Graph Signal Processing: Overview, Challenges, and Applications
Research in graph signal processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper, we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing, along with a brief historical perspective to highli...
Uložené v:
| Vydané v: | Proceedings of the IEEE Ročník 106; číslo 5; s. 808 - 828 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9219, 1558-2256 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Research in graph signal processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper, we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing, along with a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas. We then summarize recent advances in developing basic GSP tools, including methods for sampling, filtering, or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. |
|---|---|
| AbstractList | Research in graph signal processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper, we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing, along with a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas. We then summarize recent advances in developing basic GSP tools, including methods for sampling, filtering, or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. |
| Author | Ortega, Antonio Moura, Jose M. F. Vandergheynst, Pierre Frossard, Pascal Kovacevic, Jelena |
| Author_xml | – sequence: 1 givenname: Antonio orcidid: 0000-0001-5403-0940 surname: Ortega fullname: Ortega, Antonio email: antonio.ortega@sipi.usc.edu organization: University of Southern California, Los Angeles, CA, USA – sequence: 2 givenname: Pascal orcidid: 0000-0002-4010-714X surname: Frossard fullname: Frossard, Pascal organization: EPFL, Lausanne, Switzerland-1015, Lausanne – sequence: 3 givenname: Jelena surname: Kovacevic fullname: Kovacevic, Jelena organization: Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 4 givenname: Jose M. F. orcidid: 0000-0002-9822-8294 surname: Moura fullname: Moura, Jose M. F. organization: Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 5 givenname: Pierre surname: Vandergheynst fullname: Vandergheynst, Pierre organization: EPFL, Lausanne, Switzerland-1015, Lausanne |
| BookMark | eNp9kD1PwzAQhi1UJNrCH4AlEmtTznacuCyoiqCAKrWC7pbrXFpXIQl2WsS_J_0QAwPTO9w99_H0SKesSiTkmsKQUhjdvc7fZumQAZVDJttg8RnpUiFkyJiIO6QLbSkcMTq6ID3vNwDARcy75GHidL0O3u2q1EUwd5VB7225ug9mO3Q7i1-DIF3rosByhX4Q6DILxnVdWKMbW5X-kpznuvB4dco-WTw9LtLncDqbvKTjaWgiEE1oOJVc0xghjyKzBA1LwAQkEyaRDBNulpkWPEsQJOZG5BHQLBbAWW64jnif3B7H1q763KJv1KbauvZkrxjwVgGnI9p2sWOXcZX3DnNVO_uh3beioPae1MGT2ntSJ08tJP9AxjaH5xqnbfE_enNELSL-7pI8SmjM-A_qMHaw |
| CODEN | IEEPAD |
| CitedBy_id | crossref_primary_10_1016_j_patcog_2022_108690 crossref_primary_10_1109_LSP_2021_3112338 crossref_primary_10_1109_TSP_2021_3081036 crossref_primary_10_1109_ACCESS_2021_3053270 crossref_primary_10_1109_TKDE_2021_3133013 crossref_primary_10_1038_s43856_021_00065_5 crossref_primary_10_1016_j_specom_2020_12_010 crossref_primary_10_1016_j_amc_2023_128502 crossref_primary_10_1016_j_dsp_2020_102782 crossref_primary_10_1007_s12662_024_00944_8 crossref_primary_10_1016_j_sigpro_2020_107931 crossref_primary_10_1109_TIFS_2023_3302508 crossref_primary_10_1016_j_sigpro_2021_108180 crossref_primary_10_1109_JBHI_2022_3207519 crossref_primary_10_7717_peerj_cs_357 crossref_primary_10_1016_j_sigpro_2025_110277 crossref_primary_10_1007_s10115_025_02406_5 crossref_primary_10_1016_j_comcom_2025_108146 crossref_primary_10_1016_j_dsp_2024_104728 crossref_primary_10_1109_TSIPN_2024_3356794 crossref_primary_10_1109_LGRS_2021_3113078 crossref_primary_10_1109_MSP_2023_3262906 crossref_primary_10_3390_rs16040721 crossref_primary_10_1109_TMM_2021_3077772 crossref_primary_10_1109_TSP_2023_3318471 crossref_primary_10_1109_TCYB_2021_3079149 crossref_primary_10_1109_TCYB_2025_3570703 crossref_primary_10_1109_TSP_2022_3223217 crossref_primary_10_3390_math8091412 crossref_primary_10_3390_technologies12080128 crossref_primary_10_1016_j_sigpro_2022_108574 crossref_primary_10_1109_TSP_2024_3378379 crossref_primary_10_1109_TSP_2022_3180546 crossref_primary_10_1186_s13634_022_00836_9 crossref_primary_10_1109_MSP_2022_3149471 crossref_primary_10_1109_TSP_2024_3392348 crossref_primary_10_1109_TSP_2020_2993780 crossref_primary_10_1109_ACCESS_2024_3421346 crossref_primary_10_1103_PhysRevApplied_23_054054 crossref_primary_10_1109_TSP_2022_3176497 crossref_primary_10_1038_s41467_024_51590_5 crossref_primary_10_1109_TMM_2019_2918717 crossref_primary_10_1109_TPAMI_2022_3174515 crossref_primary_10_1515_comp_2022_0272 crossref_primary_10_1109_TIP_2020_3044448 crossref_primary_10_1109_TCSVT_2024_3370001 crossref_primary_10_1109_JSTSP_2024_3378887 crossref_primary_10_1109_TSG_2024_3364665 crossref_primary_10_1109_TMM_2021_3111440 crossref_primary_10_1007_s43670_023_00062_w crossref_primary_10_1109_TSP_2020_2981202 crossref_primary_10_1016_j_eswa_2021_114711 crossref_primary_10_1109_TSIPN_2024_3378122 crossref_primary_10_1177_09567976221143127 crossref_primary_10_1109_TSP_2023_3259144 crossref_primary_10_1186_s13059_025_03631_5 crossref_primary_10_1109_TMM_2024_3374580 crossref_primary_10_1109_TMM_2021_3068606 crossref_primary_10_1109_TSP_2025_3553378 crossref_primary_10_1109_TSP_2023_3340009 crossref_primary_10_1109_TSP_2024_3495225 crossref_primary_10_1109_TSP_2025_3588173 crossref_primary_10_1109_TSP_2024_3392360 crossref_primary_10_1109_MSP_2020_3014597 crossref_primary_10_1145_3742784 crossref_primary_10_1109_MSP_2020_3014594 crossref_primary_10_3390_sym14020426 crossref_primary_10_1016_j_watres_2023_120313 crossref_primary_10_1016_j_apacoust_2024_109929 crossref_primary_10_1061__ASCE_WR_1943_5452_0001550 crossref_primary_10_1109_TSP_2022_3167525 crossref_primary_10_2478_bhee_2020_0002 crossref_primary_10_1016_j_neuroimage_2021_117847 crossref_primary_10_1007_s41109_021_00438_8 crossref_primary_10_3390_s21041415 crossref_primary_10_1109_TCSII_2024_3366242 crossref_primary_10_1016_j_sigpro_2025_110163 crossref_primary_10_1109_TSIPN_2025_3553025 crossref_primary_10_1016_j_eswa_2023_119867 crossref_primary_10_1109_LSP_2021_3123459 crossref_primary_10_1016_j_cam_2020_113319 crossref_primary_10_1109_TPWRS_2021_3094202 crossref_primary_10_1109_TSIPN_2021_3084879 crossref_primary_10_1109_TSIPN_2022_3216099 crossref_primary_10_1016_j_jfranklin_2025_107877 crossref_primary_10_1109_TCYB_2024_3416621 crossref_primary_10_1109_TSIPN_2022_3140477 crossref_primary_10_1016_j_ifacol_2025_01_133 crossref_primary_10_1109_LWC_2022_3219413 crossref_primary_10_1109_MSP_2018_2887284 crossref_primary_10_1016_j_neunet_2022_11_003 crossref_primary_10_1109_TSIPN_2020_3010613 crossref_primary_10_1016_j_eswa_2022_117097 crossref_primary_10_1049_iet_gtd_2020_0845 crossref_primary_10_1016_j_sigpro_2021_108149 crossref_primary_10_1109_TSP_2021_3106857 crossref_primary_10_1016_j_eswa_2019_112861 crossref_primary_10_1109_TCSI_2022_3179821 crossref_primary_10_1109_TIP_2020_3042088 crossref_primary_10_1109_TSP_2019_2914879 crossref_primary_10_1016_j_sigpro_2025_110077 crossref_primary_10_1016_j_sigpro_2025_110198 crossref_primary_10_1109_TPAMI_2020_3032718 crossref_primary_10_1007_s11045_020_00746_9 crossref_primary_10_1109_LSP_2021_3086391 crossref_primary_10_1109_MSP_2020_3014590 crossref_primary_10_1109_ACCESS_2021_3079349 