Graph Signal Processing: Overview, Challenges, and Applications

Research in graph signal processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper, we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing, along with a brief historical perspective to highli...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the IEEE Ročník 106; číslo 5; s. 808 - 828
Hlavní autoři: Ortega, Antonio, Frossard, Pascal, Kovacevic, Jelena, Moura, Jose M. F., Vandergheynst, Pierre
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9219, 1558-2256
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Research in graph signal processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper, we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing, along with a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas. We then summarize recent advances in developing basic GSP tools, including methods for sampling, filtering, or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning.
AbstractList Research in graph signal processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper, we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing, along with a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas. We then summarize recent advances in developing basic GSP tools, including methods for sampling, filtering, or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning.
Author Ortega, Antonio
Moura, Jose M. F.
Vandergheynst, Pierre
Frossard, Pascal
Kovacevic, Jelena
Author_xml – sequence: 1
  givenname: Antonio
  orcidid: 0000-0001-5403-0940
  surname: Ortega
  fullname: Ortega, Antonio
  email: antonio.ortega@sipi.usc.edu
  organization: University of Southern California, Los Angeles, CA, USA
– sequence: 2
  givenname: Pascal
  orcidid: 0000-0002-4010-714X
  surname: Frossard
  fullname: Frossard, Pascal
  organization: EPFL, Lausanne, Switzerland-1015, Lausanne
– sequence: 3
  givenname: Jelena
  surname: Kovacevic
  fullname: Kovacevic, Jelena
  organization: Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 4
  givenname: Jose M. F.
  orcidid: 0000-0002-9822-8294
  surname: Moura
  fullname: Moura, Jose M. F.
  organization: Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 5
  givenname: Pierre
  surname: Vandergheynst
  fullname: Vandergheynst, Pierre
  organization: EPFL, Lausanne, Switzerland-1015, Lausanne
BookMark eNp9kD1PwzAQhi1UJNrCH4AlEmtTznacuCyoiqCAKrWC7pbrXFpXIQl2WsS_J_0QAwPTO9w99_H0SKesSiTkmsKQUhjdvc7fZumQAZVDJttg8RnpUiFkyJiIO6QLbSkcMTq6ID3vNwDARcy75GHidL0O3u2q1EUwd5VB7225ug9mO3Q7i1-DIF3rosByhX4Q6DILxnVdWKMbW5X-kpznuvB4dco-WTw9LtLncDqbvKTjaWgiEE1oOJVc0xghjyKzBA1LwAQkEyaRDBNulpkWPEsQJOZG5BHQLBbAWW64jnif3B7H1q763KJv1KbauvZkrxjwVgGnI9p2sWOXcZX3DnNVO_uh3beioPae1MGT2ntSJ08tJP9AxjaH5xqnbfE_enNELSL-7pI8SmjM-A_qMHaw
CODEN IEEPAD
CitedBy_id crossref_primary_10_1016_j_patcog_2022_108690
crossref_primary_10_1109_LSP_2021_3112338
crossref_primary_10_1109_TSP_2021_3081036
crossref_primary_10_1109_ACCESS_2021_3053270
crossref_primary_10_1109_TKDE_2021_3133013
crossref_primary_10_1038_s43856_021_00065_5
crossref_primary_10_1016_j_specom_2020_12_010
crossref_primary_10_1016_j_amc_2023_128502
crossref_primary_10_1016_j_dsp_2020_102782
crossref_primary_10_1007_s12662_024_00944_8
crossref_primary_10_1016_j_sigpro_2020_107931
crossref_primary_10_1109_TIFS_2023_3302508
crossref_primary_10_1016_j_sigpro_2021_108180
crossref_primary_10_1109_JBHI_2022_3207519
crossref_primary_10_7717_peerj_cs_357
crossref_primary_10_1016_j_sigpro_2025_110277
crossref_primary_10_1007_s10115_025_02406_5
crossref_primary_10_1016_j_comcom_2025_108146
crossref_primary_10_1016_j_dsp_2024_104728
crossref_primary_10_1109_TSIPN_2024_3356794
crossref_primary_10_1109_LGRS_2021_3113078
crossref_primary_10_1109_MSP_2023_3262906
crossref_primary_10_3390_rs16040721
crossref_primary_10_1109_TMM_2021_3077772
crossref_primary_10_1109_TSP_2023_3318471
crossref_primary_10_1109_TCYB_2021_3079149
crossref_primary_10_1109_TCYB_2025_3570703
crossref_primary_10_1109_TSP_2022_3223217
crossref_primary_10_3390_math8091412
crossref_primary_10_3390_technologies12080128
crossref_primary_10_1016_j_sigpro_2022_108574
crossref_primary_10_1109_TSP_2024_3378379
crossref_primary_10_1109_TSP_2022_3180546
crossref_primary_10_1186_s13634_022_00836_9
crossref_primary_10_1109_MSP_2022_3149471
crossref_primary_10_1109_TSP_2024_3392348
crossref_primary_10_1109_TSP_2020_2993780
crossref_primary_10_1109_ACCESS_2024_3421346
crossref_primary_10_1103_PhysRevApplied_23_054054
crossref_primary_10_1109_TSP_2022_3176497
crossref_primary_10_1038_s41467_024_51590_5
crossref_primary_10_1109_TMM_2019_2918717
crossref_primary_10_1109_TPAMI_2022_3174515
crossref_primary_10_1515_comp_2022_0272
crossref_primary_10_1109_TIP_2020_3044448
crossref_primary_10_1109_TCSVT_2024_3370001
crossref_primary_10_1109_JSTSP_2024_3378887
crossref_primary_10_1109_TSG_2024_3364665
crossref_primary_10_1109_TMM_2021_3111440
crossref_primary_10_1007_s43670_023_00062_w
crossref_primary_10_1109_TSP_2020_2981202
crossref_primary_10_1016_j_eswa_2021_114711
crossref_primary_10_1109_TSIPN_2024_3378122
crossref_primary_10_1177_09567976221143127
crossref_primary_10_1109_TSP_2023_3259144
crossref_primary_10_1186_s13059_025_03631_5
crossref_primary_10_1109_TMM_2024_3374580
crossref_primary_10_1109_TMM_2021_3068606
crossref_primary_10_1109_TSP_2025_3553378
crossref_primary_10_1109_TSP_2023_3340009
crossref_primary_10_1109_TSP_2024_3495225
crossref_primary_10_1109_TSP_2025_3588173
crossref_primary_10_1109_TSP_2024_3392360
crossref_primary_10_1109_MSP_2020_3014597
crossref_primary_10_1145_3742784
crossref_primary_10_1109_MSP_2020_3014594
crossref_primary_10_3390_sym14020426
crossref_primary_10_1016_j_watres_2023_120313
crossref_primary_10_1016_j_apacoust_2024_109929
crossref_primary_10_1061__ASCE_WR_1943_5452_0001550
crossref_primary_10_1109_TSP_2022_3167525
crossref_primary_10_2478_bhee_2020_0002
crossref_primary_10_1016_j_neuroimage_2021_117847
crossref_primary_10_1007_s41109_021_00438_8
crossref_primary_10_3390_s21041415
crossref_primary_10_1109_TCSII_2024_3366242
crossref_primary_10_1016_j_sigpro_2025_110163
crossref_primary_10_1109_TSIPN_2025_3553025
crossref_primary_10_1016_j_eswa_2023_119867
crossref_primary_10_1109_LSP_2021_3123459
crossref_primary_10_1016_j_cam_2020_113319
crossref_primary_10_1109_TPWRS_2021_3094202
crossref_primary_10_1109_TSIPN_2021_3084879
crossref_primary_10_1109_TSIPN_2022_3216099
crossref_primary_10_1016_j_jfranklin_2025_107877
crossref_primary_10_1109_TCYB_2024_3416621
crossref_primary_10_1109_TSIPN_2022_3140477
crossref_primary_10_1016_j_ifacol_2025_01_133
crossref_primary_10_1109_LWC_2022_3219413
crossref_primary_10_1109_MSP_2018_2887284
crossref_primary_10_1016_j_neunet_2022_11_003
crossref_primary_10_1109_TSIPN_2020_3010613
crossref_primary_10_1016_j_eswa_2022_117097
crossref_primary_10_1049_iet_gtd_2020_0845
crossref_primary_10_1016_j_sigpro_2021_108149
crossref_primary_10_1109_TSP_2021_3106857
crossref_primary_10_1016_j_eswa_2019_112861
crossref_primary_10_1109_TCSI_2022_3179821
crossref_primary_10_1109_TIP_2020_3042088
crossref_primary_10_1109_TSP_2019_2914879
crossref_primary_10_1016_j_sigpro_2025_110077
crossref_primary_10_1016_j_sigpro_2025_110198
crossref_primary_10_1109_TPAMI_2020_3032718
crossref_primary_10_1007_s11045_020_00746_9
crossref_primary_10_1109_LSP_2021_3086391
crossref_primary_10_1109_MSP_2020_3014590
