699.2000.00368.x 10.1016/j.foreco.2015.10.049 10.1016/j.foreco.2011.05.004 10.3398/064.071.0207 10.4996/fireecology.1201052 10.5751/ES-02380-130210 10.1016/j.rse.2009.12.004 10.1016/j.foreco.2015.12.039 10.1016/j.foreco.2011.11.038 10.1371/journal.pone.0088985 10.1046/j.1365-2699.2001.00591.x 10.1016/j.rse.2011.05.020 10.4996/fireecology.0703026 10.2737/RMRS-GTR-310 10.1016/j.foreco.2013.05.023 10.1007/s10980-015-0218-0 10.1890/090199 10.1016/j.foreco.2012.08.044 10.1016/S0378-1127(00)00383-2 10.1890/ES11-00271.1 10.1093/jof/103.7.357 10.1093/forestry/cpr051 10.1111/rec.12359 10.1890/ES14-00379.1 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. |
| Copyright_xml | – notice: 2018 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.foreco.2018.12.012 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Forestry |
| EISSN | 1872-7042 |
| EndPage | 330 |
| ExternalDocumentID | 10_1016_j_foreco_2018_12_012 S037811271831377X |
| GeographicLocations | Mexico |
| GeographicLocations_xml | – name: Mexico |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFNM ABFRF ABFYP ABGRD ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A N~3 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SCC SDF SDG SDP SES SPCBC SSA SSJ SSZ T5K WH7 Y6R ~02 ~G- ~KM 29H 9DU AAEDT AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AI. AIDBO AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ R2- SEN SEW VH1 WUQ ZKB ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c405t-d09c4818cfa14be28ad10606da44fd21da6971f697bb41569af0558fa75f4b7c3 |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457657100029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-1127 |
| IngestDate | Sun Sep 28 05:49:12 EDT 2025 Sat Nov 29 07:18:28 EST 2025 Tue Nov 18 22:04:55 EST 2025 Fri Feb 23 02:29:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Forest structure LiDAR Ecological reference model Sierra de San Pedro Martir Spatial pattern Spatial scale Landscape restoration |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c405t-d09c4818cfa14be28ad10606da44fd21da6971f697bb41569af0558fa75f4b7c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2189547669 |
| PQPubID | 24069 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2189547669 crossref_citationtrail_10_1016_j_foreco_2018_12_012 crossref_primary_10_1016_j_foreco_2018_12_012 elsevier_sciencedirect_doi_10_1016_j_foreco_2018_12_012 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-28 |
| PublicationDateYYYYMMDD | 2019-02-28 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationTitle | Forest ecology and management |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Fry, Stephens, Collins, North, Franco-Vizcaíno, Gill (b0065) 2014; 9 McFadden, Dirzo (b0165) 2018; 425 Abella, Denton (b0005) 2009; 39 Lau (b0125) 2013 Schoennagel, Nelson (b0275) 2011; 9 Rivera-Huerta, Safford, Miller (b0240) 2016; 12 Miller, Urban (b0170) 2000; 10 Perry, Hessburg, Skinner, Spies, Stephens, Taylor, Riegel (b0215) 2011; 262 North, Stine, O'Hara, Zielinski, Stephens (b0180) 2009 USDA (b0320) 2016 Volland (b0345) 1985 Van de Water, Safford (b0325) 2011; 7 R Core Team (b0230) 2013 Lydersen, North, Knapp, Collins (b0145) 2013; 304 Safford, Stevens, Merriam, Meyer, Latimer (b0260) 2012; 274 Stephens, Skinner, Gill (b9015) 2003; 33 Hopkins (b0085) 1979 North (b0185) 2012 Stanturf, Palik, Dumroese (b9000) 2014; 331 North, Collins, Safford, Stephenson (b0195) 2016 Baddeley, Rubak, Turner (b0010) 2015 Kane, North, Lutz, Churchill, Roberts, Smith, Brooks (b0105) 2014; 151 Buffo, Fritschen, Murphy (b0025) 1972 Smith (b0280) 1994 Safford, Stevens (b0265) 2017 Stoddard, McGlone, Fulé, Laughlin, Daniels (b9005) 2011; 71 Plotkin, Chave, Ashton (b0220) 2002; 160 Vauhkonen, Ene, Gupta, Heinzel, Holmgren, Pitkanen, Maltamo (b0335) 2011; 85 Kane, Lutz, Roberts, Smith, Mcgaughey, Povak, Brooks (b0110) 2013; 287 Li, Guo, Jakubowski, Kelly (b0130) 2012; 78 Urban, Miller, Halpin, Stephenson (b0315) 2000; 15 Stephens, Fry, Franco-Vizcaíno (b0295) 2008; 13 McGaughey, R.J., 2016. FUSION/LDV: Software for LiDAR Data Analysis and Visualization. Version 3.30. US Department of Agriculture Forest Service, Pacific Northwest Research Station, University of Washington, Seattle, Washington. Available online (accessed on 15 February 2015). North, Boynton, Stine, Shipley, Underwood, Roth, Viers, Quinn (b0190) 2012 Stephens, Gill (b0290) 2005; 205 S. M. Jeronimo, 2016. LiDAR Individual Tree Detection for Assessing Structurally Diverse Forest Landscapes (Doctoral dissertation). Lydersen, North (b0150) 2012; 15 Jeronimo, Kane, Churchill, McGaughey, Franklin (b0100) 2018; 116 Delgadillo (b0045) 2004 Churchill, Carnwath, Larson, Jeronimo (b0030) 2015 Keeley, Safford (b0115) 2016 Stephens, Fulé (b0285) 2005; 103 Underwood, Viers, Quinn, North (b0310) 2010; 46 Parks, Holsinger, Miller, Nelson (b0205) 2015; 25 Hessburg, Churchill, Larson, Haugo, Miller, Spies, Reeves (b0075) 2015; 30 Safford, Hayward, Heller, Wiens (b0255) 2012 Oksanen, Blanchet, Friendly, Kindt, Legendre, McGlinn, Minchin, Wagner (b0200) 2016 Richardson, Moskal (b0235) 2011; 115 Dunbar-Irwin, Safford (b0055) 2016; 363 Taylor, Skinner (b0305) 2003; 13 Reynolds, R.T., Meador, A.J.S., Youtz, J.A., Nicolet, T., Matonis, M.S., Jackson, P.L., Graves, A.D., 