crossref_primary_10_1109_MSP_2020_3014591 crossref_primary_10_1109_TSP_2022_3223552 crossref_primary_10_1109_TSIPN_2021_3107628 crossref_primary_10_1093_biostatistics_kxab001 crossref_primary_10_1103_PhysRevE_111_034301 crossref_primary_10_1109_LSP_2020_3029699 crossref_primary_10_1109_TSP_2022_3192606 crossref_primary_10_3390_e21010022 crossref_primary_10_1016_j_neuroimage_2022_119399 crossref_primary_10_1016_j_dsp_2024_104914 crossref_primary_10_1109_TSP_2021_3087905 crossref_primary_10_3390_electronics11213462 crossref_primary_10_1109_TSIPN_2023_3341408 crossref_primary_10_1109_TPAMI_2024_3443110 crossref_primary_10_3390_rs11192290 crossref_primary_10_1016_j_dsp_2025_105191 crossref_primary_10_1088_1361_6501_acefea crossref_primary_10_1109_LSP_2025_3539012 crossref_primary_10_1007_s00034_020_01499_3 crossref_primary_10_1016_j_acha_2023_03_005 crossref_primary_10_1109_TSIPN_2024_3380351 crossref_primary_10_1109_ACCESS_2021_3122100 crossref_primary_10_3389_frai_2022_832909 crossref_primary_10_1016_j_acha_2022_06_004 crossref_primary_10_1016_j_bpsc_2023_06_008 crossref_primary_10_3390_a13090228 crossref_primary_10_1109_ACCESS_2020_3030841 crossref_primary_10_1049_sil2_12082 crossref_primary_10_1109_LSP_2019_2906776 crossref_primary_10_1109_ACCESS_2023_3347592 crossref_primary_10_3390_s22103951 crossref_primary_10_1109_TSIPN_2022_3167333 crossref_primary_10_1080_10106049_2023_2272662 crossref_primary_10_1109_TNNLS_2024_3449573 crossref_primary_10_1016_j_dsp_2024_104825 crossref_primary_10_3390_mi14040714 crossref_primary_10_1016_j_compbiomed_2025_110082 crossref_primary_10_1109_TSP_2024_3507787 crossref_primary_10_1109_TSP_2020_3009645 crossref_primary_10_1016_j_eswa_2020_113581 crossref_primary_10_1109_TIP_2022_3166644 crossref_primary_10_1016_j_compbiomed_2022_105643 crossref_primary_10_1109_ACCESS_2020_2977767 crossref_primary_10_1016_j_sigpro_2022_108480 crossref_primary_10_1016_j_bspc_2023_105537 crossref_primary_10_1016_j_ymssp_2025_112449 crossref_primary_10_1109_TSIPN_2020_3040042 crossref_primary_10_1109_TMM_2023_3304896 crossref_primary_10_1109_TSP_2023_3263675 crossref_primary_10_1007_s11263_024_02188_3 crossref_primary_10_1109_TSIPN_2023_3299511 crossref_primary_10_1109_TSP_2022_3207045 crossref_primary_10_1186_s13634_022_00901_3 crossref_primary_10_1109_TSP_2023_3238272 crossref_primary_10_1109_TSP_2021_3084537 crossref_primary_10_1016_j_media_2022_102507 crossref_primary_10_3390_s20216001 crossref_primary_10_1109_JSEN_2018_2884709 crossref_primary_10_1109_TFUZZ_2020_3029285 crossref_primary_10_1109_TSIPN_2023_3304142 crossref_primary_10_1109_TSP_2019_2925602 crossref_primary_10_3390_app14114533 crossref_primary_10_1038_s41598_024_71756_x crossref_primary_10_1109_JSTARS_2024_3434330 crossref_primary_10_1109_LSP_2023_3292741 crossref_primary_10_1186_s13634_024_01201_8 crossref_primary_10_1109_TSP_2019_2925608 crossref_primary_10_1109_TSP_2024_3446453 crossref_primary_10_1109_TCSII_2023_3307698 crossref_primary_10_1109_LSP_2025_3560170 crossref_primary_10_1016_j_optlastec_2024_112199 crossref_primary_10_1109_TSP_2020_3032408 crossref_primary_10_1109_JSEN_2024_3366346 crossref_primary_10_3390_sym14030543 crossref_primary_10_1016_j_dsp_2025_105094 crossref_primary_10_1016_j_jfranklin_2025_107793 crossref_primary_10_1016_j_trc_2024_104890 crossref_primary_10_1109_JIOT_2023_3294470 crossref_primary_10_1109_LSP_2023_3298280 crossref_primary_10_1016_j_chaos_2023_113977 crossref_primary_10_1137_23M1565413 crossref_primary_10_1109_ACCESS_2020_2983590 crossref_primary_10_1007_s11265_022_01802_2 crossref_primary_10_3390_bioengineering11070671 crossref_primary_10_1109_LSP_2024_3421972 crossref_primary_10_3390_app12136799 crossref_primary_10_1007_s10851_021_01064_w crossref_primary_10_1007_s11760_022_02249_5 crossref_primary_10_1016_j_measurement_2021_109428 crossref_primary_10_1109_TSP_2024_3460194 crossref_primary_10_1109_TCSII_2022_3181540 crossref_primary_10_1016_j_patcog_2019_107070 crossref_primary_10_1016_j_asoc_2022_108489 crossref_primary_10_1109_TSP_2024_3419182 crossref_primary_10_1109_TSP_2021_3099630 crossref_primary_10_1109_TSP_2018_2886151 crossref_primary_10_1109_TSP_2023_3267990 crossref_primary_10_1109_TSIPN_2024_3352236 crossref_primary_10_1109_TSIPN_2025_3589719 crossref_primary_10_1038_s41598_025_00107_1 crossref_primary_10_1109_ACCESS_2025_3590304 crossref_primary_10_1109_TPAMI_2021_3111054 crossref_primary_10_1016_j_jii_2025_100880 crossref_primary_10_3390_brainsci15070714 crossref_primary_10_1007_s00034_020_01613_5 crossref_primary_10_1109_TBME_2020_3022335 crossref_primary_10_1109_TSP_2019_2901356 crossref_primary_10_1109_TSIPN_2022_3170652 crossref_primary_10_1007_s00521_021_06235_9 crossref_primary_10_1177_02783649241246847 crossref_primary_10_1109_LSP_2021_3119257 crossref_primary_10_1109_MSP_2019_2929832 crossref_primary_10_1145_3695769 crossref_primary_10_1007_s00041_021_09871_w crossref_primary_10_3390_electronics11203312 crossref_primary_10_32604_cmc_2021_017300 crossref_primary_10_1088_1742_6596_2182_1_012017 crossref_primary_10_1109_TSG_2023_3332591 crossref_primary_10_1109_TII_2024_3369715 crossref_primary_10_1109_TSP_2021_3053643 crossref_primary_10_1109_TSIPN_2025_3536084 crossref_primary_10_1007_s11042_019_08296_4 crossref_primary_10_1109_TMM_2021_3129341 crossref_primary_10_1109_TSG_2022_3150954 crossref_primary_10_1016_j_dsp_2023_103970 crossref_primary_10_1109_TCSII_2020_3045217 crossref_primary_10_1109_RBME_2021_3122522 crossref_primary_10_1016_j_dsp_2025_105156 crossref_primary_10_1109_LSP_2019_2931397 crossref_primary_10_1109_TMI_2020_3029063 crossref_primary_10_1109_TSP_2025_3526287 crossref_primary_10_1109_TNSRE_2023_3320135 crossref_primary_10_1016_j_sigpro_2024_109732 crossref_primary_10_1186_s13634_025_01211_0 crossref_primary_10_1109_TSP_2018_2876313 crossref_primary_10_1080_09720529_2022_2139934 crossref_primary_10_1109_TASE_2021_3115937 crossref_primary_10_1016_j_bbr_2023_114325 crossref_primary_10_1016_j_neunet_2021_11_026 crossref_primary_10_1109_TSIPN_2020_2982765 crossref_primary_10_1109_LSP_2018_2849685 crossref_primary_10_1109_LSP_2024_3396664 crossref_primary_10_1109_TSIPN_2018_2872157 crossref_primary_10_1109_TSIPN_2024_3503416 crossref_primary_10_3390_ijgi8090414 crossref_primary_10_1016_j_compeleceng_2025_110575 crossref_primary_10_1111_joes_12505 crossref_primary_10_1109_LSP_2025_3569478 crossref_primary_10_1109_TSIPN_2025_3587400 crossref_primary_10_1007_s43670_023_00076_4 crossref_primary_10_1109_TNSRE_2022_3198021 crossref_primary_10_1162_netn_a_00411 crossref_primary_10_1109_TSIPN_2022_3206578 crossref_primary_10_1016_j_sigpro_2023_109308 crossref_primary_10_1016_j_sigpro_2024_109601 crossref_primary_10_1007_s00034_021_01720_x crossref_primary_10_1016_j_ijforecast_2023_08_006 crossref_primary_10_1016_j_measurement_2025_116762 crossref_primary_10_1109_MSP_2020_3016143 crossref_primary_10_1109_TSIPN_2023_3276687 crossref_primary_10_1186_s13634_022_00926_8 crossref_primary_10_1109_JSTSP_2024_3485892 crossref_primary_10_1109_LSP_2019_2903683 crossref_primary_10_1145_3610924 crossref_primary_10_1109_ACCESS_2021_3086480 crossref_primary_10_1109_TIP_2023_3307975 crossref_primary_10_1080_24694452_2023_2206469 crossref_primary_10_1109_ACCESS_2020_3032326 crossref_primary_10_1038_s41598_024_72199_0 