crossref_primary_10_1109_ACCESS_2021_3079349
crossref_primary_10_1109_MSP_2020_3014591
crossref_primary_10_1109_TSP_2022_3223552
crossref_primary_10_1109_TSIPN_2021_3107628
crossref_primary_10_1093_biostatistics_kxab001
crossref_primary_10_1103_PhysRevE_111_034301
crossref_primary_10_1109_LSP_2020_3029699
crossref_primary_10_1109_TSP_2022_3192606
crossref_primary_10_3390_e21010022
crossref_primary_10_1016_j_neuroimage_2022_119399
crossref_primary_10_1016_j_dsp_2024_104914
crossref_primary_10_1109_TSP_2021_3087905
crossref_primary_10_3390_electronics11213462
crossref_primary_10_1109_TSIPN_2023_3341408
crossref_primary_10_1109_TPAMI_2024_3443110
crossref_primary_10_3390_rs11192290
crossref_primary_10_1016_j_dsp_2025_105191
crossref_primary_10_1088_1361_6501_acefea
crossref_primary_10_1109_LSP_2025_3539012
crossref_primary_10_1007_s00034_020_01499_3
crossref_primary_10_1016_j_acha_2023_03_005
crossref_primary_10_1109_TSIPN_2024_3380351
crossref_primary_10_1109_ACCESS_2021_3122100
crossref_primary_10_3389_frai_2022_832909
crossref_primary_10_1016_j_acha_2022_06_004
crossref_primary_10_1016_j_bpsc_2023_06_008
crossref_primary_10_3390_a13090228
crossref_primary_10_1109_ACCESS_2020_3030841
crossref_primary_10_1049_sil2_12082
crossref_primary_10_1109_LSP_2019_2906776
crossref_primary_10_1109_ACCESS_2023_3347592
crossref_primary_10_3390_s22103951
crossref_primary_10_1109_TSIPN_2022_3167333
crossref_primary_10_1080_10106049_2023_2272662
crossref_primary_10_1109_TNNLS_2024_3449573
crossref_primary_10_1016_j_dsp_2024_104825
crossref_primary_10_3390_mi14040714
crossref_primary_10_1016_j_compbiomed_2025_110082
crossref_primary_10_1109_TSP_2024_3507787
crossref_primary_10_1109_TSP_2020_3009645
crossref_primary_10_1016_j_eswa_2020_113581
crossref_primary_10_1109_TIP_2022_3166644
crossref_primary_10_1016_j_compbiomed_2022_105643
crossref_primary_10_1109_ACCESS_2020_2977767
crossref_primary_10_1016_j_sigpro_2022_108480
crossref_primary_10_1016_j_bspc_2023_105537
crossref_primary_10_1016_j_ymssp_2025_112449
crossref_primary_10_1109_TSIPN_2020_3040042
crossref_primary_10_1109_TMM_2023_3304896
crossref_primary_10_1109_TSP_2023_3263675
crossref_primary_10_1007_s11263_024_02188_3
crossref_primary_10_1109_TSIPN_2023_3299511
crossref_primary_10_1109_TSP_2022_3207045
crossref_primary_10_1186_s13634_022_00901_3
crossref_primary_10_1109_TSP_2023_3238272
crossref_primary_10_1109_TSP_2021_3084537
crossref_primary_10_1016_j_media_2022_102507
crossref_primary_10_3390_s20216001
crossref_primary_10_1109_JSEN_2018_2884709
crossref_primary_10_1109_TFUZZ_2020_3029285
crossref_primary_10_1109_TSIPN_2023_3304142
crossref_primary_10_1109_TSP_2019_2925602
crossref_primary_10_3390_app14114533
crossref_primary_10_1038_s41598_024_71756_x
crossref_primary_10_1109_JSTARS_2024_3434330
crossref_primary_10_1109_LSP_2023_3292741
crossref_primary_10_1186_s13634_024_01201_8
crossref_primary_10_1109_TSP_2019_2925608
crossref_primary_10_1109_TSP_2024_3446453
crossref_primary_10_1109_TCSII_2023_3307698
crossref_primary_10_1109_LSP_2025_3560170
crossref_primary_10_1016_j_optlastec_2024_112199
crossref_primary_10_1109_TSP_2020_3032408
crossref_primary_10_1109_JSEN_2024_3366346
crossref_primary_10_3390_sym14030543
crossref_primary_10_1016_j_dsp_2025_105094
crossref_primary_10_1016_j_jfranklin_2025_107793
crossref_primary_10_1016_j_trc_2024_104890
crossref_primary_10_1109_JIOT_2023_3294470
crossref_primary_10_1109_LSP_2023_3298280
crossref_primary_10_1016_j_chaos_2023_113977
crossref_primary_10_1137_23M1565413
crossref_primary_10_1109_ACCESS_2020_2983590
crossref_primary_10_1007_s11265_022_01802_2
crossref_primary_10_3390_bioengineering11070671
crossref_primary_10_1109_LSP_2024_3421972
crossref_primary_10_3390_app12136799
crossref_primary_10_1007_s10851_021_01064_w
crossref_primary_10_1007_s11760_022_02249_5
crossref_primary_10_1016_j_measurement_2021_109428
crossref_primary_10_1109_TSP_2024_3460194
crossref_primary_10_1109_TCSII_2022_3181540
crossref_primary_10_1016_j_patcog_2019_107070
crossref_primary_10_1016_j_asoc_2022_108489
crossref_primary_10_1109_TSP_2024_3419182
crossref_primary_10_1109_TSP_2021_3099630
crossref_primary_10_1109_TSP_2018_2886151
crossref_primary_10_1109_TSP_2023_3267990
crossref_primary_10_1109_TSIPN_2024_3352236
crossref_primary_10_1109_TSIPN_2025_3589719
crossref_primary_10_1038_s41598_025_00107_1
crossref_primary_10_1109_ACCESS_2025_3590304
crossref_primary_10_1109_TPAMI_2021_3111054
crossref_primary_10_1016_j_jii_2025_100880
crossref_primary_10_3390_brainsci15070714
crossref_primary_10_1007_s00034_020_01613_5
crossref_primary_10_1109_TBME_2020_3022335
crossref_primary_10_1109_TSP_2019_2901356
crossref_primary_10_1109_TSIPN_2022_3170652
crossref_primary_10_1007_s00521_021_06235_9
crossref_primary_10_1177_02783649241246847
crossref_primary_10_1109_LSP_2021_3119257
crossref_primary_10_1109_MSP_2019_2929832
crossref_primary_10_1145_3695769
crossref_primary_10_1007_s00041_021_09871_w
crossref_primary_10_3390_electronics11203312
crossref_primary_10_32604_cmc_2021_017300
crossref_primary_10_1088_1742_6596_2182_1_012017
crossref_primary_10_1109_TSG_2023_3332591
crossref_primary_10_1109_TII_2024_3369715
crossref_primary_10_1109_TSP_2021_3053643
crossref_primary_10_1109_TSIPN_2025_3536084
crossref_primary_10_1007_s11042_019_08296_4
crossref_primary_10_1109_TMM_2021_3129341
crossref_primary_10_1109_TSG_2022_3150954
crossref_primary_10_1016_j_dsp_2023_103970
crossref_primary_10_1109_TCSII_2020_3045217
crossref_primary_10_1109_RBME_2021_3122522
crossref_primary_10_1016_j_dsp_2025_105156
crossref_primary_10_1109_LSP_2019_2931397
crossref_primary_10_1109_TMI_2020_3029063
crossref_primary_10_1109_TSP_2025_3526287
crossref_primary_10_1109_TNSRE_2023_3320135
crossref_primary_10_1016_j_sigpro_2024_109732
crossref_primary_10_1186_s13634_025_01211_0
crossref_primary_10_1109_TSP_2018_2876313
crossref_primary_10_1080_09720529_2022_2139934
crossref_primary_10_1109_TASE_2021_3115937
crossref_primary_10_1016_j_bbr_2023_114325
crossref_primary_10_1016_j_neunet_2021_11_026
crossref_primary_10_1109_TSIPN_2020_2982765
crossref_primary_10_1109_LSP_2018_2849685
crossref_primary_10_1109_LSP_2024_3396664
crossref_primary_10_1109_TSIPN_2018_2872157
crossref_primary_10_1109_TSIPN_2024_3503416
crossref_primary_10_3390_ijgi8090414
crossref_primary_10_1016_j_compeleceng_2025_110575
crossref_primary_10_1111_joes_12505
crossref_primary_10_1109_LSP_2025_3569478
crossref_primary_10_1109_TSIPN_2025_3587400
crossref_primary_10_1007_s43670_023_00076_4
crossref_primary_10_1109_TNSRE_2022_3198021
crossref_primary_10_1162_netn_a_00411
crossref_primary_10_1109_TSIPN_2022_3206578
crossref_primary_10_1016_j_sigpro_2023_109308
crossref_primary_10_1016_j_sigpro_2024_109601
crossref_primary_10_1007_s00034_021_01720_x
crossref_primary_10_1016_j_ijforecast_2023_08_006
crossref_primary_10_1016_j_measurement_2025_116762
crossref_primary_10_1109_MSP_2020_3016143
crossref_primary_10_1109_TSIPN_2023_3276687
crossref_primary_10_1186_s13634_022_00926_8
crossref_primary_10_1109_JSTSP_2024_3485892
crossref_primary_10_1109_LSP_2019_2903683
crossref_primary_10_1145_3610924
crossref_primary_10_1109_ACCESS_2021_3086480
crossref_primary_10_1109_TIP_2023_3307975
crossref_primary_10_1080_24694452_2023_2206469
crossref_primary_10_1109_ACCESS_2020_3032326
crossref_primary_10_1038_s41598_024_72199_0