2013. Restoring composition and structure in southwestern firequent-fire forests: a science-based framework for improving ecosystem resiliency. USDA Forest Service-General Technical Report RMRS-GTR, (310 RMRS-GTR), pp. 1–76. Mansourian, Vallauri (b0155) 2005 Stephens, Lydersen, Collins, Fry, Meyer (b0300) 2015; 6 McDonald, Jonson, Dixon (b9010) 2016; 24 Potter (b0225) 1998 Falkowski, Smith, Gessler, Hudak, Vierling, Evans (b0060) 2008; 34 Holden, Morgan, Evans (b0080) 2009; 258 Lutz, Larson, Swanson, Freund (b0140) 2012; 7 Larson, Churchill (b0120) 2012; 267 Rodman, Meador, Moore, Huffman (b0245) 2017; 404 Safford, Schmidt, Carlson (b0250) 2009; 258 Dillon, Holden, Morgan, Crimmins, Heyerdahl, Luce (b0050) 2011; 2 Hagmann, Franklin, Johnson (b0070) 2014; 330 Churchill, Larson, Dahlgreen, Franklin, Hessburg, Lutz (b0035) 2013; 291 Kaartinen, Hyyppä, Yu, Vastaranta, Hyyppä, Kukko, Næsset (b0090) 2012; 4 Scarascia-Mugnozza, Oswald, Piussi, Radoglou (b0270) 2000; 132 Liaw, Wiener (b0135) 2002; 2 Clyatt, Crotteau, Schaedel, Wiggins, Kelley, Churchill, Larson (b0040) 2016; 361 Pebesma, Bivand (b0210) 2005; 5 Beaty, Taylor (b0015) 2001; 28 Minnich, Barbour, Burk, Sosa-Ramirez (b0175) 2000; 27 Van Wagtendonk, Fites-Kaufman, Safford, North, Collins (b0330) 2018 Vincent, Soille (b0340) 1991; 6 Breidenbach, Næsset, Lien, Gobakken, Solberg (b0020) 2010; 114 McCune, Grace, Urban (b0160) 2002; 28 North (10.1016/j.foreco.2018.12.012_b0190) 2012 Delgadillo (10.1016/j.foreco.2018.12.012_b0045) 2004 Rivera-Huerta (10.1016/j.foreco.2018.12.012_b0240) 2016; 12 Churchill (10.1016/j.foreco.2018.12.012_b0030) 2015 Minnich (10.1016/j.foreco.2018.12.012_b0175) 2000; 27 Stanturf (10.1016/j.foreco.2018.12.012_b9000) 2014; 331 10.1016/j.foreco.2018.12.012_b9020 Van Wagtendonk (10.1016/j.foreco.2018.12.012_b0330) 2018 Miller (10.1016/j.foreco.2018.12.012_b0170) 2000; 10 Hagmann (10.1016/j.foreco.2018.12.012_b0070) 2014; 330 Oksanen (10.1016/j.foreco.2018.12.012_b0200) 2016 Dillon (10.1016/j.foreco.2018.12.012_b0050) 2011; 2 Li (10.1016/j.foreco.2018.12.012_b0130) 2012; 78 R Core Team (10.1016/j.foreco.2018.12.012_b0230) 2013 Liaw (10.1016/j.foreco.2018.12.012_b0135) 2002; 2 Lydersen (10.1016/j.foreco.2018.12.012_b0150) 2012; 15 Beaty (10.1016/j.foreco.2018.12.012_b0015) 2001; 28 Safford (10.1016/j.foreco.2018.12.012_b0260) 2012; 274 Safford (10.1016/j.foreco.2018.12.012_b0250) 2009; 258 Stephens (10.1016/j.foreco.2018.12.012_b0300) 2015; 6 Vauhkonen (10.1016/j.foreco.2018.12.012_b0335) 2011; 85 Jeronimo (10.1016/j.foreco.2018.12.012_b0100) 2018; 116 Stoddard (10.1016/j.foreco.2018.12.012_b9005) 2011; 71 Baddeley (10.1016/j.foreco.2018.12.012_b0010) 2015 USDA (10.1016/j.foreco.2018.12.012_b0320) 2016 Lydersen (10.1016/j.foreco.2018.12.012_b0145) 2013; 304 Perry (10.1016/j.foreco.2018.12.012_b0215) 2011; 262 Urban (10.1016/j.foreco.2018.12.012_b0315) 2000; 15 Rodman (10.1016/j.foreco.2018.12.012_b0245) 2017; 404 Buffo (10.1016/j.foreco.2018.12.012_b0025) 1972 Taylor (10.1016/j.foreco.2018.12.012_b0305) 2003; 13 Dunbar-Irwin (10.1016/j.foreco.2018.12.012_b0055) 2016; 363 Falkowski (10.1016/j.foreco.2018.12.012_b0060) 2008; 34 Safford (10.1016/j.foreco.2018.12.012_b0255) 2012 Holden (10.1016/j.foreco.2018.12.012_b0080) 2009; 258 Underwood (10.1016/j.foreco.2018.12.012_b0310) 2010; 46 Hessburg (10.1016/j.foreco.2018.12.012_b0075) 2015; 30 Breidenbach (10.1016/j.foreco.2018.12.012_b0020) 2010; 114 Plotkin (10.1016/j.foreco.2018.12.012_b0220) 2002; 160 Stephens (10.1016/j.foreco.2018.12.012_b0295) 2008; 13 Stephens (10.1016/j.foreco.2018.12.012_b0290) 2005; 205 Vincent (10.1016/j.foreco.2018.12.012_b0340) 1991; 6 Lutz (10.1016/j.foreco.2018.12.012_b0140) 2012; 7 North (10.1016/j.foreco.2018.12.012_b0185) 2012 Parks (10.1016/j.foreco.2018.12.012_b0205) 2015; 25 Safford (10.1016/j.foreco.2018.12.012_b0265) 2017 North (10.1016/j.foreco.2018.12.012_b0195) 2016 Abella (10.1016/j.foreco.2018.12.012_b0005) 2009; 39 Fry (10.1016/j.foreco.2018.12.012_b0065) 2014; 9 Mansourian (10.1016/j.foreco.2018.12.012_b0155) 2005 Van de Water (10.1016/j.foreco.2018.12.012_b0325) 2011; 7 Keeley (10.1016/j.foreco.2018.12.012_b0115) 2016 Volland (10.1016/j.foreco.2018.12.012_b0345) 1985 McDonald (10.1016/j.foreco.2018.12.012_b9010) 2016; 24 Hopkins (10.1016/j.foreco.2018.12.012_b0085) 1979 McFadden (10.1016/j.foreco.2018.12.012_b0165) 2018; 425 Stephens (10.1016/j.foreco.2018.12.012_b0285) 2005; 103 Kaartinen (10.1016/j.foreco.2018.12.012_b0090) 2012; 4 McCune (10.1016/j.foreco.2018.12.012_b0160) 2002; 28 Stephens (10.1016/j.foreco.2018.12.012_b9015) 2003; 33 North (10.1016/j.foreco.2018.12.012_b0180) 2009 Richardson (10.1016/j.foreco.2018.12.012_b0235) 2011; 115 10.1016/j.foreco.2018.12.012_b0095 Larson (10.1016/j.foreco.2018.12.012_b0120) 2012; 267 Schoennagel (10.1016/j.foreco.2018.12.012_b0275) 2011; 9 Pebesma (10.1016/j.foreco.2018.12.012_b0210) 2005; 5 Lau (10.1016/j.foreco.2018.12.012_b0125) 2013 Clyatt (10.1016/j.foreco.2018.12.012_b0040) 2016; 361 Potter (10.1016/j.foreco.2018.12.012_b0225) 1998 Churchill (10.1016/j.foreco.2018.12.012_b0035) 2013; 291 Kane (10.1016/j.foreco.2018.12.012_b0110) 2013; 287 10.1016/j.foreco.2018.12.012_b9025 Smith (10.1016/j.foreco.2018.12.012_b0280) 1994 Kane (10.1016/j.foreco.2018.12.012_b0105) 2014; 151 Scarascia-Mugnozza (10.1016/j.foreco.2018.12.012_b0270) 2000; 132 |