crossref_primary_10_1109_LSP_2024_3501273 crossref_primary_10_1109_TSP_2024_3349788 crossref_primary_10_1016_j_dsp_2022_103792 crossref_primary_10_1109_TSG_2022_3176298 crossref_primary_10_1109_TIE_2020_2979563 crossref_primary_10_3390_app142310868 crossref_primary_10_1016_j_sigpro_2024_109519 crossref_primary_10_1080_24725854_2021_1949762 crossref_primary_10_1109_TCSII_2020_3017800 crossref_primary_10_1109_MSP_2020_3014067 crossref_primary_10_1016_j_dsp_2022_103558 crossref_primary_10_1002_bkcs_12533 crossref_primary_10_1109_TNSRE_2024_3368434 crossref_primary_10_1109_TSIPN_2020_3015341 crossref_primary_10_3389_fnins_2020_00630 crossref_primary_10_1016_j_sigpro_2023_109230 crossref_primary_10_1109_TCI_2023_3308388 crossref_primary_10_1109_JPROC_2021_3117472 crossref_primary_10_1038_s41422_024_00956_x crossref_primary_10_1109_LSP_2023_3243764 crossref_primary_10_1016_j_eswa_2025_127572 crossref_primary_10_1016_j_image_2019_01_008 crossref_primary_10_1109_TCSII_2024_3364090 crossref_primary_10_1109_TSP_2021_3054523 crossref_primary_10_3390_rs14051110 crossref_primary_10_1109_TSIPN_2023_3248948 crossref_primary_10_1109_JIOT_2024_3434732 crossref_primary_10_1109_LSP_2024_3479918 crossref_primary_10_1109_JSTARS_2023_3327860 crossref_primary_10_1109_MSP_2020_3014070 crossref_primary_10_1002_rnc_5606 crossref_primary_10_1109_TSP_2023_3304789 crossref_primary_10_1109_TIP_2022_3223793 crossref_primary_10_11648_j_engmath_20250901_11 crossref_primary_10_1016_j_jhydrol_2023_130079 crossref_primary_10_1016_j_measurement_2021_109584 crossref_primary_10_1016_j_dsp_2025_105222 crossref_primary_10_1016_j_sigpro_2020_107847 crossref_primary_10_1016_j_sigpro_2024_109864 crossref_primary_10_1049_iet_spr_2018_5291 crossref_primary_10_1016_j_sigpro_2023_109129 crossref_primary_10_1109_JSEN_2023_3321042 crossref_primary_10_1109_LSP_2020_3005548 crossref_primary_10_2478_caim_2024_0004 crossref_primary_10_3390_fi13020036 crossref_primary_10_1016_j_sigpro_2023_109120 crossref_primary_10_1007_s00041_022_09904_y crossref_primary_10_1016_j_sigpro_2019_107326 crossref_primary_10_1109_TSP_2023_3257983 crossref_primary_10_1007_s00034_021_01930_3 crossref_primary_10_1109_TSP_2023_3256536 crossref_primary_10_1109_TSP_2024_3365950 crossref_primary_10_1016_j_neuroimage_2021_117791 crossref_primary_10_1109_TSP_2021_3051267 crossref_primary_10_1109_TPAMI_2021_3091682 crossref_primary_10_1016_j_media_2021_101986 crossref_primary_10_1109_TIE_2021_3075871 crossref_primary_10_1142_S0129183125501359 crossref_primary_10_1109_TWC_2024_3430097 crossref_primary_10_1016_j_patcog_2022_109082 crossref_primary_10_1016_j_sigpro_2024_109538 crossref_primary_10_1109_TSMC_2024_3407948 crossref_primary_10_1016_j_dsp_2021_103210 crossref_primary_10_1109_TPAMI_2023_3310981 crossref_primary_10_1038_s42003_024_06669_6 crossref_primary_10_1109_LGRS_2023_3292831 crossref_primary_10_1109_TSP_2021_3079804 crossref_primary_10_1109_TSIPN_2019_2936361 crossref_primary_10_1016_j_asr_2021_01_058 crossref_primary_10_1109_TCNS_2021_3113263 crossref_primary_10_1109_TFUZZ_2024_3494243 crossref_primary_10_1088_2631_8695_add6f1 crossref_primary_10_1109_TSIPN_2021_3101109 crossref_primary_10_1109_TKDE_2025_3550877 crossref_primary_10_1109_MSP_2020_3020715 crossref_primary_10_1109_TSIPN_2020_3044913 crossref_primary_10_1109_TBDATA_2024_3423677 crossref_primary_10_1109_TSP_2020_2982325 crossref_primary_10_1109_TSIPN_2020_2995515 crossref_primary_10_1016_j_dsp_2021_103347 crossref_primary_10_1109_TNNLS_2024_3360429 crossref_primary_10_1016_j_dsp_2022_103644 crossref_primary_10_1109_JSEN_2021_3124818 crossref_primary_10_1016_j_dsp_2023_103941 crossref_primary_10_1016_j_petrol_2022_110323 crossref_primary_10_1016_j_sigpro_2024_109522 crossref_primary_10_1109_TSG_2022_3177154 crossref_primary_10_1016_j_dsp_2022_103761 crossref_primary_10_1016_j_sigpro_2025_109944 crossref_primary_10_1016_j_acha_2023_101623 crossref_primary_10_1016_j_dsp_2022_103762 crossref_primary_10_1109_TSIPN_2019_2936358 crossref_primary_10_1016_j_neucom_2024_127965 crossref_primary_10_1007_s10915_025_02922_0 crossref_primary_10_1109_TSIPN_2023_3279513 crossref_primary_10_1109_TSP_2021_3054995 crossref_primary_10_1007_s00034_023_02483_3 crossref_primary_10_1016_j_ijmecsci_2024_109075 crossref_primary_10_1186_s13636_023_00272_z crossref_primary_10_1016_j_jprocont_2022_03_010 crossref_primary_10_1109_TSP_2022_3160003 crossref_primary_10_1109_JIOT_2019_2950213 crossref_primary_10_1109_TSP_2023_3244101 crossref_primary_10_1109_TSP_2022_3184455 crossref_primary_10_1109_ACCESS_2021_3120994 crossref_primary_10_3390_fi15120377 crossref_primary_10_1109_TSIPN_2022_3205555 crossref_primary_10_3390_s20030763 crossref_primary_10_1007_s00041_025_10177_4 crossref_primary_10_1007_s10115_025_02553_9 crossref_primary_10_1016_j_eswa_2024_124709 crossref_primary_10_1109_LSP_2025_3593655 crossref_primary_10_1109_TKDE_2025_3543378 crossref_primary_10_1109_ACCESS_2020_2980369 crossref_primary_10_1109_TNNLS_2020_3025110 crossref_primary_10_1177_15589250241258272 crossref_primary_10_1109_TSIPN_2020_2976704 crossref_primary_10_1109_ACCESS_2022_3164077 crossref_primary_10_1109_TIFS_2024_3483669 crossref_primary_10_1002_env_2756 crossref_primary_10_3390_math9233078 crossref_primary_10_1016_j_dsp_2021_103360 crossref_primary_10_1109_JIOT_2021_3067717 crossref_primary_10_1109_TSP_2024_3435935 crossref_primary_10_1145_3595181 crossref_primary_10_1109_ACCESS_2025_3558752 crossref_primary_10_1631_FITEE_2100597 crossref_primary_10_1016_j_isprsjprs_2024_01_002 crossref_primary_10_1016_j_jpdc_2020_10_011 crossref_primary_10_1016_j_sigpro_2024_109668 crossref_primary_10_1109_LSP_2025_3553064 crossref_primary_10_1109_TSIPN_2023_3277591 crossref_primary_10_1016_j_sigpro_2024_109663 crossref_primary_10_1093_milmed_usae231 crossref_primary_10_1109_TSP_2019_2892033 crossref_primary_10_1016_j_dsp_2021_103009 crossref_primary_10_1142_S0218126624501925 crossref_primary_10_1016_j_neuroimage_2021_118289 crossref_primary_10_1109_TMM_2020_3034530 crossref_primary_10_1109_LSP_2023_3316095 crossref_primary_10_1002_amp2_10121 crossref_primary_10_1016_j_crhy_2019_08_003 crossref_primary_10_1109_TKDE_2020_2981333 crossref_primary_10_1007_s10107_022_01861_0 crossref_primary_10_1016_j_measurement_2025_117314 crossref_primary_10_1109_TPAMI_2023_3311912 crossref_primary_10_1109_MSP_2023_3258060 crossref_primary_10_1109_TSIPN_2025_3572698 crossref_primary_10_1016_j_cviu_2025_104290 crossref_primary_10_1016_j_phycom_2023_102221 crossref_primary_10_1109_TIP_2022_3149225 crossref_primary_10_1109_TKDE_2022_3153060 crossref_primary_10_1016_j_jnca_2022_103434 crossref_primary_10_1016_j_measurement_2020_107585 crossref_primary_10_1016_j_sigpro_2024_109570 crossref_primary_10_1109_TGRS_2024_3435470 crossref_primary_10_1007_s43670_025_00115_2 crossref_primary_10_1016_j_neucom_2023_02_007 crossref_primary_10_1137_21M1414024 crossref_primary_10_1016_j_comcom_2021_02_019 crossref_primary_10_1109_TIM_2021_3117068 crossref_primary_10_1016_j_watres_2024_122354 crossref_primary_10_1109_TSP_2023_3303639 crossref_primary_10_1109_TSG_2023_3239740 crossref_primary_10_1016_j_jnca_2025_104116 crossref_primary_10_1016_j_neunet_2022_06_021 crossref_primary_10_3390_app14104094 crossref_primary_10_1016_j_clinph_2023_05_012 crossref_primary_10_3390_s20226628 