crossref_primary_10_1109_LSP_2024_3501273
crossref_primary_10_1109_TSP_2024_3349788
crossref_primary_10_1016_j_dsp_2022_103792
crossref_primary_10_1109_TSG_2022_3176298
crossref_primary_10_1109_TIE_2020_2979563
crossref_primary_10_3390_app142310868
crossref_primary_10_1016_j_sigpro_2024_109519
crossref_primary_10_1080_24725854_2021_1949762
crossref_primary_10_1109_TCSII_2020_3017800
crossref_primary_10_1109_MSP_2020_3014067
crossref_primary_10_1016_j_dsp_2022_103558
crossref_primary_10_1002_bkcs_12533
crossref_primary_10_1109_TNSRE_2024_3368434
crossref_primary_10_1109_TSIPN_2020_3015341
crossref_primary_10_3389_fnins_2020_00630
crossref_primary_10_1016_j_sigpro_2023_109230
crossref_primary_10_1109_TCI_2023_3308388
crossref_primary_10_1109_JPROC_2021_3117472
crossref_primary_10_1038_s41422_024_00956_x
crossref_primary_10_1109_LSP_2023_3243764
crossref_primary_10_1016_j_eswa_2025_127572
crossref_primary_10_1016_j_image_2019_01_008
crossref_primary_10_1109_TCSII_2024_3364090
crossref_primary_10_1109_TSP_2021_3054523
crossref_primary_10_3390_rs14051110
crossref_primary_10_1109_TSIPN_2023_3248948
crossref_primary_10_1109_JIOT_2024_3434732
crossref_primary_10_1109_LSP_2024_3479918
crossref_primary_10_1109_JSTARS_2023_3327860
crossref_primary_10_1109_MSP_2020_3014070
crossref_primary_10_1002_rnc_5606
crossref_primary_10_1109_TSP_2023_3304789
crossref_primary_10_1109_TIP_2022_3223793
crossref_primary_10_11648_j_engmath_20250901_11
crossref_primary_10_1016_j_jhydrol_2023_130079
crossref_primary_10_1016_j_measurement_2021_109584
crossref_primary_10_1016_j_dsp_2025_105222
crossref_primary_10_1016_j_sigpro_2020_107847
crossref_primary_10_1016_j_sigpro_2024_109864
crossref_primary_10_1049_iet_spr_2018_5291
crossref_primary_10_1016_j_sigpro_2023_109129
crossref_primary_10_1109_JSEN_2023_3321042
crossref_primary_10_1109_LSP_2020_3005548
crossref_primary_10_2478_caim_2024_0004
crossref_primary_10_3390_fi13020036
crossref_primary_10_1016_j_sigpro_2023_109120
crossref_primary_10_1007_s00041_022_09904_y
crossref_primary_10_1016_j_sigpro_2019_107326
crossref_primary_10_1109_TSP_2023_3257983
crossref_primary_10_1007_s00034_021_01930_3
crossref_primary_10_1109_TSP_2023_3256536
crossref_primary_10_1109_TSP_2024_3365950
crossref_primary_10_1016_j_neuroimage_2021_117791
crossref_primary_10_1109_TSP_2021_3051267
crossref_primary_10_1109_TPAMI_2021_3091682
crossref_primary_10_1016_j_media_2021_101986
crossref_primary_10_1109_TIE_2021_3075871
crossref_primary_10_1142_S0129183125501359
crossref_primary_10_1109_TWC_2024_3430097
crossref_primary_10_1016_j_patcog_2022_109082
crossref_primary_10_1016_j_sigpro_2024_109538
crossref_primary_10_1109_TSMC_2024_3407948
crossref_primary_10_1016_j_dsp_2021_103210
crossref_primary_10_1109_TPAMI_2023_3310981
crossref_primary_10_1038_s42003_024_06669_6
crossref_primary_10_1109_LGRS_2023_3292831
crossref_primary_10_1109_TSP_2021_3079804
crossref_primary_10_1109_TSIPN_2019_2936361
crossref_primary_10_1016_j_asr_2021_01_058
crossref_primary_10_1109_TCNS_2021_3113263
crossref_primary_10_1109_TFUZZ_2024_3494243
crossref_primary_10_1088_2631_8695_add6f1
crossref_primary_10_1109_TSIPN_2021_3101109
crossref_primary_10_1109_TKDE_2025_3550877
crossref_primary_10_1109_MSP_2020_3020715
crossref_primary_10_1109_TSIPN_2020_3044913
crossref_primary_10_1109_TBDATA_2024_3423677
crossref_primary_10_1109_TSP_2020_2982325
crossref_primary_10_1109_TSIPN_2020_2995515
crossref_primary_10_1016_j_dsp_2021_103347
crossref_primary_10_1109_TNNLS_2024_3360429
crossref_primary_10_1016_j_dsp_2022_103644
crossref_primary_10_1109_JSEN_2021_3124818
crossref_primary_10_1016_j_dsp_2023_103941
crossref_primary_10_1016_j_petrol_2022_110323
crossref_primary_10_1016_j_sigpro_2024_109522
crossref_primary_10_1109_TSG_2022_3177154
crossref_primary_10_1016_j_dsp_2022_103761
crossref_primary_10_1016_j_sigpro_2025_109944
crossref_primary_10_1016_j_acha_2023_101623
crossref_primary_10_1016_j_dsp_2022_103762
crossref_primary_10_1109_TSIPN_2019_2936358
crossref_primary_10_1016_j_neucom_2024_127965
crossref_primary_10_1007_s10915_025_02922_0
crossref_primary_10_1109_TSIPN_2023_3279513
crossref_primary_10_1109_TSP_2021_3054995
crossref_primary_10_1007_s00034_023_02483_3
crossref_primary_10_1016_j_ijmecsci_2024_109075
crossref_primary_10_1186_s13636_023_00272_z
crossref_primary_10_1016_j_jprocont_2022_03_010
crossref_primary_10_1109_TSP_2022_3160003
crossref_primary_10_1109_JIOT_2019_2950213
crossref_primary_10_1109_TSP_2023_3244101
crossref_primary_10_1109_TSP_2022_3184455
crossref_primary_10_1109_ACCESS_2021_3120994
crossref_primary_10_3390_fi15120377
crossref_primary_10_1109_TSIPN_2022_3205555
crossref_primary_10_3390_s20030763
crossref_primary_10_1007_s00041_025_10177_4
crossref_primary_10_1007_s10115_025_02553_9
crossref_primary_10_1016_j_eswa_2024_124709
crossref_primary_10_1109_LSP_2025_3593655
crossref_primary_10_1109_TKDE_2025_3543378
crossref_primary_10_1109_ACCESS_2020_2980369
crossref_primary_10_1109_TNNLS_2020_3025110
crossref_primary_10_1177_15589250241258272
crossref_primary_10_1109_TSIPN_2020_2976704
crossref_primary_10_1109_ACCESS_2022_3164077
crossref_primary_10_1109_TIFS_2024_3483669
crossref_primary_10_1002_env_2756
crossref_primary_10_3390_math9233078
crossref_primary_10_1016_j_dsp_2021_103360
crossref_primary_10_1109_JIOT_2021_3067717
crossref_primary_10_1109_TSP_2024_3435935
crossref_primary_10_1145_3595181
crossref_primary_10_1109_ACCESS_2025_3558752
crossref_primary_10_1631_FITEE_2100597
crossref_primary_10_1016_j_isprsjprs_2024_01_002
crossref_primary_10_1016_j_jpdc_2020_10_011
crossref_primary_10_1016_j_sigpro_2024_109668
crossref_primary_10_1109_LSP_2025_3553064
crossref_primary_10_1109_TSIPN_2023_3277591
crossref_primary_10_1016_j_sigpro_2024_109663
crossref_primary_10_1093_milmed_usae231
crossref_primary_10_1109_TSP_2019_2892033
crossref_primary_10_1016_j_dsp_2021_103009
crossref_primary_10_1142_S0218126624501925
crossref_primary_10_1016_j_neuroimage_2021_118289
crossref_primary_10_1109_TMM_2020_3034530
crossref_primary_10_1109_LSP_2023_3316095
crossref_primary_10_1002_amp2_10121
crossref_primary_10_1016_j_crhy_2019_08_003
crossref_primary_10_1109_TKDE_2020_2981333
crossref_primary_10_1007_s10107_022_01861_0
crossref_primary_10_1016_j_measurement_2025_117314
crossref_primary_10_1109_TPAMI_2023_3311912
crossref_primary_10_1109_MSP_2023_3258060
crossref_primary_10_1109_TSIPN_2025_3572698
crossref_primary_10_1016_j_cviu_2025_104290
crossref_primary_10_1016_j_phycom_2023_102221
crossref_primary_10_1109_TIP_2022_3149225
crossref_primary_10_1109_TKDE_2022_3153060
crossref_primary_10_1016_j_jnca_2022_103434
crossref_primary_10_1016_j_measurement_2020_107585
crossref_primary_10_1016_j_sigpro_2024_109570
crossref_primary_10_1109_TGRS_2024_3435470
crossref_primary_10_1007_s43670_025_00115_2
crossref_primary_10_1016_j_neucom_2023_02_007
crossref_primary_10_1137_21M1414024
crossref_primary_10_1016_j_comcom_2021_02_019
crossref_primary_10_1109_TIM_2021_3117068
crossref_primary_10_1016_j_watres_2024_122354
crossref_primary_10_1109_TSP_2023_3303639
crossref_primary_10_1109_TSG_2023_3239740
crossref_primary_10_1016_j_jnca_2025_104116
crossref_primary_10_1016_j_neunet_2022_06_021
crossref_primary_10_3390_app14104094
crossref_primary_10_1016_j_clinph_2023_05_012
crossref_primary_10_3390_s20226628
crossref_primary_10_1007_s10845_021_01884_y