| References_xml | – volume: 151 start-page: 89 year: 2014 end-page: 101 ident: b0105 article-title: Assessing fire effects on forest spatial structure using a fusion of landsat and airborne LiDAR data in Yosemite National Park publication-title: Remote Sens. Environ. – volume: 24 start-page: S4 year: 2016 end-page: S32 ident: b9010 article-title: National standards for the practice of ecological restoration in Australia publication-title: Restor. Ecol. – start-page: 553 year: 2016 end-page: 577 ident: b0195 article-title: Montane forests publication-title: Ecosystems of California – volume: 15 start-page: 603 year: 2000 end-page: 620 ident: b0315 article-title: Forest gradient response in Sierran landscapes: the physical template publication-title: Landscape Ecol. – reference: McGaughey, R.J., 2016. FUSION/LDV: Software for LiDAR Data Analysis and Visualization. Version 3.30. US Department of Agriculture Forest Service, Pacific Northwest Research Station, University of Washington, Seattle, Washington. Available online: – volume: 10 start-page: 85 year: 2000 end-page: 94 ident: b0170 article-title: Modeling the effects of fire management alternatives on Sierra Nevada mixed-conifer forests publication-title: Ecol. Appl. – volume: 103 start-page: 357 year: 2005 end-page: 362 ident: b0285 article-title: Western pine forests with continuing frequent fire regimes: possible reference sites for management publication-title: J. Forest. – volume: 331 start-page: 292 year: 2014 end-page: 323 ident: b9000 article-title: Contemporary forest restoration: a review emphasizing function publication-title: For. Ecol. Manage. – volume: 4 start-page: 950 year: 2012 end-page: 974 ident: b0090 article-title: An international comparison of individual tree detection and extraction using airborne laser scanning publication-title: Remote Sens. – volume: 160 start-page: 629 year: 2002 end-page: 644 ident: b0220 article-title: Cluster analysis of spatial patterns in Malaysian tree species publication-title: Am. Nat. – volume: 205 start-page: 15 year: 2005 end-page: 28 ident: b0290 article-title: Forest structure and mortality in an old-growth Jeffrey pine-mixed conifer forest in north-western Mexico publication-title: For. Ecol. Manage. – year: 2015 ident: b0010 article-title: Spatial Point Patterns: Methodology and Applications with R – volume: 361 start-page: 23 year: 2016 end-page: 37 ident: b0040 article-title: Historical spatial patterns and contemporary tree mortality in dry mixed-conifer forests publication-title: For. Ecol. Manage. – volume: 115 start-page: 2640 year: 2011 end-page: 2651 ident: b0235 article-title: Strengths and limitations of assessing forest density and spatial configuration with aerial LiDAR publication-title: Remote Sens. Environ. – volume: 12 start-page: 52 year: 2016 end-page: 72 ident: b0240 article-title: Patterns and trends in burned area and fire severity from 1984 to 2010 in the Sierra De San Pedro Mártir, Baja California Mexico publication-title: Fire Ecol. – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: b0135 article-title: Classification and regression by random forest publication-title: R. News – volume: 9 start-page: 271 year: 2011 end-page: 277 ident: b0275 article-title: Restoration relevance of recent National Fire Plan treatments in forests of the western United States publication-title: Front. Ecol. Environ. – year: 1972 ident: b0025 article-title: Direct Solar Radiation on Various Slopes from 0 to 60 Degrees North Latitude – volume: 7 start-page: 26 year: 2011 end-page: 58 ident: b0325 article-title: A summary of fire frequency estimates for California vegetation before Euro-American settlement publication-title: Fire Ecol. – volume: 25 start-page: 1478 year: 2015 end-page: 1492 ident: b0205 article-title: Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression publication-title: Ecol. Appl. – volume: 258 start-page: 2399 year: 2009 end-page: 2406 ident: b0080 article-title: A predictive model of burn severity based on 20-year satellite-inferred burn severity data in a large southwestern US wilderness area publication-title: For. Ecol. Manage. – volume: 114 start-page: 911 year: 2010 end-page: 924 ident: b0020 article-title: Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data publication-title: Remote Sens. Environ. – volume: 34 year: 2008 ident: b0060 article-title: The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data publication-title: Canad. J. Remote Sens. – year: 2005 ident: b0155 article-title: Forest Restoration in Landscapes: Beyond Planting Trees – reference: S. M. Jeronimo, 2016. LiDAR Individual Tree Detection for Assessing Structurally Diverse Forest Landscapes (Doctoral dissertation). – year: 2012 ident: b0185 article-title: Managing Sierra Nevada forests – volume: 5 year: 2005 ident: b0210 article-title: Classes and methods for spatial data in R publication-title: R News – volume: 33 start-page: 1090 year: 2003 end-page: 1101 ident: b9015 article-title: Dendrochronology-based fire history of Jeffrey pine-mixed conifer forests in the Sierra San Pedro Martir publication-title: Mexico. Can. J. For. Res. – volume: 2 start-page: 1 year: 2011 end-page: 33 ident: b0050 article-title: Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006 publication-title: Ecosphere – volume: 287 start-page: 17 year: 2013 end-page: 31 ident: b0110 article-title: Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park publication-title: For. Ecol. Manage. – year: 1998 ident: b0225 article-title: Forested Communities of the Upper Montane in the Central and Southern Sierra Nevada – volume: 9 year: 2014 ident: b0065 article-title: Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests publication-title: PLoS One – volume: 78 start-page: 75 year: 2012 end-page: 84 ident: b0130 article-title: A new method for segmenting individual trees from the LiDAR point cloud publication-title: Photogramm. Eng. Remote Sens. – year: 1979 ident: b0085 article-title: Plant Associations of South Chiloquin and Klamath Ranger Districts: Winema National Forest – volume: 15 start-page: 1134 year: 2012 end-page: 1146 ident: b0150 article-title: Topographic variation in structure of mixed-conifer forests under an active-fire regime publication-title: Ecosystems – year: 2016 ident: b0200 article-title: Vegan: community ecology package publication-title: R package version 2.4-1 – volume: 267 start-page: 74 year: 2012 end-page: 92 ident: b0120 article-title: Tree spatial patterns in fire-frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatments publication-title: For. Ecol. Manage. – volume: 132 start-page: 97 year: 2000 end-page: 109 ident: b0270 article-title: Forests of the Mediterranean region: gaps in knowledge and research needs publication-title: For. Ecol. Manage. – volume: 291 start-page: 442 year: 2013 end-page: 457 ident: b0035 article-title: Restoring forest resilience: From reference spatial patterns to silvicultural prescriptions and monitoring publication-title: For. Ecol. Manage. – year: 2013 ident: b0125 article-title: DTK: Dunnett-Tukey-Kramer pairwise multiple comparison test adjusted for unequal variances and unequal sample sizes publication-title: R package version 3.5 – volume: 46 start-page: 809 year: 2010 end-page: 819 ident: b0310 article-title: Using topography to meet wildlife and fuels treatment objectives in fire-suppressed landscapes publication-title: Environ. Manage. – start-page: 27 year: 2016 end-page: 45 ident: b0115 article-title: Fire as an ecosystem process publication-title: Ecosystems of California – volume: 425 start-page: 75 year: 2018 end-page: 84 ident: b0165 article-title: Opening the silvicultural toolbox: a new framework for conserving biodiversity in chilean timber plantations publication-title: For. Ecol. Manage. – volume: 6 start-page: 1 year: 2015 end-page: 63 ident: b0300 article-title: Historical and current landscape-scale ponderosa pine and mixed conifer forest structure in the Southern Sierra Nevada publication-title: Ecosphere – volume: 274 start-page: 17 year: 2012 end-page: 28 ident: b0260 article-title: Fuel treatment effectiveness in California yellow pine and mixed conifer forests publication-title: For. Ecol. Manage. – volume: 330 start-page: 158 year: 2014 end-page: 170 ident: b0070 article-title: Historical conditions in mixed-conifer forests on the eastern slopes of the northern Oregon Cascade Range, USA publication-title: For. Ecol. Manage. – volume: 258 start-page: 773 year: 2009 end-page: 787 ident: b0250 article-title: Effects of fuel treatments on fire severity in an area of wildland-urban interface, Angora Fire, Lake Tahoe Basin, California publication-title: For. Ecol. Manage. – year: 1994 ident: b0280 article-title: Ecological Field Guide to Eastside Plant Associations – year: 2018 ident: b0330 article-title: Sierra Nevada bioregion publication-title: Fire in California’s ecosystems – year: 2017 ident: b0265 article-title: Natural Range of Variation (NRV) for yellow pine and mixed conifer forests in the Sierra Nevada, southern Cascades, and Modoc and Inyo National Forests, California, USA – volume: 13 start-page: 704 year: 2003 end-page: 719 ident: b0305 article-title: Spatial patterns and controls on historical fire regimes and forest structure inthe Klamath Mountains publication-title: Ecol. Appl. – year: 1985 ident: b0345 article-title: Plant associations of the central Oregon pumice zone – reference: Reynolds, R.T., Meador, A.J.S., Youtz, J.A., Nicolet, T., Matonis, M.S., Jackson, P.L., Graves, A.D., 2013. Restoring composition and structure in southwestern firequent-fire forests: a science-based framework for improving ecosystem resiliency. USDA Forest Service-General Technical Report RMRS-GTR, (310 RMRS-GTR), pp. 1–76. – year: 2009 ident: b0180 article-title: An Ecosystem Management Strategy for SIERRAN Mixed-Conifer Forests – year: 2015 ident: b0030 article-title: Historical Forest Structure, Composition, and Spatial Pattern in Dry Conifer Forests of the Western Blue Mountains, Oregon – volume: 6 start-page: 583 year: 1991 end-page: 598 ident: b0340 article-title: Watersheds in digital spaces: an efficient algorithm based on immersion simulations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 7 year: 2012 ident: b0140 article-title: Ecological importance of large-diameter trees in a temperate mixed-conifer forest publication-title: PLoS One – volume: 404 start-page: 316 year: 2017 end-page: 329 ident: b0245 article-title: Reference conditions are influenced by the physical template and vary by forest type: A synthesis of Pinus ponderosa-dominated sites in the southwestern United States publication-title: For. Ecol. Manage. – start-page: 46 year: 2012 end-page: 62 ident: b0255 article-title: Climate change and historical ecology: can the past still inform the future? publication-title: Historical Environ. Variation Conserv. Nat. Res. Manage. – volume: 71 start-page: 206 year: 2011 end-page: 214 ident: b9005 article-title: Native plants dominate understory vegetation following ponderosa pine forest restoration treatments publication-title: West. North Am. Nat. – year: 2016 ident: b0320 article-title: Lake Tahoe Basin Management Unit Forest Plan and Final Environmental Impact Statement – volume: 27 start-page: 105 year: 2000 end-page: 129 ident: b0175 article-title: Californian mixed-conifer forests under unmanaged fire regimes in the Sierra San Pedro Martir, Baja California Mexico publication-title: J. Biogeogr. – reference: (accessed on 15 February 2015). – volume: 262 start-page: 703 year: 2011 end-page: 717 ident: b0215 article-title: The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California publication-title: For. Ecol. Manage. – start-page: 107 year: 2012 end-page: 115 ident: b0190 article-title: Geographic information system landscape analysis using GTR 220 concepts publication-title: Managing Sierra Nevada forests – volume: 30 start-page: 1805 year: 2015 end-page: 1835 ident: b0075 article-title: Restoring fire-prone Inland Pacific landscapes: seven core principles publication-title: Landscape Ecol. – volume: 304 start-page: 370 year: 2013 end-page: 382 ident: b0145 article-title: Quantifying spatial patterns of tree groups and gaps in mixed-conifer forests: reference conditions and long-term changes following fire suppression and logging publication-title: For. Ecol. Manage. – volume: 39 start-page: 2391 year: 2009 end-page: 2403 ident: b0005 article-title: Spatial variation in reference conditions: historical tree density and pattern on a Pinus ponderosa landscape publication-title: Can. J. For. Res. – year: 2004 ident: b0045 article-title: El bosque de coníferas de la Sierra de San Pedro Mártir – volume: 28 year: 2002 ident: b0160 publication-title: Analysis of ecological communities – volume: 28 start-page: 955 year: 2001 end-page: 966 ident: b0015 article-title: Spatial and temporal variation of fire regimes in a mixed conifer forest landscape, Southern Cascades, California USA publication-title: J. Biogeogr. – volume: 363 start-page: 252 year: 2016 end-page: 266 ident: b0055 article-title: Climatic and structural comparison of yellow pine and mixed-conifer forests in northern Baja California (México) and the eastern Sierra Nevada (California, USA) publication-title: For. Ecol. Manage. – volume: 85 start-page: 27 year: 2011 end-page: 40 ident: b0335 article-title: Comparative testing of single-tree detection algorithms under different types of forest publication-title: Forestry – volume: 116 start-page: 336 year: 2018 end-page: 346 ident: b0100 article-title: Applying LiDAR individual tree detection to management of structurally diverse forest landscapes publication-title: J. Forest. – year: 2013 ident: b0230 article-title: R: A Language and Environment for Statistical Computing – volume: 13 year: 2008 ident: b0295 article-title: Wildfire and spatial patterns in forests in northwestern Mexico: the United States wishes it had similar fire problems publication-title: Ecol. Soc. – volume: 78 start-page: 75 issue: 1 year: 2012 ident: 10.1016/j.foreco.2018.12.012_b0130 article-title: A new method for segmenting individual trees from the LiDAR point cloud publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.78.1.75 – year: 2012 ident: 10.1016/j.foreco.2018.12.012_b0185 – volume: 331 start-page: 292 year: 2014 ident: 10.1016/j.foreco.2018.12.012_b9000 article-title: Contemporary forest restoration: a review emphasizing function publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2014.07.029 – volume: 425 start-page: 75 year: 2018 ident: 10.1016/j.foreco.2018.12.012_b0165 article-title: Opening the silvicultural toolbox: a new framework for conserving biodiversity in chilean timber plantations publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2018.05.028 – volume: 258 start-page: 773 year: 2009 ident: 10.1016/j.foreco.2018.12.012_b0250 article-title: Effects of fuel treatments on fire severity in an area of wildland-urban interface, Angora Fire, Lake Tahoe Basin, California publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2009.05.024 – volume: 6 start-page: 583 year: 1991 ident: 10.1016/j.foreco.2018.12.012_b0340 article-title: Watersheds in digital spaces: an efficient algorithm based on immersion simulations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.87344 – volume: 39 start-page: 2391 issue: 12 year: 2009 ident: 10.1016/j.foreco.2018.12.012_b0005 article-title: Spatial variation in reference conditions: historical tree density and pattern on a Pinus ponderosa landscape publication-title: Can. J. For. Res. doi: 10.1139/X09-146 – volume: 151 start-page: 89 year: 2014 ident: 10.1016/j.foreco.2018.12.012_b0105 article-title: Assessing fire effects on forest spatial structure using a fusion of landsat and airborne LiDAR data in Yosemite National Park publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.07.041 – start-page: 107 year: 2012 ident: 10.1016/j.foreco.2018.12.012_b0190 article-title: Geographic information system landscape analysis using GTR 220 concepts – volume: 160 start-page: 629 issue: 5 year: 2002 ident: 10.1016/j.foreco.2018.12.012_b0220 article-title: Cluster analysis of spatial patterns in Malaysian tree species publication-title: Am. Nat. doi: 10.1086/342823 – year: 1998 ident: 10.1016/j.foreco.2018.12.012_b0225 – year: 2016 ident: 10.1016/j.foreco.2018.12.012_b0200 article-title: Vegan: community ecology package publication-title: R package version 2.4-1 – year: 2009 ident: 10.1016/j.foreco.2018.12.012_b0180 – start-page: 553 year: 2016 ident: 10.1016/j.foreco.2018.12.012_b0195 article-title: Montane forests – year: 2015 ident: 10.1016/j.foreco.2018.12.012_b0030 – volume: 5 issue: 2 year: 2005 ident: 10.1016/j.foreco.2018.12.012_b0210 article-title: Classes and methods for spatial data in R publication-title: R News – volume: 205 start-page: 15 issue: 1–3 year: 2005 ident: 10.1016/j.foreco.2018.12.012_b0290 article-title: Forest structure and mortality in an old-growth Jeffrey pine-mixed conifer forest in north-western Mexico publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2004.10.003 – volume: 291 start-page: 442 year: 2013 ident: 10.1016/j.foreco.2018.12.012_b0035 article-title: Restoring forest resilience: From reference spatial patterns to silvicultural prescriptions and monitoring publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2012.11.007 – volume: 33 start-page: 1090 issue: 6 year: 2003 ident: 10.1016/j.foreco.2018.12.012_b9015 article-title: Dendrochronology-based fire history of Jeffrey pine-mixed conifer forests in the Sierra San Pedro Martir publication-title: Mexico. Can. J. For. Res. doi: 10.1139/x03-031 – volume: 330 start-page: 158 year: 2014 ident: 10.1016/j.foreco.2018.12.012_b0070 article-title: Historical conditions in mixed-conifer forests on the eastern slopes of the northern Oregon Cascade Range, USA publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2014.06.044 – start-page: 46 year: 2012 ident: 10.1016/j.foreco.2018.12.012_b0255 article-title: Climate change and historical ecology: can the past still inform the future? publication-title: Historical Environ. Variation Conserv. Nat. Res. Manage. doi: 10.1002/9781118329726.ch4 – volume: 10 start-page: 85 issue: 1 year: 2000 ident: 10.1016/j.foreco.2018.12.012_b0170 article-title: Modeling the effects of fire management alternatives on Sierra Nevada mixed-conifer forests publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2000)010[0085:MTEOFM]2.0.CO;2 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.foreco.2018.12.012_b0135 article-title: Classification and regression by random forest publication-title: R. News – volume: 258 start-page: 2399 issue: 11 year: 2009 ident: 10.1016/j.foreco.2018.12.012_b0080 article-title: A predictive model of burn severity based on 20-year satellite-inferred burn severity data in a large southwestern US wilderness area publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2009.08.017 – volume: 4 start-page: 950 issue: 4 year: 2012 ident: 10.1016/j.foreco.2018.12.012_b0090 article-title: An international comparison of individual tree detection and extraction using airborne laser scanning publication-title: Remote Sens. doi: 10.3390/rs4040950 – volume: 13 start-page: 704 issue: 3 year: 2003 ident: 10.1016/j.foreco.2018.12.012_b0305 article-title: Spatial patterns and controls on historical fire regimes and forest structure inthe Klamath Mountains publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2003)013[0704:SPACOH]2.0.CO;2 – volume: 404 start-page: 316 year: 2017 ident: 10.1016/j.foreco.2018.12.012_b0245 article-title: Reference conditions are influenced by the physical template and vary by forest type: A synthesis of Pinus ponderosa-dominated sites in the southwestern United States publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2017.09.012 – volume: 15 start-page: 603 issue: 7 year: 2000 ident: 10.1016/j.foreco.2018.12.012_b0315 article-title: Forest gradient response in Sierran landscapes: the physical template publication-title: Landscape Ecol. doi: 10.1023/A:1008183331604 – volume: 116 start-page: 336 issue: 4 year: 2018 ident: 10.1016/j.foreco.2018.12.012_b0100 article-title: Applying LiDAR individual tree detection to management of structurally diverse forest landscapes publication-title: J. Forest. doi: 10.1093/jofore/fvy023 – volume: 15 start-page: 1134 issue: 7 year: 2012 ident: 10.1016/j.foreco.2018.12.012_b0150 article-title: Topographic variation in structure of mixed-conifer forests under an active-fire regime publication-title: Ecosystems doi: 10.1007/s10021-012-9573-8 – year: 1994 ident: 10.1016/j.foreco.2018.12.012_b0280 – volume: 7 issue: 5 year: 2012 ident: 10.1016/j.foreco.2018.12.012_b0140 article-title: Ecological importance of large-diameter trees in a temperate mixed-conifer forest publication-title: PLoS One doi: 10.1371/journal.pone.0036131 – year: 2005 ident: 10.1016/j.foreco.2018.12.012_b0155 – volume: 274 start-page: 17 year: 2012 ident: 10.1016/j.foreco.2018.12.012_b0260 article-title: Fuel treatment effectiveness in California yellow pine and mixed conifer forests publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2012.02.013 – volume: 25 start-page: 1478 issue: 6 year: 2015 ident: 10.1016/j.foreco.2018.12.012_b0205 article-title: Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression publication-title: Ecol. Appl. doi: 10.1890/14-1430.1 – year: 2018 ident: 10.1016/j.foreco.2018.12.012_b0330 article-title: Sierra Nevada bioregion – year: 2017 ident: 10.1016/j.foreco.2018.12.012_b0265 – volume: 46 start-page: 809 issue: 5 year: 2010 ident: 10.1016/j.foreco.2018.12.012_b0310 article-title: Using topography to meet wildlife and fuels treatment objectives in fire-suppressed landscapes publication-title: Environ. Manage. doi: 10.1007/s00267-010-9556-5 – year: 1985 ident: 10.1016/j.foreco.2018.12.012_b0345 – year: 2016 ident: 10.1016/j.foreco.2018.12.012_b0320 – volume: 34 issue: Sup2 year: 2008 ident: 10.1016/j.foreco.2018.12.012_b0060 article-title: The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data publication-title: Canad. J. Remote Sens. – volume: 27 start-page: 105 issue: 1 year: 2000 ident: 10.1016/j.foreco.2018.12.012_b0175 article-title: Californian mixed-conifer forests under unmanaged fire regimes in the Sierra San Pedro Martir, Baja California Mexico publication-title: J. Biogeogr. doi: 10.1046/j.1365-2699.2000.00368.x – volume: 361 start-page: 23 year: 2016 ident: 10.1016/j.foreco.2018.12.012_b0040 article-title: Historical spatial patterns and contemporary tree mortality in dry mixed-conifer forests publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2015.10.049 – year: 2013 ident: 10.1016/j.foreco.2018.12.012_b0230 – volume: 262 start-page: 703 issue: 5 year: 2011 ident: 10.1016/j.foreco.2018.12.012_b0215 article-title: The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2011.05.004 – year: 1979 ident: 10.1016/j.foreco.2018.12.012_b0085 – volume: 71 start-page: 206 issue: 2 year: 2011 ident: 10.1016/j.foreco.2018.12.012_b9005 article-title: Native plants dominate understory vegetation following ponderosa pine forest restoration treatments publication-title: West. North Am. Nat. doi: 10.3398/064.071.0207 – volume: 12 start-page: 52 issue: 1 year: 2016 ident: 10.1016/j.foreco.2018.12.012_b0240 article-title: Patterns and trends in burned area and fire severity from 1984 to 2010 in the Sierra De San Pedro Mártir, Baja California Mexico publication-title: Fire Ecol. doi: 10.4996/fireecology.1201052 – volume: 13 issue: 2 year: 2008 ident: 10.1016/j.foreco.2018.12.012_b0295 article-title: Wildfire and spatial patterns in forests in northwestern Mexico: the United States wishes it had similar fire problems publication-title: Ecol. Soc. doi: 10.5751/ES-02380-130210 – volume: 114 start-page: 911 issue: 4 year: 2010 ident: 10.1016/j.foreco.2018.12.012_b0020 article-title: Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.12.004 – volume: 363 start-page: 252 year: 2016 ident: 10.1016/j.foreco.2018.12.012_b0055 article-title: Climatic and structural comparison of yellow pine and mixed-conifer forests in northern Baja California (México) and the eastern Sierra Nevada (California, USA) publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2015.12.039 – year: 2004 ident: 10.1016/j.foreco.2018.12.012_b0045 – volume: 267 start-page: 74 year: 2012 ident: 10.1016/j.foreco.2018.12.012_b0120 article-title: Tree spatial patterns in fire-frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatments publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2011.11.038 – volume: 9 issue: 2 year: 2014 ident: 10.1016/j.foreco.2018.12.012_b0065 article-title: Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests publication-title: PLoS One doi: 10.1371/journal.pone.0088985 – volume: 28 start-page: 955 issue: 8 year: 2001 ident: 10.1016/j.foreco.2018.12.012_b0015 article-title: Spatial and temporal variation of fire regimes in a mixed conifer forest landscape, Southern Cascades, California USA publication-title: J. Biogeogr. doi: 10.1046/j.1365-2699.2001.00591.x – start-page: 27 year: 2016 ident: 10.1016/j.foreco.2018.12.012_b0115 article-title: Fire as an ecosystem process – volume: 115 start-page: 2640 issue: 10 year: 2011 ident: 10.1016/j.foreco.2018.12.012_b0235 article-title: Strengths and limitations of assessing forest density and spatial configuration with aerial LiDAR publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.05.020 – volume: 7 start-page: 26 issue: 3 year: 2011 ident: 10.1016/j.foreco.2018.12.012_b0325 article-title: A summary of fire frequency estimates for California vegetation before Euro-American settlement publication-title: Fire Ecol. doi: 10.4996/fireecology.0703026 – ident: 10.1016/j.foreco.2018.12.012_b9025 doi: 10.2737/RMRS-GTR-310 – volume: 304 start-page: 370 year: 2013 ident: 10.1016/j.foreco.2018.12.012_b0145 article-title: Quantifying spatial patterns of tree groups and gaps in mixed-conifer forests: reference conditions and long-term changes following fire suppression and logging publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2013.05.023 – ident: 10.1016/j.foreco.2018.12.012_b0095 – year: 2015 ident: 10.1016/j.foreco.2018.12.012_b0010 – volume: 30 start-page: 1805 issue: 10 year: 2015 ident: 10.1016/j.foreco.2018.12.012_b0075 article-title: Restoring fire-prone Inland Pacific landscapes: seven core principles publication-title: Landscape Ecol. doi: 10.1007/s10980-015-0218-0 – volume: 9 start-page: 271 issue: 5 year: 2011 ident: 10.1016/j.foreco.2018.12.012_b0275 article-title: Restoration relevance of recent National Fire Plan treatments in forests of the western United States publication-title: Front. Ecol. Environ. doi: 10.1890/090199 – volume: 287 start-page: 17 year: 2013 ident: 10.1016/j.foreco.2018.12.012_b0110 article-title: Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2012.08.044 – volume: 132 start-page: 97 issue: 1 year: 2000 ident: 10.1016/j.foreco.2018.12.012_b0270 article-title: Forests of the Mediterranean region: gaps in knowledge and research needs publication-title: For. Ecol. Manage. doi: 10.1016/S0378-1127(00)00383-2 – volume: 28 year: 2002 ident: 10.1016/j.foreco.2018.12.012_b0160 – volume: 2 start-page: 1 issue: 12 year: 2011 ident: 10.1016/j.foreco.2018.12.012_b0050 article-title: Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006 publication-title: Ecosphere doi: 10.1890/ES11-00271.1 – year: 1972 ident: 10.1016/j.foreco.2018.12.012_b0025 – volume: 103 start-page: 357 issue: 7 year: 2005 ident: 10.1016/j.foreco.2018.12.012_b0285 article-title: Western pine forests with continuing frequent fire regimes: possible reference sites for management publication-title: J. Forest. doi: 10.1093/jof/103.7.357 – ident: 10.1016/j.foreco.2018.12.012_b9020 – volume: 85 start-page: 27 issue: 1 year: 2011 ident: 10.1016/j.foreco.2018.12.012_b0335 article-title: Comparative testing of single-tree detection algorithms under different types of forest publication-title: Forestry doi: 10.1093/forestry/cpr051 – volume: 24 start-page: S4 year: 2016 ident: 10.1016/j.foreco.2018.12.012_b9010 article-title: National standards for the practice of ecological restoration in Australia publication-title: Restor. Ecol. doi: 10.1111/rec.12359 – year: 2013 ident: 10.1016/j.foreco.2018.12.012_b0125 article-title: DTK: Dunnett-Tukey-Kramer pairwise multiple comparison test adjusted for unequal variances and unequal sample sizes publication-title: R package version 3.5 – volume: 6 start-page: 1 issue: 5 year: 2015 ident: 10.1016/j.foreco.2018.12.012_b0300 article-title: Historical and current landscape-scale ponderosa pine and mixed conifer forest structure in the Southern Sierra Nevada publication-title: Ecosphere doi: 10.1890/ES14-00379.1 |
| SSID | ssj0005548 |
| Score | 2.46344 |
| Snippet | •LiDAR can be used to accurately quantify overstory structure and pattern at tree-neighborhood, stand, and landscape scales.•Forest structure and spatial... Successful restoration of degraded forest landscapes requires reference models that adequately capture structural heterogeneity at multiple spatial scales and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 318 |
| SubjectTerms | canyons cost effectiveness data collection Ecological reference model forest damage Forest structure forests Landscape restoration landscapes LiDAR Mexico national parks overstory Sierra de San Pedro Martir Spatial pattern Spatial scale topographic slope trees |
| Title | Using LiDAR to develop high-resolution reference models of forest structure and spatial pattern |
| URI | https://dx.doi.org/10.1016/j.foreco.2018.12.012 https://www.proquest.com/docview/2189547669 |
| Volume | 434 |
| WOSCitedRecordID | wos000457657100029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005548 issn: 0378-1127 databaseCode: AIEXJ dateStart: 20151001 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBah3UZfRi8b67oWDfZmHGLL8eUx9EJWQhldR_MmZNmCls4pSVra_7If2yMdSe4S1svDXkywfIvPZ53vHJ0LId_yqmSqkEkIJjIYKCWYOwJUQQhknVVMSakikyg8yk5O8vG4-NHp_HG5MLdXWdPkd3fF9X8VNewDYevU2VeI218UdsBvEDpsQeywfZHgMQhgdHEwONXE0mZFBboucQi2tb134PuLYDMcE9EBBBaURIA1Zd3KwkzHXOt8LVOJs3nMZo_w-Fq2hZx-L4XTnLdO7aEmpcGo23qgXa3IfTEVwakfGImpHcCAy-DYD_0UysXjD3WDoYPuY8eFzpXyieA2YUsbsBGWBnCTcWJdmzidMjs3o2ZmuIKzNOmj_-Gyq1-S1AmdUW5cvDY--68a2wu6z0ckumC3S45X4foqPIp5T7ewXo2zfgHT_urg--H4uA0h6pvubP6PuNRMEz-4_DT_oj4LJMAwm7N18t6aJHSAUNognbrZJG-xSen9JnmHUp7ebxFusEUNtuh8Qi226AK2qMcWRWzRiaKILeqxRQEt1GKLWmx9IL-ODs_2h6Ht0BFKIPrzsOrBZw6UTyoRJWUd56KKemASVyJJVBVHlUiLLFKwKUvtKSiEgpeWK5H1VVJmkn0kK82kqT8RCppHpALM15SJBM4TcdmLU9A3jJVSxWKbMPfyuLTl63UXlSv-lOi2SejPusbyLc8cnzm5cEtBkVpyANszZ351YuQwQ-tlN9HUk5sZBxJd9JMsTYvPr3yaHbLWfjhfyApIqN4lb-Tt_GI23bNofADsZbcg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+LiDAR+to+develop+high-resolution+reference+models+of+forest+structure+and+spatial+pattern&rft.jtitle=Forest+ecology+and+management&rft.au=Wiggins%2C+Haley+L.&rft.au=Nelson%2C+Cara+R.&rft.au=Larson%2C+Andrew+J.&rft.au=Safford%2C+Hugh+D.&rft.date=2019-02-28&rft.issn=0378-1127&rft.volume=434&rft.spage=318&rft.epage=330&rft_id=info:doi/10.1016%2Fj.foreco.2018.12.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_foreco_2018_12_012 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1127&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1127&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1127&client=summon |