crossref_primary_10_1007_s10845_021_01884_y crossref_primary_10_1016_j_neucom_2022_10_057 crossref_primary_10_1016_j_sigpro_2023_109263 crossref_primary_10_1109_ACCESS_2021_3073696 crossref_primary_10_1109_TIP_2022_3222918 crossref_primary_10_1137_18M1201019 crossref_primary_10_1109_LSP_2025_3600370 crossref_primary_10_1007_s12206_021_0342_5 crossref_primary_10_1038_s43588_024_00734_0 crossref_primary_10_1109_TGRS_2022_3221489 crossref_primary_10_1007_s12530_020_09348_z crossref_primary_10_1109_TSIPN_2018_2890231 crossref_primary_10_1109_TSP_2022_3205474 crossref_primary_10_1109_TCSII_2021_3109339 crossref_primary_10_1109_TNSE_2022_3169220 crossref_primary_10_1109_TIFS_2023_3237364 crossref_primary_10_1016_j_bspc_2024_106011 crossref_primary_10_1109_TSIPN_2020_2984499 crossref_primary_10_1016_j_sigpro_2022_108707 crossref_primary_10_1109_TSIPN_2023_3265160 crossref_primary_10_1007_s00041_021_09826_1 crossref_primary_10_1109_LCOMM_2024_3522112 crossref_primary_10_1016_j_acha_2023_101579 crossref_primary_10_1162_netn_a_00084 crossref_primary_10_1007_s11760_025_04782_5 crossref_primary_10_1109_TSP_2025_3553915 crossref_primary_10_1109_TPAMI_2023_3324937 crossref_primary_10_1109_TSP_2022_3149134 crossref_primary_10_1016_j_ins_2024_120288 crossref_primary_10_1007_s10489_023_04563_y crossref_primary_10_1007_s10851_021_01027_1 crossref_primary_10_1016_j_knosys_2024_112762 crossref_primary_10_1016_j_cam_2022_114951 crossref_primary_10_1016_j_ifacol_2022_07_203 crossref_primary_10_1109_TIP_2019_2957935 crossref_primary_10_1109_LCA_2023_3340504 crossref_primary_10_1109_TSP_2022_3160277 crossref_primary_10_1109_JSTQE_2023_3244040 crossref_primary_10_1007_s12190_025_02637_3 crossref_primary_10_1007_s00034_023_02541_w crossref_primary_10_1016_j_mfglet_2024_09_183 crossref_primary_10_3390_s22114036 crossref_primary_10_1109_TSP_2019_2899822 crossref_primary_10_1109_LSP_2025_3601560 crossref_primary_10_1109_TKDE_2024_3441766 crossref_primary_10_1029_2022EA002580 crossref_primary_10_1109_JSTSP_2024_3350508 crossref_primary_10_1038_s41598_025_07838_1 crossref_primary_10_1109_TSP_2023_3347646 crossref_primary_10_1109_TIP_2025_3539469 crossref_primary_10_1109_TSIPN_2020_3046237 crossref_primary_10_1109_TSIPN_2021_3100302 crossref_primary_10_1109_ACCESS_2021_3050014 crossref_primary_10_1109_LSP_2025_3539908 crossref_primary_10_1016_j_knosys_2021_106891 crossref_primary_10_1109_LSP_2025_3576173 crossref_primary_10_1109_TSP_2024_3395021 crossref_primary_10_1007_s00041_021_09828_z crossref_primary_10_1109_TSIPN_2023_3302658 crossref_primary_10_1109_LSP_2020_3023587 crossref_primary_10_1007_s11760_024_03712_1 crossref_primary_10_1109_ACCESS_2025_3546514 crossref_primary_10_1371_journal_pone_0277989 crossref_primary_10_1109_TPAMI_2025_3566169 crossref_primary_10_1109_TSP_2022_3159393 crossref_primary_10_1016_j_dsp_2020_102802 crossref_primary_10_1162_netn_a_00183 crossref_primary_10_1016_j_specom_2020_06_005 crossref_primary_10_1109_TPAMI_2020_3042093 crossref_primary_10_1109_TNNLS_2024_3381069 crossref_primary_10_1109_TSIPN_2020_2983139 crossref_primary_10_3390_math9121407 crossref_primary_10_1109_TETCI_2022_3232821 crossref_primary_10_1109_TSIPN_2025_3540702 crossref_primary_10_1016_j_neucom_2025_131206 crossref_primary_10_1109_TSIPN_2025_3540701 crossref_primary_10_1016_j_istruc_2025_109390 crossref_primary_10_1109_TPAMI_2024_3524180 crossref_primary_10_1109_TSIPN_2025_3527888 crossref_primary_10_1016_j_physa_2023_129188 crossref_primary_10_1016_j_apenergy_2020_115872 crossref_primary_10_1016_j_acha_2023_101583 crossref_primary_10_1109_TCSII_2021_3065977 crossref_primary_10_1109_TSIPN_2022_3183498 crossref_primary_10_1109_TSP_2025_3567831 crossref_primary_10_1016_j_acha_2021_10_004 crossref_primary_10_1007_s00041_024_10128_5 crossref_primary_10_1109_LGRS_2022_3185306 crossref_primary_10_1016_j_jfranklin_2022_08_059 crossref_primary_10_1109_ACCESS_2020_2982439 crossref_primary_10_1109_LSP_2021_3059203 crossref_primary_10_1371_journal_pcbi_1008310 crossref_primary_10_1109_ACCESS_2022_3167055 crossref_primary_10_1109_TSIPN_2025_3540714 crossref_primary_10_1109_JIOT_2022_3228727 crossref_primary_10_1109_ACCESS_2022_3202201 crossref_primary_10_1016_j_sigpro_2022_108506 crossref_primary_10_1016_j_neuri_2022_100091 crossref_primary_10_1016_j_dsp_2023_104045 crossref_primary_10_1016_j_dsp_2021_103192 crossref_primary_10_1109_LSP_2024_3514800 crossref_primary_10_1109_TPAMI_2024_3393131 crossref_primary_10_1016_j_neunet_2024_106928 crossref_primary_10_1016_j_sigpro_2021_108101 crossref_primary_10_1016_j_jag_2023_103363 crossref_primary_10_1137_21M1466773 crossref_primary_10_1016_j_dsp_2024_104565 crossref_primary_10_12677_aam_2024_134141 crossref_primary_10_1109_TII_2025_3545044 crossref_primary_10_1109_TSP_2022_3199664 crossref_primary_10_1016_j_jneumeth_2023_110031 crossref_primary_10_1016_j_sigpro_2024_109394 crossref_primary_10_1109_ACCESS_2022_3149755 crossref_primary_10_1109_TCSVT_2021_3069838 crossref_primary_10_1007_s10614_024_10692_4 crossref_primary_10_1109_TPAMI_2020_3013433 crossref_primary_10_1016_j_acha_2022_10_003 crossref_primary_10_1109_TSP_2023_3297848 crossref_primary_10_3390_ai5030074 crossref_primary_10_1016_j_apenergy_2022_120127 crossref_primary_10_1109_TSIPN_2020_2964214 crossref_primary_10_1016_j_patcog_2021_108202 crossref_primary_10_1109_TGRS_2024_3480888 crossref_primary_10_1109_TNNLS_2021_3071958 crossref_primary_10_1109_TSIPN_2023_3268128 crossref_primary_10_1007_s00041_021_09878_3 crossref_primary_10_1109_TAI_2021_3076021 crossref_primary_10_1007_s43926_021_00011_w crossref_primary_10_1109_ACCESS_2025_3604350 crossref_primary_10_1007_s00041_021_09832_3 crossref_primary_10_1109_TSP_2020_2981920 crossref_primary_10_1109_TSP_2023_3324988 crossref_primary_10_1109_TSP_2020_2976583 crossref_primary_10_3390_fi14050124 crossref_primary_10_1016_j_ipm_2020_102459 crossref_primary_10_1109_TSP_2021_3092336 crossref_primary_10_1109_TSP_2023_3300632 crossref_primary_10_1016_j_measurement_2021_110084 crossref_primary_10_1109_LSP_2025_3531218 crossref_primary_10_1109_TIP_2022_3171411 crossref_primary_10_1016_j_sigpro_2022_108725 crossref_primary_10_1109_TASLP_2020_2973795 crossref_primary_10_1109_MSP_2020_3013555 crossref_primary_10_1007_s41872_023_00233_7 crossref_primary_10_1007_s43670_021_00019_x crossref_primary_10_1038_s41467_025_63494_z crossref_primary_10_1016_j_bspc_2024_106954 crossref_primary_10_1080_24725854_2023_2285840 crossref_primary_10_1109_TGRS_2025_3535096 crossref_primary_10_1016_j_ress_2024_110181 crossref_primary_10_1109_TSP_2019_2952055 crossref_primary_10_1016_j_dsp_2024_104465 crossref_primary_10_1109_TCSVT_2021_3089336 crossref_primary_10_1145_3682112_3682114 crossref_primary_10_1016_j_aei_2025_103716 crossref_primary_10_1121_10_0039042 crossref_primary_10_1109_TNNLS_2023_3339786 crossref_primary_10_1038_s42003_023_04474_1 crossref_primary_10_1016_j_dsp_2020_102728 crossref_primary_10_1109_TSIPN_2021_3109820 crossref_primary_10_1109_TSP_2023_3331264 crossref_primary_10_3390_s21010146 crossref_primary_10_1016_j_ijepes_2025_111156 crossref_primary_10_3390_s23031387 crossref_primary_10_1016_j_compchemeng_2022_107748 crossref_primary_10_1016_j_neuroimage_2021_118095 crossref_primary_10_1109_TSP_2022_3229950 crossref_primary_10_1109_TSP_2024_3439211 crossref_primary_10_1145_3461838 crossref_primary_10_1016_j_watres_2024_121666 crossref_primary_10_1109_TSP_2018_2839620 crossref_primary_10_1186_s13059_024_03356_x crossref_primary_10_1007_s00603_025_04779_z crossref_primary_10_2139_ssrn_5064655 crossref_primary_10_4018_IJHIoT_305227 crossref_primary_10_3390_math12182942 crossref_primary_10_1016_j_sigpro_2021_108256 crossref_primary_10_1016_j_tej_2020_106885 crossref_primary_10_1109_TSTE_2021_3125200 crossref_primary_10_3390_electronics13010044 crossref_primary_10_1109_TSP_2019_2952053 crossref_primary_10_1016_j_simpat_2024_103029 crossref_primary_10_1109_TSP_2024_3354572 crossref_primary_10_1109_TNSE_2023_3249829 crossref_primary_10_1016_j_eswa_2021_115190 crossref_primary_10_1109_LSP_2020_3005053 crossref_primary_10_1007_s41109_020_00287_x crossref_primary_10_1109_JSEN_2021_3106656 crossref_primary_10_3390_en16114436 crossref_primary_10_1109_TSIPN_2020_3046217 crossref_primary_10_1109_TSP_2021_3119416 crossref_primary_10_1080_10494820_2020_1855207 crossref_primary_10_1109_TII_2020_2992658 crossref_primary_10_1162_imag_a_00448 crossref_primary_10_1007_s10115_023_01900_y crossref_primary_10_1007_s13042_023_01982_8 crossref_primary_10_1016_j_sigpro_2022_108662 crossref_primary_10_1016_j_sigpro_2021_108302 crossref_primary_10_1016_j_asoc_2022_109809 crossref_primary_10_1016_j_sigpro_2021_108303 crossref_primary_10_1016_j_dsp_2024_104400 crossref_primary_10_1109_TSP_2020_2978617 crossref_primary_10_1109_TSP_2020_3046972 crossref_primary_10_1109_TCSI_2024_3504253 crossref_primary_10_1109_TSP_2025_3544376 crossref_primary_10_1016_j_neunet_2022_10_035 crossref_primary_10_1155_2021_4645544 crossref_primary_10_1109_TSP_2019_2940129 crossref_primary_10_1109_TSP_2019_2908129 crossref_primary_10_1016_j_neunet_2023_05_016 crossref_primary_10_1109_JSTSP_2018_2873147 crossref_primary_10_1109_TSG_2021_3117977 crossref_primary_10_3390_technologies13070295 crossref_primary_10_1016_j_jat_2021_105620 crossref_primary_10_1109_TSP_2023_3305079 crossref_primary_10_1109_TSP_2024_3439554 crossref_primary_10_1109_TIFS_2025_3583876 crossref_primary_10_1109_TCNS_2024_3371548 crossref_primary_10_1109_TSIPN_2019_2922852 crossref_primary_10_1109_TSIPN_2021_3139336 crossref_primary_10_3390_e24081116 crossref_primary_10_1016_j_sigpro_2022_108530 crossref_primary_10_1109_TSIPN_2020_2975393 crossref_primary_10_1109_TSIPN_2023_3240893 crossref_primary_10_1109_JSYST_2021_3109082 crossref_primary_10_1109_TIP_2021_3073318 crossref_primary_10_1109_TPAMI_2022_3143089 crossref_primary_10_1016_j_dsp_2024_104751 crossref_primary_10_1109_TSIPN_2021_3059995 crossref_primary_10_1016_j_bspc_2021_102831 crossref_primary_10_1109_TSIPN_2022_3156886 crossref_primary_10_1109_TSIPN_2023_3240899 crossref_primary_10_1109_OJSP_2025_3534692 crossref_primary_10_1109_TMI_2022_3168888 crossref_primary_10_1109_TMM_2022_3218172 crossref_primary_10_1109_TNNLS_2024_3356512 crossref_primary_10_1109_TSP_2019_2961296 crossref_primary_10_1109_TIFS_2024_3488527 crossref_primary_10_1109_TITS_2022_3224326 crossref_primary_10_1109_JSTSP_2018_2844813 crossref_primary_10_1016_j_sigpro_2023_108927 crossref_primary_10_1109_JPROC_2021_3055400 crossref_primary_10_1109_TSP_2022_3166401 crossref_primary_10_1109_TSP_2023_3343560 crossref_primary_10_1109_TSP_2024_3482350 crossref_primary_10_1016_j_conb_2022_102532 crossref_primary_10_1073_pnas_1906670117 crossref_primary_10_1109_TGRS_2023_3279694 crossref_primary_10_1109_TSP_2019_2932882 crossref_primary_10_1007_s00034_021_01729_2 crossref_primary_10_1109_JIOT_2022_3150147 crossref_primary_10_1109_MSP_2020_3016908 crossref_primary_10_1016_j_patrec_2021_12_008 crossref_primary_10_1007_s41468_024_00191_8 crossref_primary_10_1109_TSP_2020_3002607 crossref_primary_10_1109_TSP_2023_3260562 crossref_primary_10_1109_MSP_2018_2890143 crossref_primary_10_1016_j_dsp_2024_104414 crossref_primary_10_1109_JSYST_2019_2927469 crossref_primary_10_1109_TSIPN_2019_2957717 crossref_primary_10_1002_gamm_70002 crossref_primary_10_1016_j_jestch_2021_09_005 crossref_primary_10_1016_j_sigpro_2021_108211 crossref_primary_10_1109_TSP_2020_2988784 crossref_primary_10_3390_math10244834 crossref_primary_10_1016_j_sigpro_2021_108216 crossref_primary_10_1016_j_dsp_2023_104356 crossref_primary_10_1109_TSIPN_2020_2998223 crossref_primary_10_1016_j_acha_2022_03_005 crossref_primary_10_1109_TII_2023_3331094 crossref_primary_10_1109_TBC_2023_3290493 crossref_primary_10_1007_s00500_023_09288_1 crossref_primary_10_1109_TSIPN_2022_3209097 crossref_primary_10_1109_TNNLS_2021_3067441 crossref_primary_10_1109_TKDE_2023_3282898 crossref_primary_10_1016_j_gmod_2022_101140 crossref_primary_10_1109_MSP_2020_3018087 crossref_primary_10_1109_TSP_2024_3438676 crossref_primary_10_1109_ACCESS_2019_2946899 crossref_primary_10_1109_TSG_2023_3261970 crossref_primary_10_1186_s13634_024_01133_3 |
| Cites_doi | 10.1162/089976603321780317 10.1109/TSP.2015.2469645 10.1109/ICASSP.2013.6638704 10.1145/1553374.1553400 10.1007/978-94-011-5014-9 10.1109/18.119691 10.1109/ICMEW.2014.6890711 10.1145/218380.218473 10.1109/JSTSP.2017.2726979 10.1109/TSP.2014.2328983 10.1109/MSP.2011.2179329 10.1109/ICASSP.2012.6288639 10.1093/comnet/cnv006 10.1109/IPSN.2008.24 10.1126/science.1171022 10.1109/TSP.2013.2238935 10.1109/TSP.2017.2752689 10.1109/MSP.2014.2330357 10.1109/ICASSP.2013.6638232 10.1109/TSP.2016.2573748 10.1109/TSP.2016.2620111 10.1109/TSP.2018.2813337 10.1109/18.243450 10.1109/TSP.2008.925261 10.1109/TSIPN.2017.2742940 10.1007/978-1-4613-8190-7_2 10.1186/s12859-015-0754-2 10.1145/324133.324140 10.1109/MCS.2015.2495000 10.1145/311535.311577 10.1109/JSEN.2017.2733767 10.1093/biostatistics/kxm045 10.1109/TSP.2017.2739099 10.1109/ICASSP.2015.7178573 10.1145/984622.984624 10.1002/aris.2007.1440410119 10.1109/LSP.2017.2704359 10.1109/TSP.2018.2870386 10.1126/science.290.5500.2323 10.1109/TIT.2013.2252233 10.23919/EUSIPCO.2017.8081498 10.1109/TSP.2014.2365761 10.1109/TSP.2015.2411217 10.1371/journal.pone.0128136 10.1109/TSP.2007.907919 10.1093/oso/9780198522195.001.0001 10.1109/TSP.2013.2273197 10.1109/TSP.2016.2546233 10.1109/TSP.2014.2313528 10.1145/1553374.1553432 10.1109/TSP.2017.2731299 10.1109/MSP.2010.938115 10.1186/1687-1499-2012-278 10.1109/TSP.2017.2733489 10.1109/TSP.2015.2441042 10.1109/TSP.2016.2634543 10.1016/j.laa.2012.01.020 10.1109/EUSIPCO.2015.7362637 10.1109/PCS.2016.7906368 10.1093/acprof:oso/9780199206650.001.0001 10.1038/s41562-017-0260-9 10.1109/TSP.2013.2259825 10.1109/TSP.2016.2602809 10.1109/JPROC.2002.800717 10.1007/s11856-012-0096-y 10.1111/j.2517-6161.1974.tb00999.x 10.2307/j.ctvcm4gh1 10.14495/jsiaml.6.21 10.1109/JSTSP.2016.2600859 10.1090/cbms/092 10.1145/2623330.2623760 10.1109/ICASSP.2014.6853764 10.1109/ICASSP.2017.7952885 10.1111/cgf.12693 10.1137/17M1118580 10.1561/2200000001 10.1109/INFCOM.2005.1498374 10.1109/GlobalSIP.2017.8309026 10.1109/ICCVW.2015.112 10.1109/EUSIPCO.2015.7362633 10.1109/TSP.2015.2460216 10.1073/pnas.0500334102 10.1109/TSP.2016.2628343 10.1016/j.acha.2006.04.004 10.1145/2623330.2623732 10.1109/TSP.2016.2591513 10.1007/s11222-007-9033-z 10.1016/S0024-3795(01)00313-5 10.1073/pnas.1031596100 10.1038/srep00371 10.1109/MSP.2012.2235192 10.1016/j.neuroimage.2015.10.026 10.1109/ICASSP.2015.7178380 10.1109/TVCG.2017.2746080 10.1016/j.neuroimage.2017.04.015 10.1137/120895068 10.1109/TSP.2017.2771730 10.1109/TSP.2014.2345355 10.1109/LSP.2014.2368128 10.1109/ICASSP.2012.6288515 10.1137/S009753970139272X 10.1109/TSP.2017.2690388 10.1016/j.neuroimage.2015.06.010 10.1109/JSTSP.2016.2601695 10.1109/VAST.2015.7347624 10.1109/TNSE.2015.2406252 10.1109/TSP.2014.2332441 10.1016/j.acha.2016.06.007 10.1109/TIP.2014.2378055 10.1109/JSTSP.2017.2731599 10.1109/GlobalSIP.2016.7905858 10.1109/TSIPN.2016.2605763 10.1109/JPROC.2018.2799702 10.1109/JSTSP.2015.2403799 10.1109/ICASSP.2012.6288775 10.1073/pnas.0510525103 10.1109/34.244673 10.1109/ICASSP.2014.6853770 10.1073/pnas.0500896102 10.1109/GlobalSIP.2017.8309033 10.1109/ICASSP.2014.6854325 10.1016/j.acha.2010.04.005 10.1109/GLOCOM.2017.8254798 10.1109/TSP.2014.2321121 10.1109/JSTSP.2017.2726975 10.1137/S0036144598336745 10.1109/CDC.2006.377080 10.1109/ITSC.2014.6957939 10.1109/GLOCOM.2012.6503723 10.1109/TCBB.2017.2688355 10.1109/TSP.2016.2617833 10.1016/S0010-4485(03)00098-8 10.1109/MSP.2014.2329213 10.1038/ncomms10340 10.1109/INFCOM.2003.1209207 10.1145/1084779.1084780 10.1109/TIP.2016.2529506 10.1109/TSIPN.2015.2480223 10.1109/TSP.2017.2718969 10.1109/TSG.2016.2598872 10.1109/ICASSP.2016.7472874 10.1109/ICIP.2014.7025414 10.1109/JSTSP.2014.2314858 10.1109/ICASSP.2015.7179016 10.1126/science.290.5500.2319 10.1109/LSP.2015.2488279 10.1109/TSP.2012.2214216 10.1073/pnas.1018985108 10.1109/ICASSP.2017.7952276 10.1109/ICASSP.2017.8005300 10.1109/TSP.2012.2188718 10.1201/9780203492024 10.1038/nrn3214 10.1109/TSIPN.2017.2731164 10.1145/1127777.1127824 10.1016/j.sigpro.2016.07.003 10.1109/ICASSP.2016.7472115 10.1007/s00026-005-0237-z 10.1145/1127777.1127816 10.1090/S0002-9947-08-04511-X 10.1109/ICIP.2010.5651072 10.1109/GlobalSIP.2014.7032257 10.1090/conm/001 10.1109/TSP.2008.925259 10.1017/CBO9780511761942 10.1109/SSP.2005.1628777 10.1109/TSIPN.2017.2731051 10.1109/ICIP.2015.7351555 10.1109/34.868688 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/JPROC.2018.2820126 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2256 |
| EndPage | 828 |
| ExternalDocumentID | 10_1109_JPROC_2018_2820126 8347162 |
| Genre | orig-research |
| GroupedDBID | -DZ -~X .DC 0R~ 123 1OL 29P 3EH 4.4 6IK 85S 97E 9M8 AAJGR AAWTH ABAZT ABFSI ABJNI ABQJQ ABVLG ACBEA ACGFS AENEX AETEA AETIX AFOGA AGNAY AGQYO AGSQL AHBIQ AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD FA8 HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MVM O9- OCL RIA RIE RIU RNS TAE TN5 TWZ UDY UHB UKR UQL VOH WHG XJT XOL YNT ZCA ZXP ZY4 ~02 AAYXX CITATION 7SP 8FD L7M RIG |
| ID | FETCH-LOGICAL-c405t-c3183a16e0f44cb0a0b0e70825c782e73cbda53d7e08efc5f401d65032fc3a43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1213 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433349100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9219 |
| IngestDate | Fri Jul 25 18:57:15 EDT 2025 Sat Nov 29 03:15:13 EST 2025 Tue Nov 18 22:07:53 EST 2025 Wed Aug 27 02:22:26 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c405t-c3183a16e0f44cb0a0b0e70825c782e73cbda53d7e08efc5f401d65032fc3a43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5403-0940 0000-0002-4010-714X 0000-0002-9822-8294 |
| OpenAccessLink | http://infoscience.epfl.ch/record/256648 |
| PQID | 2031103191 |
| PQPubID | 85453 |
| PageCount | 21 |
| ParticipantIDs | ieee_primary_8347162 proquest_journals_2031103191 crossref_primary_10_1109_JPROC_2018_2820126 crossref_citationtrail_10_1109_JPROC_2018_2820126 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-01 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Proceedings of the IEEE |
| PublicationTitleAbbrev | JPROC |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 ref59 ref205 ref206 ref53 ref52 ref204 ref55 ref201 ref54 gama (ref202) 2016 zhu (ref5) 2003 ref51 ref50 shuman (ref92) 2015 ref46 ref45 ref48 ref216 gantmacher (ref83) 1959; 21 ref42 ref41 ref44 ref212 ref43 ref49 ref7 ref3 ref100 ref40 ref35 ref34 ref36 belkin (ref58) 2002 ref33 ref39 ref38 ref24 ref23 zhou (ref95) 2005 ref25 ref20 tremblay (ref14) 2016 shuman (ref166) 2017 ref21 ref27 lauritzen (ref26) 1996; 17 lake (ref144) 2010; 32 lancaster (ref84) 1985 chen (ref123) 2015 ref128 ref129 ref97 ref126 tanaka (ref114) 2017 ref96 ref127 ref99 ref124 ref98 siebert (ref79) 1986 bruna (ref207) 2014 ref93 ref133 ref134 ref131 ref94 ref132 puy (ref125) 2016 ref130 ref90 narang (ref101) 2009 ref89 ref139 ref86 ref137 ref85 ref138 ref135 ref87 ref136 defferrard (ref217) 0 perraudin (ref215) 2014 ref82 ref145 ref143 ref140 ref141 ref108 ref109 ref106 ref107 ref75 ref74 ref105 ref102 ref76 ref103 saito (ref88) 2011 ref71 ref111 ref70 ref112 ref73 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref60 ref122 chellappa (ref37) 1993 ref62 ref120 ref61 ref121 boscaini (ref208) 2016 ref168 ref169 defferrard (ref209) 2016 kalofolias (ref142) 2016 ref170 lewis (ref8) 2011 ref177 ref178 ref175 ref176 ref173 ref174 ref172 bang-jensen (ref31) 2008 duvenaud (ref211) 2015 ref179 shi (ref72) 2000; 22 golub (ref91) 2012; 3 valko (ref198) 2014 ref180 ref181 püschel (ref47) 2006 ref188 ref189 ref186 ref187 ref184 ref185 ref182 ref183 li (ref214) 2017 ref148 ref149 ref146 ref147 sporns (ref171) 2011 edwards (ref32) 2012 oppenheim (ref77) 1975 ref155 ref156 ref153 ref154 ref151 ref152 ref150 oppenheim (ref80) 1989 ref159 ref157 ref158 ref167 ref164 ref165 ref163 boutsidis (ref200) 2015 ref160 ref161 ref13 ref12 ref15 ref11 mitra (ref81) 1998 ref10 ref17 ref16 ref19 ref18 paratte (ref203) 2016 jordan (ref28) 2007; 1 koller (ref29) 2009 khasanova (ref210) 2017 ref2 ref1 (ref6) 2005 anirudh (ref213) 2017 ref191 ref192 oppenheim (ref78) 1983 ref190 kotzagiannidis (ref104) 2017 ref199 chen (ref4) 2017 ref197 ref195 barabási (ref9) 2016 ref196 ref193 ref194 whittaker (ref30) 2009 chen (ref162) 2016 draief (ref22) 2010 |
| References_xml | – ident: ref56 doi: 10.1162/089976603321780317 – ident: ref121 doi: 10.1109/TSP.2015.2469645 – ident: ref126 doi: 10.1109/ICASSP.2013.6638704 – ident: ref143 doi: 10.1145/1553374.1553400 – ident: ref27 doi: 10.1007/978-94-011-5014-9 – ident: ref38 doi: 10.1109/18.119691 – ident: ref187 doi: 10.1109/ICMEW.2014.6890711 – year: 2008 ident: ref31 publication-title: Digraphs Theory Algorithms and Applications – ident: ref76 doi: 10.1145/218380.218473 – ident: ref98 doi: 10.1109/JSTSP.2017.2726979 – ident: ref110 doi: 10.1109/TSP.2014.2328983 – ident: ref73 doi: 10.1109/MSP.2011.2179329 – ident: ref115 doi: 10.1109/ICASSP.2012.6288639 – ident: ref21 doi: 10.1093/comnet/cnv006 – ident: ref154 doi: 10.1109/IPSN.2008.24 – ident: ref18 doi: 10.1126/science.1171022 – ident: ref2 doi: 10.1109/TSP.2013.2238935 – ident: ref53 doi: 10.1109/TSP.2017.2752689 – year: 1993 ident: ref37 publication-title: Markov Random Fields Theory and Application – ident: ref159 doi: 10.1109/MSP.2014.2330357 – ident: ref163 doi: 10.1109/ICASSP.2013.6638232 – ident: ref134 doi: 10.1109/TSP.2016.2573748 – ident: ref106 doi: 10.1109/TSP.2016.2620111 – ident: ref151 doi: 10.1109/TSP.2018.2813337 – ident: ref39 doi: 10.1109/18.243450 – year: 1998 ident: ref81 publication-title: Digital Signal Processing A Computer-Based Approach – ident: ref48 doi: 10.1109/TSP.2008.925261 – ident: ref147 doi: 10.1109/TSIPN.2017.2742940 – ident: ref33 doi: 10.1007/978-1-4613-8190-7_2 – ident: ref182 doi: 10.1186/s12859-015-0754-2 – ident: ref94 doi: 10.1145/324133.324140 – ident: ref16 doi: 10.1109/MCS.2015.2495000 – ident: ref74 doi: 10.1145/311535.311577 – ident: ref165 doi: 10.1109/JSEN.2017.2733767 – ident: ref145 doi: 10.1093/biostatistics/kxm045 – ident: ref128 doi: 10.1109/TSP.2017.2739099 – ident: ref124 doi: 10.1109/ICASSP.2015.7178573 – ident: ref62 doi: 10.1145/984622.984624 – ident: ref7 doi: 10.1002/aris.2007.1440410119 – ident: ref138 doi: 10.1109/LSP.2017.2704359 – start-page: 1205 year: 2014 ident: ref198 article-title: Spectral bandits for smooth graph functions publication-title: Proc 31st Int Conf Mach Learn (ICML) – year: 2017 ident: ref214 article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting publication-title: Proc Int Learning Representations (ICLR '18) – ident: ref97 doi: 10.1109/TSP.2018.2870386 – ident: ref55 doi: 10.1126/science.290.5500.2323 – ident: ref133 doi: 10.1109/TIT.2013.2252233 – ident: ref197 doi: 10.23919/EUSIPCO.2017.8081498 – ident: ref111 doi: 10.1109/TSP.2014.2365761 – ident: ref127 doi: 10.1109/TSP.2015.2411217 – ident: ref179 doi: 10.1371/journal.pone.0128136 – year: 2011 ident: ref88 publication-title: On the Phase Transition Phenomenon of Graph Laplacian Eigenfunctions on Trees – ident: ref50 doi: 10.1109/TSP.2007.907919 – year: 2017 ident: ref210 article-title: Graph-based isometry invariant representation learning publication-title: Proc ICML – volume: 17 year: 1996 ident: ref26 publication-title: Graphical Models doi: 10.1093/oso/9780198522195.001.0001 – ident: ref102 doi: 10.1109/TSP.2013.2273197 – ident: ref122 doi: 10.1109/TSP.2016.2546233 – ident: ref195 doi: 10.1109/TSP.2014.2313528 – year: 2016 ident: ref202 article-title: Rethinking sketching as sampling: A graph signal processing approach – ident: ref140 doi: 10.1145/1553374.1553432 – ident: ref136 doi: 10.1109/TSP.2017.2731299 – ident: ref42 doi: 10.1109/MSP.2010.938115 – ident: ref24 doi: 10.1186/1687-1499-2012-278 – ident: ref103 doi: 10.1109/TSP.2017.2733489 – ident: ref82 doi: 10.1109/TSP.2015.2441042 – ident: ref146 doi: 10.1109/TSP.2016.2634543 – ident: ref90 doi: 10.1016/j.laa.2012.01.020 – ident: ref129 doi: 10.1109/EUSIPCO.2015.7362637 – ident: ref190 doi: 10.1109/PCS.2016.7906368 – start-page: 441 year: 2009 ident: ref101 article-title: Lifting based wavelet transforms on graphs publication-title: Proc APSIPA ASC – ident: ref1 doi: 10.1093/acprof:oso/9780199206650.001.0001 – ident: ref169 doi: 10.1038/s41562-017-0260-9 – ident: ref175 doi: 10.1109/TSP.2013.2259825 – ident: ref43 doi: 10.1109/TSP.2016.2602809 – ident: ref40 doi: 10.1109/JPROC.2002.800717 – year: 2011 ident: ref171 publication-title: Networks of the Brain – year: 2014 ident: ref215 article-title: GSPBOX: A toolbox for signal processing on graphs publication-title: ArXiv e-prints – year: 2006 ident: ref47 publication-title: Algebraic signal processing theory – year: 2017 ident: ref4 publication-title: Multiresolution representations for piecewise-smooth signals on graphs – ident: ref87 doi: 10.1007/s11856-012-0096-y – ident: ref36 doi: 10.1111/j.2517-6161.1974.tb00999.x – ident: ref10 doi: 10.2307/j.ctvcm4gh1 – ident: ref139 doi: 10.14495/jsiaml.6.21 – ident: ref168 doi: 10.1109/JSTSP.2016.2600859 – ident: ref12 doi: 10.1090/cbms/092 – start-page: 3189 year: 2016 ident: ref208 article-title: Learning shape correspondence with anisotropic convolutional neural networks publication-title: Proc NIPS – ident: ref141 doi: 10.1145/2623330.2623760 – ident: ref155 doi: 10.1109/ICASSP.2014.6853764 – ident: ref107 doi: 10.1109/ICASSP.2017.7952885 – ident: ref206 doi: 10.1111/cgf.12693 – ident: ref186 doi: 10.1137/17M1118580 – volume: 1 start-page: 1 year: 2007 ident: ref28 article-title: Graphical models, exponential families, and variational inference publication-title: Found Trends Mach Learn doi: 10.1561/2200000001 – ident: ref17 doi: 10.1109/INFCOM.2005.1498374 – ident: ref99 doi: 10.1109/GlobalSIP.2017.8309026 – ident: ref205 doi: 10.1109/ICCVW.2015.112 – ident: ref135 doi: 10.1109/EUSIPCO.2015.7362633 – ident: ref108 doi: 10.1109/TSP.2015.2460216 – ident: ref59 doi: 10.1073/pnas.0500334102 – ident: ref150 doi: 10.1109/TSP.2016.2628343 – ident: ref61 doi: 10.1016/j.acha.2006.04.004 – ident: ref212 doi: 10.1145/2623330.2623732 – ident: ref137 doi: 10.1109/TSP.2016.2591513 – ident: ref13 doi: 10.1007/s11222-007-9033-z – year: 1975 ident: ref77 publication-title: Digital Signal Processing – ident: ref86 doi: 10.1016/S0024-3795(01)00313-5 – ident: ref57 doi: 10.1073/pnas.1031596100 – ident: ref15 doi: 10.1038/srep00371 – ident: ref3 doi: 10.1109/MSP.2012.2235192 – year: 1989 ident: ref80 publication-title: Discrete-Time Signal Processing – ident: ref180 doi: 10.1016/j.neuroimage.2015.10.026 – ident: ref188 doi: 10.1109/ICASSP.2015.7178380 – ident: ref204 doi: 10.1109/TVCG.2017.2746080 – volume: 21 year: 1959 ident: ref83 publication-title: Matrix Theory – ident: ref177 doi: 10.1016/j.neuroimage.2017.04.015 – ident: ref185 doi: 10.1137/120895068 – ident: ref194 doi: 10.1109/TSP.2017.2771730 – year: 2015 ident: ref92 article-title: Vertex-frequency analysis on graphs publication-title: Appl Comput Harmon Anal – start-page: 920 year: 2016 ident: ref142 article-title: How to learn a graph from smooth signals publication-title: Proc Artif Intell Stat – ident: ref199 doi: 10.1109/TSP.2014.2345355 – ident: ref112 doi: 10.1109/LSP.2014.2368128 – ident: ref156 doi: 10.1109/ICASSP.2012.6288515 – ident: ref46 doi: 10.1137/S009753970139272X – ident: ref131 doi: 10.1109/TSP.2017.2690388 – year: 2010 ident: ref22 publication-title: Epidemics and Rumours in Complex Networks – year: 2016 ident: ref209 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Proc NIPS – ident: ref174 doi: 10.1016/j.neuroimage.2015.06.010 – year: 1985 ident: ref84 publication-title: The Theory of Matrices with Applications – year: 2015 ident: ref123 publication-title: Signal representations on graphs Tools and applications – ident: ref181 doi: 10.1109/JSTSP.2016.2601695 – ident: ref161 doi: 10.1109/VAST.2015.7347624 – ident: ref23 doi: 10.1109/TNSE.2015.2406252 – ident: ref116 doi: 10.1109/TSP.2014.2332441 – ident: ref96 doi: 10.1016/j.acha.2016.06.007 – year: 2016 ident: ref9 publication-title: Network Science – ident: ref189 doi: 10.1109/TIP.2014.2378055 – start-page: 912 year: 2003 ident: ref5 article-title: Semi-supervised learning using Gaussian fields and harmonic functions publication-title: Proc 20th Int Conf Mach Learn (ICML) – ident: ref93 doi: 10.1109/JSTSP.2017.2731599 – volume: 3 year: 2012 ident: ref91 publication-title: Matrix Computations – ident: ref130 doi: 10.1109/GlobalSIP.2016.7905858 – ident: ref117 doi: 10.1109/TSIPN.2016.2605763 – ident: ref152 doi: 10.1109/JPROC.2018.2799702 – ident: ref167 doi: 10.1109/JSTSP.2015.2403799 – ident: ref70 doi: 10.1109/ICASSP.2012.6288775 – year: 2016 ident: ref14 article-title: Compressive spectral clustering publication-title: Proc 33rd Int Conf Mach Learn (ICML) – volume: 32 year: 2010 ident: ref144 article-title: Discovering structure by learning sparse graphs publication-title: Cognitive Sci Soc – year: 2009 ident: ref29 publication-title: Probabilistic Graphical Models Principles and Techniques – ident: ref19 doi: 10.1073/pnas.0510525103 – ident: ref71 doi: 10.1109/34.244673 – ident: ref132 doi: 10.1109/ICASSP.2014.6853770 – ident: ref60 doi: 10.1073/pnas.0500896102 – year: 2016 ident: ref162 publication-title: Localization decomposition and dictionary learning of piecewise-constant signals on graphs – ident: ref178 doi: 10.1109/GlobalSIP.2017.8309033 – ident: ref119 doi: 10.1109/ICASSP.2014.6854325 – ident: ref66 doi: 10.1016/j.acha.2010.04.005 – ident: ref157 doi: 10.1109/GLOCOM.2017.8254798 – ident: ref51 doi: 10.1109/TSP.2014.2321121 – ident: ref44 doi: 10.1109/JSTSP.2017.2726975 – ident: ref184 doi: 10.1137/S0036144598336745 – ident: ref69 doi: 10.1109/CDC.2006.377080 – start-page: 40 year: 2015 ident: ref200 article-title: Spectral clustering via the power method-Provably publication-title: Proc 32nd Int Conf Mach Learn (ICML) – year: 1986 ident: ref79 publication-title: Circuits Signals and Systems – ident: ref164 doi: 10.1109/ITSC.2014.6957939 – ident: ref25 doi: 10.1109/GLOCOM.2012.6503723 – ident: ref183 doi: 10.1109/TCBB.2017.2688355 – ident: ref105 doi: 10.1109/TSP.2016.2617833 – ident: ref75 doi: 10.1016/S0010-4485(03)00098-8 – year: 2016 ident: ref203 publication-title: Fast eigenspace approximation using random signals – ident: ref45 doi: 10.1109/MSP.2014.2329213 – year: 0 ident: ref217 publication-title: PYGSP Graph Signal Processing in Python – ident: ref176 doi: 10.1038/ncomms10340 – ident: ref100 doi: 10.1109/INFCOM.2003.1209207 – year: 2017 ident: ref166 publication-title: Chebyshev Polynomial Approximation for Distributed Signal Processing – year: 2017 ident: ref213 publication-title: Bootstrapping graph convolutional neural networks for autism spectrum disorder classification – year: 2017 ident: ref104 article-title: Splines and wavelets on circulant graphs publication-title: Appl Comput Harmon Anal – ident: ref63 doi: 10.1145/1084779.1084780 – year: 2009 ident: ref30 publication-title: Graphical Models in Applied Multivariate Statistics – ident: ref192 doi: 10.1109/TIP.2016.2529506 – start-page: 1633 year: 2005 ident: ref95 article-title: Semi-supervised learning on directed graphs publication-title: Proc Adv Neural Inf Process Syst – ident: ref85 doi: 10.1109/TSIPN.2015.2480223 – ident: ref109 doi: 10.1109/TSP.2017.2718969 – ident: ref160 doi: 10.1109/TSG.2016.2598872 – ident: ref158 doi: 10.1109/ICASSP.2016.7472874 – ident: ref193 doi: 10.1109/ICIP.2014.7025414 – ident: ref20 doi: 10.1109/JSTSP.2014.2314858 – ident: ref201 doi: 10.1109/ICASSP.2015.7179016 – ident: ref54 doi: 10.1126/science.290.5500.2319 – ident: ref52 doi: 10.1109/LSP.2015.2488279 – ident: ref41 doi: 10.1109/TSP.2012.2214216 – year: 1983 ident: ref78 publication-title: Signals and Systems – ident: ref172 doi: 10.1073/pnas.1018985108 – start-page: 953 year: 2002 ident: ref58 article-title: Using manifold structure for partially labelled classification publication-title: Proc NIPS – year: 2016 ident: ref125 article-title: Random sampling of bandlimited signals on graphs publication-title: Appl Comput Harmon Anal – ident: ref173 doi: 10.1109/ICASSP.2017.7952276 – ident: ref216 doi: 10.1109/ICASSP.2017.8005300 – ident: ref68 doi: 10.1109/TSP.2012.2188718 – ident: ref35 doi: 10.1201/9780203492024 – year: 2011 ident: ref8 publication-title: Network Science Theory and Applications – ident: ref170 doi: 10.1038/nrn3214 – ident: ref149 doi: 10.1109/TSIPN.2017.2731164 – start-page: 2224 year: 2015 ident: ref211 article-title: Convolutional networks on graphs for learning molecular fingerprints publication-title: Proc NIPS – ident: ref153 doi: 10.1145/1127777.1127824 – ident: ref113 doi: 10.1016/j.sigpro.2016.07.003 – ident: ref196 doi: 10.1109/ICASSP.2016.7472115 – ident: ref89 doi: 10.1007/s00026-005-0237-z – ident: ref65 doi: 10.1145/1127777.1127816 – year: 2005 ident: ref6 article-title: Network science – ident: ref118 doi: 10.1090/S0002-9947-08-04511-X – year: 2017 ident: ref114 publication-title: Spectral domain sampling of graph signals – ident: ref67 doi: 10.1109/ICIP.2010.5651072 – ident: ref120 doi: 10.1109/GlobalSIP.2014.7032257 – ident: ref34 doi: 10.1090/conm/001 – year: 2012 ident: ref32 publication-title: Introduction to Graphical Modelling – year: 2014 ident: ref207 article-title: Spectral networks and locally connected networks on graphs publication-title: Proc ICLR – ident: ref49 doi: 10.1109/TSP.2008.925259 – ident: ref11 doi: 10.1017/CBO9780511761942 – ident: ref64 doi: 10.1109/SSP.2005.1628777 – ident: ref148 doi: 10.1109/TSIPN.2017.2731051 – ident: ref191 doi: 10.1109/ICIP.2015.7351555 – volume: 22 start-page: 888 year: 2000 ident: ref72 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.868688 |
| SSID | ssj0003563 |
| Score | 2.7179406 |
| Snippet | Research in graph signal processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper, we first provide an... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 808 |
| SubjectTerms | Data models Data processing Digital signal processing Digital signal processors Filtration Graph signal processing (GSP) Graph theory Graphical models Image processing Laplace equations Machine learning network science and graphs sampling Sampling methods Signal processing Social network services |
| Title | Graph Signal Processing: Overview, Challenges, and Applications |
| URI | https://ieeexplore.ieee.org/document/8347162 https://www.proquest.com/docview/2031103191 |
| Volume | 106 |
| WOSCitedRecordID | wos000433349100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2256 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003563 issn: 0018-9219 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8aAHX1WsVsnBm0276W66WS9SilVE2qI99Ba2-5CCpNKXf9-dNAkFRfAWyE4Is5lXdub7AG64aCuhDPOtkdZn2hI_ki3lE6ZlpCeWRSpF13_h_X40HothCerFLIwxJm0-Mw28TM_y9Uyt8FdZM6IMAY92YIdzvpnVKrwuDTPWtMAZsDPDfECGiObz8HXQxS6uqNHCgIdACltBKGVV-eGK0_jSO_zfmx3BQZZHep3Nxh9DySQnsL-FLliB-0cEo_bepu-4MpsIcHfuvMEaPYT5qnvdnEtlUfdkor3O1nn2KYx6D6Puk5_xJfjKpV1LX6F9yqBtiGVMTYgkE2I41oDK5QGGUzXRMqSaGxIZq0LraivtMjTasopKRs-gnMwScw5eaIV0qZhohZFkRHKhEOhOh8RaGRCqqhDk-otVhiWOlBYfcVpTEBGnOo9R53Gm8yrcFjKfGySNP1dXUMvFykzBVajl2xRnxrZwcjRAtgoRXPwudQl7-OxNn2INysv5ylzBrlovp4v5dfodfQNhzcQo |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gmqgHX2hEUXvwJoVtd0u7XgwhIioCUQ7cmmUfhsSA4eXfd6cUQqIx8dakO2kz23l1Z74P4DrkFcmlZq7RwrhMGeJGwpcuYUpEqm9YJBN0_WbYakW9Hu9koLiahdFaJ81nuoSXyVm-GskZ_iorR5Qh4NEGbAaM-d5iWmvld2mQ8qZ51oStIS5HZAgvP3Ve2zXs44pKPoY8hFJYC0MJr8oPZ5xEmPr-_97tAPbSTNKpLrb-EDJ6eAS7a_iCObh7QDhq523wjivTmQB759Zpz9FH6K-iU1uyqUyKjhgqp7p2on0M3fp9t9ZwU8YEV9rEa-pKtFDhVTQxjMk-EaRPdIhVoLSZgA6p7CsRUBVqEmkjA2OrK2VzNOobSQWjJ5Adjob6FJzAcGGTMe4HkWBEhFwi1J0KiDHCI1TmwVvqL5YpmjiSWnzESVVBeJzoPEadx6nO83CzkvlcYGn8uTqHWl6tTBWch8Jym-LU3CZWjnrIV8G9s9-lrmC70X1pxs3H1vM57OBzFl2LBchOxzN9AVtyPh1MxpfJN_UNxHnHbw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Signal+Processing%3A+Overview%2C+Challenges%2C+and+Applications&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Ortega%2C+Antonio&rft.au=Frossard%2C+Pascal&rft.au=Kova%C4%8Devi%C4%87%2C+Jelena&rft.au=Moura%2C+Jos%C3%A9+M.+F.&rft.date=2018-05-01&rft.issn=0018-9219&rft.eissn=1558-2256&rft.volume=106&rft.issue=5&rft.spage=808&rft.epage=828&rft_id=info:doi/10.1109%2FJPROC.2018.2820126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JPROC_2018_2820126 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon |