Estimation of soil organic carbon content by Vis-NIR spectroscopy combining feature selection algorithm and local regression method
ABSTRACT Soil organic carbon (SOC) content is a critical parameter for evaluating soil health. However, high redundancy and invalid information in soil hyperspectral data can reduce the accuracy and stability of SOC prediction models. This study developed a global partial least squares regression (P...
Saved in:
| Published in: | Revista Brasileira de Ciência do Solo Vol. 47 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Sociedade Brasileira de Ciência do Solo
01.01.2023
|
| Subjects: | |
| ISSN: | 1806-9657 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | ABSTRACT Soil organic carbon (SOC) content is a critical parameter for evaluating soil health. However, high redundancy and invalid information in soil hyperspectral data can reduce the accuracy and stability of SOC prediction models. This study developed a global partial least squares regression (PLSR) model and a local PLSR model for agricultural soils in the LUCAS 2015 database. Some variable selection methods were combined with the regression models and their effects on prediction accuracy were explored. In addition, when the genetic algorithm is utilized for spectral feature selection, we obtained a more representative spectral subset through a novel coding approach. The results illustrated that the best SOC estimation accuracy was achieved by the local PLSR combined with a coding-improved genetic algorithm (GA), with R2 of 0.71, RMSEP of 5.7 g kg-1, and RPD of 1.87. This study demonstrates that appropriate spectral band selection only slightly enhances the model performance of both global and local regressions, as PLSR models using the full spectrum show similar performance. Local PLSR models consistently outperform global ones using full spectrum or variable selection algorithms. |
|---|---|
| AbstractList | ABSTRACT Soil organic carbon (SOC) content is a critical parameter for evaluating soil health. However, high redundancy and invalid information in soil hyperspectral data can reduce the accuracy and stability of SOC prediction models. This study developed a global partial least squares regression (PLSR) model and a local PLSR model for agricultural soils in the LUCAS 2015 database. Some variable selection methods were combined with the regression models and their effects on prediction accuracy were explored. In addition, when the genetic algorithm is utilized for spectral feature selection, we obtained a more representative spectral subset through a novel coding approach. The results illustrated that the best SOC estimation accuracy was achieved by the local PLSR combined with a coding-improved genetic algorithm (GA), with R2 of 0.71, RMSEP of 5.7 g kg-1, and RPD of 1.87. This study demonstrates that appropriate spectral band selection only slightly enhances the model performance of both global and local regressions, as PLSR models using the full spectrum show similar performance. Local PLSR models consistently outperform global ones using full spectrum or variable selection algorithms. |
| Author | Fan Dai Baoyang Liu Baofeng Guo Renxiong Zhuo |
| Author_xml | – sequence: 1 orcidid: 0000-0002-3462-6840 fullname: Baoyang Liu – sequence: 2 orcidid: 0000-0002-2705-2949 fullname: Baofeng Guo – sequence: 3 orcidid: 0000-0003-3010-7098 fullname: Renxiong Zhuo – sequence: 4 orcidid: 0000-0001-8211-9790 fullname: Fan Dai |
| BookMark | eNotkM1KAzEUhYMoWGsfQcgLjCaTySRZSqlaKAqibof8TiMzSUniomtf3FRdXfg-OJxzr8B5iMECcIPRLekZJ3eYo170lCWlc4taglDPzsDihJsTvwSrnL1CLWKUYk4X4HuTi59l8THA6GCOfoIxjTJ4DbVMqmIdQ7GhQHWEHz43z9tXmA9WlxSzjodj9bPywYcROivLV7Iw26n6U6Scxph82c9QBgOnqOUEkx2TrTWqnm3ZR3MNLpycsl393yV4f9i8rZ-a3cvjdn2_a3SHaGkM6m0rpJAdlxRTzpFSHVbGGE4Fd6xlkgpEFcVWOMZb4qRyhgrhKHUCG7IE279cE-XncEh1dzoOUfrhF9TZg0zF68kO9Y3IaWMdsbrTmnElMFECEctd32JMfgDm9HTS |
| CitedBy_id | crossref_primary_10_3390_rs17162806 crossref_primary_10_1109_ACCESS_2025_3574697 crossref_primary_10_3390_s24144464 crossref_primary_10_1016_j_saa_2024_124687 |
| ContentType | Journal Article |
| DBID | DOA |
| DOI | 10.36783/18069657rbcs20230067 |
| DatabaseName | DOAJ Directory of Open Access Journals |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1806-9657 |
| ExternalDocumentID | oai_doaj_org_article_0690fcdef3ec4cc78b913b903e8f6211 |
| GroupedDBID | 5VS ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c405t-d06e29a9a48a515880bb41bddd8598f727a5905b51e9f7823fabfd599f55f91d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001130873800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Fri Oct 03 12:51:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c405t-d06e29a9a48a515880bb41bddd8598f727a5905b51e9f7823fabfd599f55f91d3 |
| ORCID | 0000-0002-3462-6840 0000-0001-8211-9790 0000-0003-3010-7098 0000-0002-2705-2949 |
| OpenAccessLink | https://doaj.org/article/0690fcdef3ec4cc78b913b903e8f6211 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0690fcdef3ec4cc78b913b903e8f6211 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Revista Brasileira de Ciência do Solo |
| PublicationYear | 2023 |
| Publisher | Sociedade Brasileira de Ciência do Solo |
| Publisher_xml | – name: Sociedade Brasileira de Ciência do Solo |
| SSID | ssib020755185 ssib005513259 |
| Score | 2.3243275 |
| Snippet | ABSTRACT Soil organic carbon (SOC) content is a critical parameter for evaluating soil health. However, high redundancy and invalid information in soil... |
| SourceID | doaj |
| SourceType | Open Website |
| SubjectTerms | local calibration LUCAS 2015 database soil property variable selection |
| Title | Estimation of soil organic carbon content by Vis-NIR spectroscopy combining feature selection algorithm and local regression method |
| URI | https://doaj.org/article/0690fcdef3ec4cc78b913b903e8f6211 |
| Volume | 47 |
| WOSCitedRecordID | wos001130873800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA0iHryIouI3OXhduttsdpOjSouCFBGV3komH7XQ7pbdVejZP-4kKVhPXrxmw7DMJJmXMPMeIdel1WAL5hKQ4JKc5TwRkLmkNLllJVPaQaDMfyxHIzEey6cNqS9fExbpgaPjep5J12ljHbM617oUIDMGMmVWuKIfu3rTUm5cpsLK4njL-knUOMMzj_HYwsPwgGa9TKDpgpcN6NZriPtz-xdxf8gww32yt4aG9Cb-0gHZstUh-RrgHozthbR2tK1ncxqVmDTVqgEc9tXmmDoorOjbrE1GD8809E96nsp6ucLvCwgyENTZQONJ2yB-402q-bRuZt37gqrK0JDYaGOnsTi2olFf-oi8Dgcvd_fJWjgh0Yi_usSkhe1LJVUuFOIV3KIAeQbGGMGlcAhZFJcpB55Z6RAiMKfAGS6l49zJzLBjsl3VlT0hVCK-yBCBFzKDXOpUGAAMBYeiL2wh7Cm59R6bLCM3xsSzVYcBdMVkHcPJXzE8-w8j52TXhzE-j1yQ7a75sJdkR392s7a5CsvjG1Giwr8 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+soil+organic+carbon+content+by+Vis-NIR+spectroscopy+combining+feature+selection+algorithm+and+local+regression+method&rft.jtitle=Revista+Brasileira+de+Ci%C3%AAncia+do+Solo&rft.au=Baoyang+Liu&rft.au=Baofeng+Guo&rft.au=Renxiong+Zhuo&rft.au=Fan+Dai&rft.date=2023-01-01&rft.pub=Sociedade+Brasileira+de+Ci%C3%AAncia+do+Solo&rft.eissn=1806-9657&rft.volume=47&rft_id=info:doi/10.36783%2F18069657rbcs20230067&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0690fcdef3ec4cc78b913b903e8f6211 |