crossref_primary_10_1016_j_neucom_2022_10_057
crossref_primary_10_1016_j_sigpro_2023_109263
crossref_primary_10_1109_ACCESS_2021_3073696
crossref_primary_10_1109_TIP_2022_3222918
crossref_primary_10_1137_18M1201019
crossref_primary_10_1109_LSP_2025_3600370
crossref_primary_10_1007_s12206_021_0342_5
crossref_primary_10_1038_s43588_024_00734_0
crossref_primary_10_1109_TGRS_2022_3221489
crossref_primary_10_1007_s12530_020_09348_z
crossref_primary_10_1109_TSIPN_2018_2890231
crossref_primary_10_1109_TSP_2022_3205474
crossref_primary_10_1109_TCSII_2021_3109339
crossref_primary_10_1109_TNSE_2022_3169220
crossref_primary_10_1109_TIFS_2023_3237364
crossref_primary_10_1016_j_bspc_2024_106011
crossref_primary_10_1109_TSIPN_2020_2984499
crossref_primary_10_1016_j_sigpro_2022_108707
crossref_primary_10_1109_TSIPN_2023_3265160
crossref_primary_10_1007_s00041_021_09826_1
crossref_primary_10_1109_LCOMM_2024_3522112
crossref_primary_10_1016_j_acha_2023_101579
crossref_primary_10_1162_netn_a_00084
crossref_primary_10_1007_s11760_025_04782_5
crossref_primary_10_1109_TSP_2025_3553915
crossref_primary_10_1109_TPAMI_2023_3324937
crossref_primary_10_1109_TSP_2022_3149134
crossref_primary_10_1016_j_ins_2024_120288
crossref_primary_10_1007_s10489_023_04563_y
crossref_primary_10_1007_s10851_021_01027_1
crossref_primary_10_1016_j_knosys_2024_112762
crossref_primary_10_1016_j_cam_2022_114951
crossref_primary_10_1016_j_ifacol_2022_07_203
crossref_primary_10_1109_TIP_2019_2957935
crossref_primary_10_1109_LCA_2023_3340504
crossref_primary_10_1109_TSP_2022_3160277
crossref_primary_10_1109_JSTQE_2023_3244040
crossref_primary_10_1007_s12190_025_02637_3
crossref_primary_10_1007_s00034_023_02541_w
crossref_primary_10_1016_j_mfglet_2024_09_183
crossref_primary_10_3390_s22114036
crossref_primary_10_1109_TSP_2019_2899822
crossref_primary_10_1109_LSP_2025_3601560
crossref_primary_10_1109_TKDE_2024_3441766
crossref_primary_10_1029_2022EA002580
crossref_primary_10_1109_JSTSP_2024_3350508
crossref_primary_10_1038_s41598_025_07838_1
crossref_primary_10_1109_TSP_2023_3347646
crossref_primary_10_1109_TIP_2025_3539469
crossref_primary_10_1109_TSIPN_2020_3046237
crossref_primary_10_1109_TSIPN_2021_3100302
crossref_primary_10_1109_ACCESS_2021_3050014
crossref_primary_10_1109_LSP_2025_3539908
crossref_primary_10_1016_j_knosys_2021_106891
crossref_primary_10_1109_LSP_2025_3576173
crossref_primary_10_1109_TSP_2024_3395021
crossref_primary_10_1007_s00041_021_09828_z
crossref_primary_10_1109_TSIPN_2023_3302658
crossref_primary_10_1109_LSP_2020_3023587
crossref_primary_10_1007_s11760_024_03712_1
crossref_primary_10_1109_ACCESS_2025_3546514
crossref_primary_10_1371_journal_pone_0277989
crossref_primary_10_1109_TPAMI_2025_3566169
crossref_primary_10_1109_TSP_2022_3159393
crossref_primary_10_1016_j_dsp_2020_102802
crossref_primary_10_1162_netn_a_00183
crossref_primary_10_1016_j_specom_2020_06_005
crossref_primary_10_1109_TPAMI_2020_3042093
crossref_primary_10_1109_TNNLS_2024_3381069
crossref_primary_10_1109_TSIPN_2020_2983139
crossref_primary_10_3390_math9121407
crossref_primary_10_1109_TETCI_2022_3232821
crossref_primary_10_1109_TSIPN_2025_3540702
crossref_primary_10_1016_j_neucom_2025_131206
crossref_primary_10_1109_TSIPN_2025_3540701
crossref_primary_10_1016_j_istruc_2025_109390
crossref_primary_10_1109_TPAMI_2024_3524180
crossref_primary_10_1109_TSIPN_2025_3527888
crossref_primary_10_1016_j_physa_2023_129188
crossref_primary_10_1016_j_apenergy_2020_115872
crossref_primary_10_1016_j_acha_2023_101583
crossref_primary_10_1109_TCSII_2021_3065977
crossref_primary_10_1109_TSIPN_2022_3183498
crossref_primary_10_1109_TSP_2025_3567831
crossref_primary_10_1016_j_acha_2021_10_004
crossref_primary_10_1007_s00041_024_10128_5
crossref_primary_10_1109_LGRS_2022_3185306
crossref_primary_10_1016_j_jfranklin_2022_08_059
crossref_primary_10_1109_ACCESS_2020_2982439
crossref_primary_10_1109_LSP_2021_3059203
crossref_primary_10_1371_journal_pcbi_1008310
crossref_primary_10_1109_ACCESS_2022_3167055
crossref_primary_10_1109_TSIPN_2025_3540714
crossref_primary_10_1109_JIOT_2022_3228727
crossref_primary_10_1109_ACCESS_2022_3202201
crossref_primary_10_1016_j_sigpro_2022_108506
crossref_primary_10_1016_j_neuri_2022_100091
crossref_primary_10_1016_j_dsp_2023_104045
crossref_primary_10_1016_j_dsp_2021_103192
crossref_primary_10_1109_LSP_2024_3514800
crossref_primary_10_1109_TPAMI_2024_3393131
crossref_primary_10_1016_j_neunet_2024_106928
crossref_primary_10_1016_j_sigpro_2021_108101
crossref_primary_10_1016_j_jag_2023_103363
crossref_primary_10_1137_21M1466773
crossref_primary_10_1016_j_dsp_2024_104565
crossref_primary_10_12677_aam_2024_134141
crossref_primary_10_1109_TII_2025_3545044
crossref_primary_10_1109_TSP_2022_3199664
crossref_primary_10_1016_j_jneumeth_2023_110031
crossref_primary_10_1016_j_sigpro_2024_109394
crossref_primary_10_1109_ACCESS_2022_3149755
crossref_primary_10_1109_TCSVT_2021_3069838
crossref_primary_10_1007_s10614_024_10692_4
crossref_primary_10_1109_TPAMI_2020_3013433
crossref_primary_10_1016_j_acha_2022_10_003
crossref_primary_10_1109_TSP_2023_3297848
crossref_primary_10_3390_ai5030074
crossref_primary_10_1016_j_apenergy_2022_120127
crossref_primary_10_1109_TSIPN_2020_2964214
crossref_primary_10_1016_j_patcog_2021_108202
crossref_primary_10_1109_TGRS_2024_3480888
crossref_primary_10_1109_TNNLS_2021_3071958
crossref_primary_10_1109_TSIPN_2023_3268128
crossref_primary_10_1007_s00041_021_09878_3
crossref_primary_10_1109_TAI_2021_3076021
crossref_primary_10_1007_s43926_021_00011_w
crossref_primary_10_1109_ACCESS_2025_3604350
crossref_primary_10_1007_s00041_021_09832_3
crossref_primary_10_1109_TSP_2020_2981920
crossref_primary_10_1109_TSP_2023_3324988
crossref_primary_10_1109_TSP_2020_2976583
crossref_primary_10_3390_fi14050124
crossref_primary_10_1016_j_ipm_2020_102459
crossref_primary_10_1109_TSP_2021_3092336
crossref_primary_10_1109_TSP_2023_3300632
crossref_primary_10_1016_j_measurement_2021_110084
crossref_primary_10_1109_LSP_2025_3531218
crossref_primary_10_1109_TIP_2022_3171411
crossref_primary_10_1016_j_sigpro_2022_108725
crossref_primary_10_1109_TASLP_2020_2973795
crossref_primary_10_1109_MSP_2020_3013555
crossref_primary_10_1007_s41872_023_00233_7
crossref_primary_10_1007_s43670_021_00019_x
crossref_primary_10_1038_s41467_025_63494_z
crossref_primary_10_1016_j_bspc_2024_106954
crossref_primary_10_1080_24725854_2023_2285840
crossref_primary_10_1109_TGRS_2025_3535096
crossref_primary_10_1016_j_ress_2024_110181
crossref_primary_10_1109_TSP_2019_2952055
crossref_primary_10_1016_j_dsp_2024_104465
crossref_primary_10_1109_TCSVT_2021_3089336
crossref_primary_10_1145_3682112_3682114
crossref_primary_10_1016_j_aei_2025_103716
crossref_primary_10_1121_10_0039042
crossref_primary_10_1109_TNNLS_2023_3339786
crossref_primary_10_1038_s42003_023_04474_1
crossref_primary_10_1016_j_dsp_2020_102728
crossref_primary_10_1109_TSIPN_2021_3109820
crossref_primary_10_1109_TSP_2023_3331264
crossref_primary_10_3390_s21010146
crossref_primary_10_1016_j_ijepes_2025_111156
crossref_primary_10_3390_s23031387
crossref_primary_10_1016_j_compchemeng_2022_107748
crossref_primary_10_1016_j_neuroimage_2021_118095
crossref_primary_10_1109_TSP_2022_3229950
crossref_primary_10_1109_TSP_2024_3439211
crossref_primary_10_1145_3461838
crossref_primary_10_1016_j_watres_2024_121666
crossref_primary_10_1109_TSP_2018_2839620
crossref_primary_10_1186_s13059_024_03356_x
crossref_primary_10_1007_s00603_025_04779_z
crossref_primary_10_2139_ssrn_5064655
crossref_primary_10_4018_IJHIoT_305227
crossref_primary_10_3390_math12182942
crossref_primary_10_1016_j_sigpro_2021_108256
crossref_primary_10_1016_j_tej_2020_106885
crossref_primary_10_1109_TSTE_2021_3125200
crossref_primary_10_3390_electronics13010044
crossref_primary_10_1109_TSP_2019_2952053
crossref_primary_10_1016_j_simpat_2024_103029
crossref_primary_10_1109_TSP_2024_3354572
crossref_primary_10_1109_TNSE_2023_3249829
crossref_primary_10_1016_j_eswa_2021_115190
crossref_primary_10_1109_LSP_2020_3005053
crossref_primary_10_1007_s41109_020_00287_x
crossref_primary_10_1109_JSEN_2021_3106656
crossref_primary_10_3390_en16114436
crossref_primary_10_1109_TSIPN_2020_3046217
crossref_primary_10_1109_TSP_2021_3119416
crossref_primary_10_1080_10494820_2020_1855207
crossref_primary_10_1109_TII_2020_2992658
crossref_primary_10_1162_imag_a_00448
crossref_primary_10_1007_s10115_023_01900_y
crossref_primary_10_1007_s13042_023_01982_8
crossref_primary_10_1016_j_sigpro_2022_108662
crossref_primary_10_1016_j_sigpro_2021_108302
crossref_primary_10_1016_j_asoc_2022_109809
crossref_primary_10_1016_j_sigpro_2021_108303
crossref_primary_10_1016_j_dsp_2024_104400
crossref_primary_10_1109_TSP_2020_2978617
crossref_primary_10_1109_TSP_2020_3046972
crossref_primary_10_1109_TCSI_2024_3504253
crossref_primary_10_1109_TSP_2025_3544376
crossref_primary_10_1016_j_neunet_2022_10_035
crossref_primary_10_1155_2021_4645544
crossref_primary_10_1109_TSP_2019_2940129
crossref_primary_10_1109_TSP_2019_2908129
crossref_primary_10_1016_j_neunet_2023_05_016
crossref_primary_10_1109_JSTSP_2018_2873147
crossref_primary_10_1109_TSG_2021_3117977
crossref_primary_10_3390_technologies13070295
crossref_primary_10_1016_j_jat_2021_105620
crossref_primary_10_1109_TSP_2023_3305079
crossref_primary_10_1109_TSP_2024_3439554
crossref_primary_10_1109_TIFS_2025_3583876
crossref_primary_10_1109_TCNS_2024_3371548
crossref_primary_10_1109_TSIPN_2019_2922852
crossref_primary_10_1109_TSIPN_2021_3139336
crossref_primary_10_3390_e24081116
crossref_primary_10_1016_j_sigpro_2022_108530
crossref_primary_10_1109_TSIPN_2020_2975393
crossref_primary_10_1109_TSIPN_2023_3240893
crossref_primary_10_1109_JSYST_2021_3109082
crossref_primary_10_1109_TIP_2021_3073318
crossref_primary_10_1109_TPAMI_2022_3143089
crossref_primary_10_1016_j_dsp_2024_104751
crossref_primary_10_1109_TSIPN_2021_3059995
crossref_primary_10_1016_j_bspc_2021_102831
crossref_primary_10_1109_TSIPN_2022_3156886
crossref_primary_10_1109_TSIPN_2023_3240899
crossref_primary_10_1109_OJSP_2025_3534692
crossref_primary_10_1109_TMI_2022_3168888
crossref_primary_10_1109_TMM_2022_3218172
crossref_primary_10_1109_TNNLS_2024_3356512
crossref_primary_10_1109_TSP_2019_2961296
crossref_primary_10_1109_TIFS_2024_3488527
crossref_primary_10_1109_TITS_2022_3224326
crossref_primary_10_1109_JSTSP_2018_2844813
crossref_primary_10_1016_j_sigpro_2023_108927
crossref_primary_10_1109_JPROC_2021_3055400
crossref_primary_10_1109_TSP_2022_3166401
crossref_primary_10_1109_TSP_2023_3343560
crossref_primary_10_1109_TSP_2024_3482350
crossref_primary_10_1016_j_conb_2022_102532
crossref_primary_10_1073_pnas_1906670117
crossref_primary_10_1109_TGRS_2023_3279694
crossref_primary_10_1109_TSP_2019_2932882
crossref_primary_10_1007_s00034_021_01729_2
crossref_primary_10_1109_JIOT_2022_3150147
crossref_primary_10_1109_MSP_2020_3016908
crossref_primary_10_1016_j_patrec_2021_12_008
crossref_primary_10_1007_s41468_024_00191_8
crossref_primary_10_1109_TSP_2020_3002607
crossref_primary_10_1109_TSP_2023_3260562
crossref_primary_10_1109_MSP_2018_2890143
crossref_primary_10_1016_j_dsp_2024_104414
crossref_primary_10_1109_JSYST_2019_2927469
crossref_primary_10_1109_TSIPN_2019_2957717
crossref_primary_10_1002_gamm_70002
crossref_primary_10_1016_j_jestch_2021_09_005
crossref_primary_10_1016_j_sigpro_2021_108211
crossref_primary_10_1109_TSP_2020_2988784
crossref_primary_10_3390_math10244834
crossref_primary_10_1016_j_sigpro_2021_108216
crossref_primary_10_1016_j_dsp_2023_104356
crossref_primary_10_1109_TSIPN_2020_2998223
crossref_primary_10_1016_j_acha_2022_03_005
crossref_primary_10_1109_TII_2023_3331094
crossref_primary_10_1109_TBC_2023_3290493
crossref_primary_10_1007_s00500_023_09288_1
crossref_primary_10_1109_TSIPN_2022_3209097
crossref_primary_10_1109_TNNLS_2021_3067441
crossref_primary_10_1109_TKDE_2023_3282898
crossref_primary_10_1016_j_gmod_2022_101140
crossref_primary_10_1109_MSP_2020_3018087
crossref_primary_10_1109_TSP_2024_3438676
crossref_primary_10_1109_ACCESS_2019_2946899
crossref_primary_10_1109_TSG_2023_3261970
crossref_primary_10_1186_s13634_024_01133_3
Cites_doi 10.1162/089976603321780317
10.1109/TSP.2015.2469645
10.1109/ICASSP.2013.6638704
10.1145/1553374.1553400
10.1007/978-94-011-5014-9
10.1109/18.119691
10.1109/ICMEW.2014.6890711
10.1145/218380.218473
10.1109/JSTSP.2017.2726979
10.1109/TSP.2014.2328983
10.1109/MSP.2011.2179329
10.1109/ICASSP.2012.6288639
10.1093/comnet/cnv006
10.1109/IPSN.2008.24
10.1126/science.1171022
10.1109/TSP.2013.2238935
10.1109/TSP.2017.2752689
10.1109/MSP.2014.2330357
10.1109/ICASSP.2013.6638232
10.1109/TSP.2016.2573748
10.1109/TSP.2016.2620111
10.1109/TSP.2018.2813337
10.1109/18.243450
10.1109/TSP.2008.925261
10.1109/TSIPN.2017.2742940
10.1007/978-1-4613-8190-7_2
10.1186/s12859-015-0754-2
10.1145/324133.324140
10.1109/MCS.2015.2495000
10.1145/311535.311577
10.1109/JSEN.2017.2733767
10.1093/biostatistics/kxm045
10.1109/TSP.2017.2739099
10.1109/ICASSP.2015.7178573
10.1145/984622.984624
10.1002/aris.2007.1440410119
10.1109/LSP.2017.2704359
10.1109/TSP.2018.2870386
10.1126/science.290.5500.2323
10.1109/TIT.2013.2252233
10.23919/EUSIPCO.2017.8081498
10.1109/TSP.2014.2365761
10.1109/TSP.2015.2411217
10.1371/journal.pone.0128136
10.1109/TSP.2007.907919
10.1093/oso/9780198522195.001.0001
10.1109/TSP.2013.2273197
10.1109/TSP.2016.2546233
10.1109/TSP.2014.2313528
10.1145/1553374.1553432
10.1109/TSP.2017.2731299
10.1109/MSP.2010.938115
10.1186/1687-1499-2012-278
10.1109/TSP.2017.2733489
10.1109/TSP.2015.2441042
10.1109/TSP.2016.2634543
10.1016/j.laa.2012.01.020
10.1109/EUSIPCO.2015.7362637
10.1109/PCS.2016.7906368
10.1093/acprof:oso/9780199206650.001.0001
10.1038/s41562-017-0260-9
10.1109/TSP.2013.2259825
10.1109/TSP.2016.2602809
10.1109/JPROC.2002.800717
10.1007/s11856-012-0096-y
10.1111/j.2517-6161.1974.tb00999.x
10.2307/j.ctvcm4gh1
10.14495/jsiaml.6.21
10.1109/JSTSP.2016.2600859
10.1090/cbms/092
10.1145/2623330.2623760
10.1109/ICASSP.2014.6853764
10.1109/ICASSP.2017.7952885
10.1111/cgf.12693
10.1137/17M1118580
10.1561/2200000001
10.1109/INFCOM.2005.1498374
10.1109/GlobalSIP.2017.8309026
10.1109/ICCVW.2015.112
10.1109/EUSIPCO.2015.7362633
10.1109/TSP.2015.2460216
10.1073/pnas.0500334102
10.1109/TSP.2016.2628343
10.1016/j.acha.2006.04.004
10.1145/2623330.2623732
10.1109/TSP.2016.2591513
10.1007/s11222-007-9033-z
10.1016/S0024-3795(01)00313-5
10.1073/pnas.1031596100
10.1038/srep00371
10.1109/MSP.2012.2235192
10.1016/j.neuroimage.2015.10.026
10.1109/ICASSP.2015.7178380
10.1109/TVCG.2017.2746080
10.1016/j.neuroimage.2017.04.015
10.1137/120895068
10.1109/TSP.2017.2771730
10.1109/TSP.2014.2345355
10.1109/LSP.2014.2368128
10.1109/ICASSP.2012.6288515
10.1137/S009753970139272X
10.1109/TSP.2017.2690388
10.1016/j.neuroimage.2015.06.010
10.1109/JSTSP.2016.2601695
10.1109/VAST.2015.7347624
10.1109/TNSE.2015.2406252
10.1109/TSP.2014.2332441
10.1016/j.acha.2016.06.007
10.1109/TIP.2014.2378055
10.1109/JSTSP.2017.2731599
10.1109/GlobalSIP.2016.7905858
10.1109/TSIPN.2016.2605763
10.1109/JPROC.2018.2799702
10.1109/JSTSP.2015.2403799
10.1109/ICASSP.2012.6288775
10.1073/pnas.0510525103
10.1109/34.244673
10.1109/ICASSP.2014.6853770
10.1073/pnas.0500896102
10.1109/GlobalSIP.2017.8309033
10.1109/ICASSP.2014.6854325
10.1016/j.acha.2010.04.005
10.1109/GLOCOM.2017.8254798
10.1109/TSP.2014.2321121
10.1109/JSTSP.2017.2726975
10.1137/S0036144598336745
10.1109/CDC.2006.377080
10.1109/ITSC.2014.6957939
10.1109/GLOCOM.2012.6503723
10.1109/TCBB.2017.2688355
10.1109/TSP.2016.2617833
10.1016/S0010-4485(03)00098-8
10.1109/MSP.2014.2329213
10.1038/ncomms10340
10.1109/INFCOM.2003.1209207
10.1145/1084779.1084780
10.1109/TIP.2016.2529506
10.1109/TSIPN.2015.2480223
10.1109/TSP.2017.2718969
10.1109/TSG.2016.2598872
10.1109/ICASSP.2016.7472874
10.1109/ICIP.2014.7025414
10.1109/JSTSP.2014.2314858
10.1109/ICASSP.2015.7179016
10.1126/science.290.5500.2319
10.1109/LSP.2015.2488279
10.1109/TSP.2012.2214216
10.1073/pnas.1018985108
10.1109/ICASSP.2017.7952276
10.1109/ICASSP.2017.8005300
10.1109/TSP.2012.2188718
10.1201/9780203492024
10.1038/nrn3214
10.1109/TSIPN.2017.2731164
10.1145/1127777.1127824
10.1016/j.sigpro.2016.07.003
10.1109/ICASSP.2016.7472115
10.1007/s00026-005-0237-z
10.1145/1127777.1127816
10.1090/S0002-9947-08-04511-X
10.1109/ICIP.2010.5651072
10.1109/GlobalSIP.2014.7032257
10.1090/conm/001
10.1109/TSP.2008.925259
10.1017/CBO9780511761942
10.1109/SSP.2005.1628777
10.1109/TSIPN.2017.2731051
10.1109/ICIP.2015.7351555
10.1109/34.868688
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JPROC.2018.2820126
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2256
EndPage 828
ExternalDocumentID 10_1109_JPROC_2018_2820126
8347162
Genre orig-research
GroupedDBID -DZ
-~X
.DC
0R~
123
1OL
29P
3EH
4.4
6IK
85S
97E
9M8
AAJGR
AAWTH
ABAZT
ABFSI
ABJNI
ABQJQ
ABVLG
ACBEA
ACGFS
AENEX
AETEA
AETIX
AFOGA
AGNAY
AGQYO
AGSQL
AHBIQ
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
FA8
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MVM
O9-
OCL
RIA
RIE
RIU
RNS
TAE
TN5
TWZ
UDY
UHB
UKR
UQL
VOH
WHG
XJT
XOL
YNT
ZCA
ZXP
ZY4
~02
AAYXX
CITATION
7SP
8FD
L7M
RIG
ID FETCH-LOGICAL-c405t-c3183a16e0f44cb0a0b0e70825c782e73cbda53d7e08efc5f401d65032fc3a43
IEDL.DBID RIE
ISICitedReferencesCount 1213
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433349100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9219
IngestDate Fri Jul 25 18:57:15 EDT 2025
Sat Nov 29 03:15:13 EST 2025
Tue Nov 18 22:07:53 EST 2025
Wed Aug 27 02:22:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-c3183a16e0f44cb0a0b0e70825c782e73cbda53d7e08efc5f401d65032fc3a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5403-0940
0000-0002-4010-714X
0000-0002-9822-8294
OpenAccessLink http://infoscience.epfl.ch/record/256648
PQID 2031103191
PQPubID 85453
PageCount 21
ParticipantIDs ieee_primary_8347162
proquest_journals_2031103191
crossref_primary_10_1109_JPROC_2018_2820126
crossref_citationtrail_10_1109_JPROC_2018_2820126
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Proceedings of the IEEE
PublicationTitleAbbrev JPROC
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref205
ref206
ref53
ref52
ref204
ref55
ref201
ref54
gama (ref202) 2016
zhu (ref5) 2003
ref51
ref50
shuman (ref92) 2015
ref46
ref45
ref48
ref216
gantmacher (ref83) 1959; 21
ref42
ref41
ref44
ref212
ref43
ref49
ref7
ref3
ref100
ref40
ref35
ref34
ref36
belkin (ref58) 2002
ref33
ref39
ref38
ref24
ref23
zhou (ref95) 2005
ref25
ref20
tremblay (ref14) 2016
shuman (ref166) 2017
ref21
ref27
lauritzen (ref26) 1996; 17
lake (ref144) 2010; 32
lancaster (ref84) 1985
chen (ref123) 2015
ref128
ref129
ref97
ref126
tanaka (ref114) 2017
ref96
ref127
ref99
ref124
ref98
siebert (ref79) 1986
bruna (ref207) 2014
ref93
ref133
ref134
ref131
ref94
ref132
puy (ref125) 2016
ref130
ref90
narang (ref101) 2009
ref89
ref139
ref86
ref137
ref85
ref138
ref135
ref87
ref136
defferrard (ref217) 0
perraudin (ref215) 2014
ref82
ref145
ref143
ref140
ref141
ref108
ref109
ref106
ref107
ref75
ref74
ref105
ref102
ref76
ref103
saito (ref88) 2011
ref71
ref111
ref70
ref112
ref73
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref60
ref122
chellappa (ref37) 1993
ref62
ref120
ref61
ref121
boscaini (ref208) 2016
ref168
ref169
defferrard (ref209) 2016
kalofolias (ref142) 2016
ref170
lewis (ref8) 2011
ref177
ref178
ref175
ref176
ref173
ref174
ref172
bang-jensen (ref31) 2008
duvenaud (ref211) 2015
ref179
shi (ref72) 2000; 22
golub (ref91) 2012; 3
valko (ref198) 2014
ref180
ref181
püschel (ref47) 2006
ref188
ref189
ref186
ref187
ref184
ref185
ref182
ref183
li (ref214) 2017
ref148
ref149
ref146
ref147
sporns (ref171) 2011
edwards (ref32) 2012
oppenheim (ref77) 1975
ref155
ref156
ref153
ref154
ref151
ref152
ref150
oppenheim (ref80) 1989
ref159
ref157
ref158
ref167
ref164
ref165
ref163
boutsidis (ref200) 2015
ref160
ref161
ref13
ref12
ref15
ref11
mitra (ref81) 1998
ref10
ref17
ref16
ref19
ref18
paratte (ref203) 2016
jordan (ref28) 2007; 1
koller (ref29) 2009
khasanova (ref210) 2017
ref2
ref1
(ref6) 2005
anirudh (ref213) 2017
ref191
ref192
oppenheim (ref78) 1983
ref190
kotzagiannidis (ref104) 2017
ref199
chen (ref4) 2017
ref197
ref195
barabási (ref9) 2016
ref196
ref193
ref194
whittaker (ref30) 2009
chen (ref162) 2016
draief (ref22) 2010
References_xml – ident: ref56
  doi: 10.1162/089976603321780317
– ident: ref121
  doi: 10.1109/TSP.2015.2469645
– ident: ref126
  doi: 10.1109/ICASSP.2013.6638704
– ident: ref143
  doi: 10.1145/1553374.1553400
– ident: ref27
  doi: 10.1007/978-94-011-5014-9
– ident: ref38
  doi: 10.1109/18.119691
– ident: ref187
  doi: 10.1109/ICMEW.2014.6890711
– year: 2008
  ident: ref31
  publication-title: Digraphs Theory Algorithms and Applications
– ident: ref76
  doi: 10.1145/218380.218473
– ident: ref98
  doi: 10.1109/JSTSP.2017.2726979
– ident: ref110
  doi: 10.1109/TSP.2014.2328983
– ident: ref73
  doi: 10.1109/MSP.2011.2179329
– ident: ref115
  doi: 10.1109/ICASSP.2012.6288639
– ident: ref21
  doi: 10.1093/comnet/cnv006
– ident: ref154
  doi: 10.1109/IPSN.2008.24
– ident: ref18
  doi: 10.1126/science.1171022
– ident: ref2
  doi: 10.1109/TSP.2013.2238935
– ident: ref53
  doi: 10.1109/TSP.2017.2752689
– year: 1993
  ident: ref37
  publication-title: Markov Random Fields Theory and Application
– ident: ref159
  doi: 10.1109/MSP.2014.2330357
– ident: ref163
  doi: 10.1109/ICASSP.2013.6638232
– ident: ref134
  doi: 10.1109/TSP.2016.2573748
– ident: ref106
  doi: 10.1109/TSP.2016.2620111
– ident: ref151
  doi: 10.1109/TSP.2018.2813337
– ident: ref39
  doi: 10.1109/18.243450
– year: 1998
  ident: ref81
  publication-title: Digital Signal Processing A Computer-Based Approach
– ident: ref48
  doi: 10.1109/TSP.2008.925261
– ident: ref147
  doi: 10.1109/TSIPN.2017.2742940
– ident: ref33
  doi: 10.1007/978-1-4613-8190-7_2
– ident: ref182
  doi: 10.1186/s12859-015-0754-2
– ident: ref94
  doi: 10.1145/324133.324140
– ident: ref16
  doi: 10.1109/MCS.2015.2495000
– ident: ref74
  doi: 10.1145/311535.311577
– ident: ref165
  doi: 10.1109/JSEN.2017.2733767
– ident: ref145
  doi: 10.1093/biostatistics/kxm045
– ident: ref128
  doi: 10.1109/TSP.2017.2739099
– ident: ref124
  doi: 10.1109/ICASSP.2015.7178573
– ident: ref62
  doi: 10.1145/984622.984624
– ident: ref7
  doi: 10.1002/aris.2007.1440410119
– ident: ref138
  doi: 10.1109/LSP.2017.2704359
– start-page: 1205
  year: 2014
  ident: ref198
  article-title: Spectral bandits for smooth graph functions
  publication-title: Proc 31st Int Conf Mach Learn (ICML)
– year: 2017
  ident: ref214
  article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting
  publication-title: Proc Int Learning Representations (ICLR '18)
– ident: ref97
  doi: 10.1109/TSP.2018.2870386
– ident: ref55
  doi: 10.1126/science.290.5500.2323
– ident: ref133
  doi: 10.1109/TIT.2013.2252233
– ident: ref197
  doi: 10.23919/EUSIPCO.2017.8081498
– ident: ref111
  doi: 10.1109/TSP.2014.2365761
– ident: ref127
  doi: 10.1109/TSP.2015.2411217
– ident: ref179
  doi: 10.1371/journal.pone.0128136
– year: 2011
  ident: ref88
  publication-title: On the Phase Transition Phenomenon of Graph Laplacian Eigenfunctions on Trees
– ident: ref50
  doi: 10.1109/TSP.2007.907919
– year: 2017
  ident: ref210
  article-title: Graph-based isometry invariant representation learning
  publication-title: Proc ICML
– volume: 17
  year: 1996
  ident: ref26
  publication-title: Graphical Models
  doi: 10.1093/oso/9780198522195.001.0001
– ident: ref102
  doi: 10.1109/TSP.2013.2273197
– ident: ref122
  doi: 10.1109/TSP.2016.2546233
– ident: ref195
  doi: 10.1109/TSP.2014.2313528
– year: 2016
  ident: ref202
  article-title: Rethinking sketching as sampling: A graph signal processing approach
– ident: ref140
  doi: 10.1145/1553374.1553432
– ident: ref136
  doi: 10.1109/TSP.2017.2731299
– ident: ref42
  doi: 10.1109/MSP.2010.938115
– ident: ref24
  doi: 10.1186/1687-1499-2012-278
– ident: ref103
  doi: 10.1109/TSP.2017.2733489
– ident: ref82
  doi: 10.1109/TSP.2015.2441042
– ident: ref146
  doi: 10.1109/TSP.2016.2634543
– ident: ref90
  doi: 10.1016/j.laa.2012.01.020
– ident: ref129
  doi: 10.1109/EUSIPCO.2015.7362637
– ident: ref190
  doi: 10.1109/PCS.2016.7906368
– start-page: 441
  year: 2009
  ident: ref101
  article-title: Lifting based wavelet transforms on graphs
  publication-title: Proc APSIPA ASC
– ident: ref1
  doi: 10.1093/acprof:oso/9780199206650.001.0001
– ident: ref169
  doi: 10.1038/s41562-017-0260-9
– ident: ref175
  doi: 10.1109/TSP.2013.2259825
– ident: ref43
  doi: 10.1109/TSP.2016.2602809
– ident: ref40
  doi: 10.1109/JPROC.2002.800717
– year: 2011
  ident: ref171
  publication-title: Networks of the Brain
– year: 2014
  ident: ref215
  article-title: GSPBOX: A toolbox for signal processing on graphs
  publication-title: ArXiv e-prints
– year: 2006
  ident: ref47
  publication-title: Algebraic signal processing theory
– year: 2017
  ident: ref4
  publication-title: Multiresolution representations for piecewise-smooth signals on graphs
– ident: ref87
  doi: 10.1007/s11856-012-0096-y
– ident: ref36
  doi: 10.1111/j.2517-6161.1974.tb00999.x
– ident: ref10
  doi: 10.2307/j.ctvcm4gh1
– ident: ref139
  doi: 10.14495/jsiaml.6.21
– ident: ref168
  doi: 10.1109/JSTSP.2016.2600859
– ident: ref12
  doi: 10.1090/cbms/092
– start-page: 3189
  year: 2016
  ident: ref208
  article-title: Learning shape correspondence with anisotropic convolutional neural networks
  publication-title: Proc NIPS
– ident: ref141
  doi: 10.1145/2623330.2623760
– ident: ref155
  doi: 10.1109/ICASSP.2014.6853764
– ident: ref107
  doi: 10.1109/ICASSP.2017.7952885
– ident: ref206
  doi: 10.1111/cgf.12693
– ident: ref186
  doi: 10.1137/17M1118580
– volume: 1
  start-page: 1
  year: 2007
  ident: ref28
  article-title: Graphical models, exponential families, and variational inference
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000001
– ident: ref17
  doi: 10.1109/INFCOM.2005.1498374
– ident: ref99
  doi: 10.1109/GlobalSIP.2017.8309026
– ident: ref205
  doi: 10.1109/ICCVW.2015.112
– ident: ref135
  doi: 10.1109/EUSIPCO.2015.7362633
– ident: ref108
  doi: 10.1109/TSP.2015.2460216
– ident: ref59
  doi: 10.1073/pnas.0500334102
– ident: ref150
  doi: 10.1109/TSP.2016.2628343
– ident: ref61
  doi: 10.1016/j.acha.2006.04.004
– ident: ref212
  doi: 10.1145/2623330.2623732
– ident: ref137
  doi: 10.1109/TSP.2016.2591513
– ident: ref13
  doi: 10.1007/s11222-007-9033-z
– year: 1975
  ident: ref77
  publication-title: Digital Signal Processing
– ident: ref86
  doi: 10.1016/S0024-3795(01)00313-5
– ident: ref57
  doi: 10.1073/pnas.1031596100
– ident: ref15
  doi: 10.1038/srep00371
– ident: ref3
  doi: 10.1109/MSP.2012.2235192
– year: 1989
  ident: ref80
  publication-title: Discrete-Time Signal Processing
– ident: ref180
  doi: 10.1016/j.neuroimage.2015.10.026
– ident: ref188
  doi: 10.1109/ICASSP.2015.7178380
– ident: ref204
  doi: 10.1109/TVCG.2017.2746080
– volume: 21
  year: 1959
  ident: ref83
  publication-title: Matrix Theory
– ident: ref177
  doi: 10.1016/j.neuroimage.2017.04.015
– ident: ref185
  doi: 10.1137/120895068
– ident: ref194
  doi: 10.1109/TSP.2017.2771730
– year: 2015
  ident: ref92
  article-title: Vertex-frequency analysis on graphs
  publication-title: Appl Comput Harmon Anal
– start-page: 920
  year: 2016
  ident: ref142
  article-title: How to learn a graph from smooth signals
  publication-title: Proc Artif Intell Stat
– ident: ref199
  doi: 10.1109/TSP.2014.2345355
– ident: ref112
  doi: 10.1109/LSP.2014.2368128
– ident: ref156
  doi: 10.1109/ICASSP.2012.6288515
– ident: ref46
  doi: 10.1137/S009753970139272X
– ident: ref131
  doi: 10.1109/TSP.2017.2690388
– year: 2010
  ident: ref22
  publication-title: Epidemics and Rumours in Complex Networks
– year: 2016
  ident: ref209
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Proc NIPS
– ident: ref174
  doi: 10.1016/j.neuroimage.2015.06.010
– year: 1985
  ident: ref84
  publication-title: The Theory of Matrices with Applications
– year: 2015
  ident: ref123
  publication-title: Signal representations on graphs Tools and applications
– ident: ref181
  doi: 10.1109/JSTSP.2016.2601695
– ident: ref161
  doi: 10.1109/VAST.2015.7347624
– ident: ref23
  doi: 10.1109/TNSE.2015.2406252
– ident: ref116
  doi: 10.1109/TSP.2014.2332441
– ident: ref96
  doi: 10.1016/j.acha.2016.06.007
– year: 2016
  ident: ref9
  publication-title: Network Science
– ident: ref189
  doi: 10.1109/TIP.2014.2378055
– start-page: 912
  year: 2003
  ident: ref5
  article-title: Semi-supervised learning using Gaussian fields and harmonic functions
  publication-title: Proc 20th Int Conf Mach Learn (ICML)
– ident: ref93
  doi: 10.1109/JSTSP.2017.2731599
– volume: 3
  year: 2012
  ident: ref91
  publication-title: Matrix Computations
– ident: ref130
  doi: 10.1109/GlobalSIP.2016.7905858
– ident: ref117
  doi: 10.1109/TSIPN.2016.2605763
– ident: ref152
  doi: 10.1109/JPROC.2018.2799702
– ident: ref167
  doi: 10.1109/JSTSP.2015.2403799
– ident: ref70
  doi: 10.1109/ICASSP.2012.6288775
– year: 2016
  ident: ref14
  article-title: Compressive spectral clustering
  publication-title: Proc 33rd Int Conf Mach Learn (ICML)
– volume: 32
  year: 2010
  ident: ref144
  article-title: Discovering structure by learning sparse graphs
  publication-title: Cognitive Sci Soc
– year: 2009
  ident: ref29
  publication-title: Probabilistic Graphical Models Principles and Techniques
– ident: ref19
  doi: 10.1073/pnas.0510525103
– ident: ref71
  doi: 10.1109/34.244673
– ident: ref132
  doi: 10.1109/ICASSP.2014.6853770
– ident: ref60
  doi: 10.1073/pnas.0500896102
– year: 2016
  ident: ref162
  publication-title: Localization decomposition and dictionary learning of piecewise-constant signals on graphs
– ident: ref178
  doi: 10.1109/GlobalSIP.2017.8309033
– ident: ref119
  doi: 10.1109/ICASSP.2014.6854325
– ident: ref66
  doi: 10.1016/j.acha.2010.04.005
– ident: ref157
  doi: 10.1109/GLOCOM.2017.8254798
– ident: ref51
  doi: 10.1109/TSP.2014.2321121
– ident: ref44
  doi: 10.1109/JSTSP.2017.2726975
– ident: ref184
  doi: 10.1137/S0036144598336745
– ident: ref69
  doi: 10.1109/CDC.2006.377080
– start-page: 40
  year: 2015
  ident: ref200
  article-title: Spectral clustering via the power method-Provably
  publication-title: Proc 32nd Int Conf Mach Learn (ICML)
– year: 1986
  ident: ref79
  publication-title: Circuits Signals and Systems
– ident: ref164
  doi: 10.1109/ITSC.2014.6957939
– ident: ref25
  doi: 10.1109/GLOCOM.2012.6503723
– ident: ref183
  doi: 10.1109/TCBB.2017.2688355
– ident: ref105
  doi: 10.1109/TSP.2016.2617833
– ident: ref75
  doi: 10.1016/S0010-4485(03)00098-8
– year: 2016
  ident: ref203
  publication-title: Fast eigenspace approximation using random signals
– ident: ref45
  doi: 10.1109/MSP.2014.2329213
– year: 0
  ident: ref217
  publication-title: PYGSP Graph Signal Processing in Python
– ident: ref176
  doi: 10.1038/ncomms10340
– ident: ref100
  doi: 10.1109/INFCOM.2003.1209207
– year: 2017
  ident: ref166
  publication-title: Chebyshev Polynomial Approximation for Distributed Signal Processing
– year: 2017
  ident: ref213
  publication-title: Bootstrapping graph convolutional neural networks for autism spectrum disorder classification
– year: 2017
  ident: ref104
  article-title: Splines and wavelets on circulant graphs
  publication-title: Appl Comput Harmon Anal
– ident: ref63
  doi: 10.1145/1084779.1084780
– year: 2009
  ident: ref30
  publication-title: Graphical Models in Applied Multivariate Statistics
– ident: ref192
  doi: 10.1109/TIP.2016.2529506
– start-page: 1633
  year: 2005
  ident: ref95
  article-title: Semi-supervised learning on directed graphs
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref85
  doi: 10.1109/TSIPN.2015.2480223
– ident: ref109
  doi: 10.1109/TSP.2017.2718969
– ident: ref160
  doi: 10.1109/TSG.2016.2598872
– ident: ref158
  doi: 10.1109/ICASSP.2016.7472874
– ident: ref193
  doi: 10.1109/ICIP.2014.7025414
– ident: ref20
  doi: 10.1109/JSTSP.2014.2314858
– ident: ref201
  doi: 10.1109/ICASSP.2015.7179016
– ident: ref54
  doi: 10.1126/science.290.5500.2319
– ident: ref52
  doi: 10.1109/LSP.2015.2488279
– ident: ref41
  doi: 10.1109/TSP.2012.2214216
– year: 1983
  ident: ref78
  publication-title: Signals and Systems
– ident: ref172
  doi: 10.1073/pnas.1018985108
– start-page: 953
  year: 2002
  ident: ref58
  article-title: Using manifold structure for partially labelled classification
  publication-title: Proc NIPS
– year: 2016
  ident: ref125
  article-title: Random sampling of bandlimited signals on graphs
  publication-title: Appl Comput Harmon Anal
– ident: ref173
  doi: 10.1109/ICASSP.2017.7952276
– ident: ref216
  doi: 10.1109/ICASSP.2017.8005300
– ident: ref68
  doi: 10.1109/TSP.2012.2188718
– ident: ref35
  doi: 10.1201/9780203492024
– year: 2011
  ident: ref8
  publication-title: Network Science Theory and Applications
– ident: ref170
  doi: 10.1038/nrn3214
– ident: ref149
  doi: 10.1109/TSIPN.2017.2731164
– start-page: 2224
  year: 2015
  ident: ref211
  article-title: Convolutional networks on graphs for learning molecular fingerprints
  publication-title: Proc NIPS
– ident: ref153
  doi: 10.1145/1127777.1127824
– ident: ref113
  doi: 10.1016/j.sigpro.2016.07.003
– ident: ref196
  doi: 10.1109/ICASSP.2016.7472115
– ident: ref89
  doi: 10.1007/s00026-005-0237-z
– ident: ref65
  doi: 10.1145/1127777.1127816
– year: 2005
  ident: ref6
  article-title: Network science
– ident: ref118
  doi: 10.1090/S0002-9947-08-04511-X
– year: 2017
  ident: ref114
  publication-title: Spectral domain sampling of graph signals
– ident: ref67
  doi: 10.1109/ICIP.2010.5651072
– ident: ref120
  doi: 10.1109/GlobalSIP.2014.7032257
– ident: ref34
  doi: 10.1090/conm/001
– year: 2012
  ident: ref32
  publication-title: Introduction to Graphical Modelling
– year: 2014
  ident: ref207
  article-title: Spectral networks and locally connected networks on graphs
  publication-title: Proc ICLR
– ident: ref49
  doi: 10.1109/TSP.2008.925259
– ident: ref11
  doi: 10.1017/CBO9780511761942
– ident: ref64
  doi: 10.1109/SSP.2005.1628777
– ident: ref148
  doi: 10.1109/TSIPN.2017.2731051
– ident: ref191
  doi: 10.1109/ICIP.2015.7351555
– volume: 22
  start-page: 888
  year: 2000
  ident: ref72
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.868688
SSID ssj0003563
Score 2.7179406
Snippet Research in graph signal processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper, we first provide an...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 808
SubjectTerms Data models
Data processing
Digital signal processing
Digital signal processors
Filtration
Graph signal processing (GSP)
Graph theory
Graphical models
Image processing
Laplace equations
Machine learning
network science and graphs
sampling
Sampling methods
Signal processing
Social network services
Title Graph Signal Processing: Overview, Challenges, and Applications
URI https://ieeexplore.ieee.org/document/8347162
https://www.proquest.com/docview/2031103191
Volume 106
WOSCitedRecordID wos000433349100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2256
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003563
  issn: 0018-9219
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEPvqpYrZKDN5t2k9081ouUYhUPbdEeegubzUYKkkpf_n13kk0oKIK3QHZCmM3szped-T6AW0FijZI1yIl9N7AZd5UtvNi3Q1-GVDgidLnIxSaC0SiczfikBp2qF0YplRefqS5e5mf5yUJu8FdZL6QMCY_qUA-CoOjVqlZd6hnVNEcHsA7DskGG8N7L5HU8wCqusOvihodECjubUK6q8mMpzveX4dH_3uwYDk0eafWLiT-BmspO4WCHXbAJD09IRm29zd9xpOkI0HfurfEWVwj11bEGpZbKqmOJLLH6O-fZZzAdPk4Hz7bRS7ClTrvWtsT4FI6vSMqYjImeB6ICxIBS5wEqoDJOhEeTQJFQpdJLNbZKdIZG3VRSweg5NLJFpi7A4k7qUc68VDDFJBE6DZNCaOwmUuSPVy1wSv9F0nCJo6TFR5RjCsKj3OcR-jwyPm_BXWXzWTBp_Dm6iV6uRhoHt6BdTlNkgm2l7aiDahXcufzd6gr28dlFnWIbGuvlRl3Dntyu56vlTf4dfQPh6cMJ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSDrypWq-bgzaZNspuXFynFWrW2RXvoLWw2GylIKn35993ZPCgogrdAdkiYzezOl535PoBrZoQSJUuQEzqWq1PfEjqzQ0f3HO4RZjLP8pkSm3D7fW889oclqBe9MEIIVXwmGnipzvKjKV_ir7KmRygSHm3Apk2pZabdWsW6S-xMN82UISwDMW-RMfzm0_B10MY6Lq9h4ZaHVApr25DSVfmxGKsdprP_v3c7gL0sk9Ra6dQfQkkkR7C7xi9YgbsHpKPW3ibvODLrCZB3brXBCtcI8VXX2rmayryusSTSWmsn2scw6tyP2l09U0zQuUy8FjrHCGWmI4yYUh4aciYM4SIK5DITEC7hYcRsErnC8ETM7Viiq0jmaMSKOWGUnEA5mSbiFDTfjG3iUztmVFBuMJmIccYkemMxMsiLKpi5_wKesYmjqMVHoFCF4QfK5wH6PMh8XoWbwuYz5dL4c3QFvVyMzBxchVo-TUEWbnNpR0zUq_DNs9-trmC7O3rpBb3H_vM57OBz0qrFGpQXs6W4gC2-Wkzms0v1TX0DNFTGUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Signal+Processing%3A+Overview%2C+Challenges%2C+and+Applications&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Ortega%2C+Antonio&rft.au=Frossard%2C+Pascal&rft.au=Kova%C4%8Devi%C4%87%2C+Jelena&rft.au=Moura%2C+Jos%C3%A9+M.+F.&rft.date=2018-05-01&rft.issn=0018-9219&rft.eissn=1558-2256&rft.volume=106&rft.issue=5&rft.spage=808&rft.epage=828&rft_id=info:doi/10.1109%2FJPROC.2018.2820126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JPROC_2018_2820126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon