Significantly Fast and Robust Fuzzy C-Means Clustering Algorithm Based on Morphological Reconstruction and Membership Filtering

As fuzzy c-means clustering (FCM) algorithm is sensitive to noise, local spatial information is often introduced to an objective function to improve the robustness of the FCM algorithm for image segmentation. However, the introduction of local spatial information often leads to a high computational...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on fuzzy systems Ročník 26; číslo 5; s. 3027 - 3041
Hlavní autori: Lei, Tao, Jia, Xiaohong, Zhang, Yanning, He, Lifeng, Meng, Hongying, Nandi, Asoke K.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1063-6706, 1941-0034
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As fuzzy c-means clustering (FCM) algorithm is sensitive to noise, local spatial information is often introduced to an objective function to improve the robustness of the FCM algorithm for image segmentation. However, the introduction of local spatial information often leads to a high computational complexity, arising out of an iterative calculation of the distance between pixels within local spatial neighbors and clustering centers. To address this issue, an improved FCM algorithm based on morphological reconstruction and membership filtering (FRFCM) that is significantly faster and more robust than FCM is proposed in this paper. First, the local spatial information of images is incorporated into FRFCM by introducing morphological reconstruction operation to guarantee noise-immunity and image detail-preservation. Second, the modification of membership partition, based on the distance between pixels within local spatial neighbors and clustering centers, is replaced by local membership filtering that depends only on the spatial neighbors of membership partition. Compared with state-of-the-art algorithms, the proposed FRFCM algorithm is simpler and significantly faster, since it is unnecessary to compute the distance between pixels within local spatial neighbors and clustering centers. In addition, it is efficient for noisy image segmentation because membership filtering are able to improve membership partition matrix efficiently. Experiments performed on synthetic and real-world images demonstrate that the proposed algorithm not only achieves better results, but also requires less time than the state-of-the-art algorithms for image segmentation.
AbstractList As fuzzy c-means clustering (FCM) algorithm is sensitive to noise, local spatial information is often introduced to an objective function to improve the robustness of the FCM algorithm for image segmentation. However, the introduction of local spatial information often leads to a high computational complexity, arising out of an iterative calculation of the distance between pixels within local spatial neighbors and clustering centers. To address this issue, an improved FCM algorithm based on morphological reconstruction and membership filtering (FRFCM) that is significantly faster and more robust than FCM is proposed in this paper. First, the local spatial information of images is incorporated into FRFCM by introducing morphological reconstruction operation to guarantee noise-immunity and image detail-preservation. Second, the modification of membership partition, based on the distance between pixels within local spatial neighbors and clustering centers, is replaced by local membership filtering that depends only on the spatial neighbors of membership partition. Compared with state-of-the-art algorithms, the proposed FRFCM algorithm is simpler and significantly faster, since it is unnecessary to compute the distance between pixels within local spatial neighbors and clustering centers. In addition, it is efficient for noisy image segmentation because membership filtering are able to improve membership partition matrix efficiently. Experiments performed on synthetic and real-world images demonstrate that the proposed algorithm not only achieves better results, but also requires less time than the state-of-the-art algorithms for image segmentation.
Author Meng, Hongying
Lei, Tao
Nandi, Asoke K.
He, Lifeng
Zhang, Yanning
Jia, Xiaohong
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0002-2104-9298
  surname: Lei
  fullname: Lei, Tao
  email: leitao@sust.edu.cn
  organization: College of Electronical and Information Engineering, Shaanxi University of Science and Technology, Xi'an, China
– sequence: 2
  givenname: Xiaohong
  surname: Jia
  fullname: Jia, Xiaohong
  email: jiaxhsust@163.com
  organization: College of Electronical and Information Engineering, Shaanxi University of Science and Technology, Xi'an, China
– sequence: 3
  givenname: Yanning
  surname: Zhang
  fullname: Zhang, Yanning
  email: ynzhang@nwpu.edu.cn
  organization: School of Computer Science, Northwestern Polytechnical University, Xi’an, China
– sequence: 4
  givenname: Lifeng
  surname: He
  fullname: He, Lifeng
  email: helifeng@ist.aichi-pu.ac.jp
  organization: College of Electronical and Information Engineering, Shaanxi University of Science and Technology, Xi'an, China
– sequence: 5
  givenname: Hongying
  orcidid: 0000-0002-8836-1382
  surname: Meng
  fullname: Meng, Hongying
  email: hongying.meng@brunel.ac.uk
  organization: Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, Middlesex, U.K
– sequence: 6
  givenname: Asoke K.
  orcidid: 0000-0001-6248-2875
  surname: Nandi
  fullname: Nandi, Asoke K.
  email: asoke.nandi@brunel.ac.uk
  organization: Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, Middlesex, U.K
BookMark eNp9UT1PwzAQtRBIQOEPwGKJOcVnOx8eoSKARIVU2oUlchKnNUrtYjtDWfjruBQxMDDd6e7ee3fvTtGhsUYhdAFkDEDE9bxcvL6OKYFiTHORkZwfoBMQHBJCGD-MOclYkuUkO0an3r8RAjyF4gR9vuil0Z1upAn9FpfSByxNi2e2HmJaDh8fWzxJpkoajyd9rCmnzRLf9EvrdFit8a30qsXW4Kl1m5Xt7TKS9XimGmt8cEMTdGzuOKdqXSvnV3qDS93vic7QUSd7r85_4ggtyrv55CF5er5_nNw8JQ0naUjqljJRiFqIXBBGedy_YSpVLM07qYC0lIq0A5rWwAvSAWRE5KwWINuubtKOjdDVnnfj7PugfKje7OBMlKwoQA4FB57FKbqfapz13qmu2ji9lm5bAal2RlffRlc7o6sfoyOo-ANqdJC7q4OTuv8fermHaqXUr1ZBs_ibjH0Bz7OPQw
CODEN IEFSEV
CitedBy_id crossref_primary_10_1007_s11042_022_12840_0
crossref_primary_10_1007_s13042_025_02575_3
crossref_primary_10_1016_j_bspc_2019_101780
crossref_primary_10_32604_cmc_2024_046094
crossref_primary_10_1016_j_eswa_2024_124943
crossref_primary_10_1049_ipr2_13023
crossref_primary_10_1016_j_optcom_2023_130064
crossref_primary_10_1088_1742_6596_3004_1_012004
crossref_primary_10_1016_j_mehy_2019_109507
crossref_primary_10_1002_ima_22416
crossref_primary_10_1109_TIM_2025_3527611
crossref_primary_10_2478_amns_2024_3398
crossref_primary_10_3233_IDT_210091
crossref_primary_10_1080_23311916_2018_1513304
crossref_primary_10_1016_j_optlaseng_2023_107872
crossref_primary_10_1016_j_advengsoft_2022_103377
crossref_primary_10_1109_TFUZZ_2020_2985930
crossref_primary_10_1007_s10489_022_04315_4
crossref_primary_10_1109_ACCESS_2021_3069747
crossref_primary_10_1016_j_engappai_2024_109229
crossref_primary_10_1155_2019_5984649
crossref_primary_10_1016_j_fss_2023_108792
crossref_primary_10_1155_2019_6397905
crossref_primary_10_1007_s11042_022_12295_3
crossref_primary_10_1007_s00371_024_03470_8
crossref_primary_10_3390_nano11081876
crossref_primary_10_1109_TFUZZ_2024_3435390
crossref_primary_10_1016_j_compbiomed_2020_103751
crossref_primary_10_1007_s11042_024_19080_4
crossref_primary_10_1016_j_bbe_2020_07_001
crossref_primary_10_1109_ACCESS_2024_3430973
crossref_primary_10_1002_mma_10826
crossref_primary_10_1038_s41598_024_56698_8
crossref_primary_10_1049_ipr2_12078
crossref_primary_10_1515_phys_2019_0010
crossref_primary_10_1016_j_ins_2019_07_027
crossref_primary_10_1007_s40747_024_01431_1
crossref_primary_10_1016_j_asoc_2020_106318
crossref_primary_10_1007_s00371_023_02821_1
crossref_primary_10_3390_mi13040546
crossref_primary_10_1016_j_ultras_2020_106268
crossref_primary_10_1049_ipr2_12194
crossref_primary_10_1109_THMS_2020_3047914
crossref_primary_10_1002_cpe_70035
crossref_primary_10_1109_ACCESS_2020_3015270
crossref_primary_10_1109_ACCESS_2023_3348123
crossref_primary_10_1109_TFUZZ_2024_3387429
crossref_primary_10_1016_j_sigpro_2024_109690
crossref_primary_10_1109_ACCESS_2020_2994985
crossref_primary_10_1016_j_asoc_2025_113926
crossref_primary_10_3390_bioengineering10020215
crossref_primary_10_1007_s11633_019_1171_1
crossref_primary_10_1016_j_engappai_2022_104672
crossref_primary_10_1049_itr2_12109
crossref_primary_10_1088_1361_6501_ac7779
crossref_primary_10_1016_j_is_2022_102124
crossref_primary_10_1016_j_engappai_2024_108955
crossref_primary_10_1007_s11042_023_15230_2
crossref_primary_10_1007_s42835_019_00259_x
crossref_primary_10_1080_2150704X_2023_2273244
crossref_primary_10_3103_S0146411622010047
crossref_primary_10_1016_j_engappai_2024_109135
crossref_primary_10_3233_XST_210928
crossref_primary_10_1007_s10489_024_05813_3
crossref_primary_10_3390_s19061289
crossref_primary_10_1016_j_jbusres_2024_114914
crossref_primary_10_1016_j_knosys_2023_110736
crossref_primary_10_1049_ipr2_12650
crossref_primary_10_1007_s10044_024_01228_5
crossref_primary_10_1038_s41598_024_60668_5
crossref_primary_10_1109_JSTARS_2023_3257548
crossref_primary_10_1007_s40815_020_00824_x
crossref_primary_10_1007_s11042_024_19018_w
crossref_primary_10_1016_j_dsp_2024_104801
crossref_primary_10_1109_TFUZZ_2020_3029296
crossref_primary_10_1016_j_engappai_2023_107776
crossref_primary_10_1016_j_dsp_2021_103036
crossref_primary_10_1029_2021JB022250
crossref_primary_10_1109_ACCESS_2020_2998486
crossref_primary_10_23919_cje_2023_00_268
crossref_primary_10_1007_s00779_019_01343_9
crossref_primary_10_1016_j_procs_2020_04_290
crossref_primary_10_1007_s00357_023_09443_1
crossref_primary_10_1007_s00371_023_02910_1
crossref_primary_10_1016_j_dsp_2019_102615
crossref_primary_10_1109_ACCESS_2020_2992937
crossref_primary_10_1007_s00371_023_03218_w
crossref_primary_10_1109_TFUZZ_2024_3373509
crossref_primary_10_1016_j_asoc_2021_107759
crossref_primary_10_1016_j_bspc_2021_103093
crossref_primary_10_1016_j_ins_2021_08_036
crossref_primary_10_4018_IJAMC_292516
crossref_primary_10_1007_s12517_021_07069_4
crossref_primary_10_3390_sym17050679
crossref_primary_10_1109_JAS_2020_1003420
crossref_primary_10_1109_TSMC_2024_3418411
crossref_primary_10_20965_jrm_2019_p0339
crossref_primary_10_1007_s11042_020_09999_9
crossref_primary_10_1016_j_compeleceng_2021_107022
crossref_primary_10_1007_s42452_020_04110_1
crossref_primary_10_1007_s40815_023_01485_2
crossref_primary_10_1007_s00500_023_08844_z
crossref_primary_10_3233_JIFS_200349
crossref_primary_10_1109_TFUZZ_2018_2883033
crossref_primary_10_1007_s10489_022_03690_2
crossref_primary_10_1109_TFUZZ_2018_2889018
crossref_primary_10_1109_TIP_2019_2930148
crossref_primary_10_3233_JIFS_179583
crossref_primary_10_3390_rs14081818
crossref_primary_10_1109_TFUZZ_2021_3081990
crossref_primary_10_1016_j_engappai_2021_104209
crossref_primary_10_3390_rs11232787
crossref_primary_10_3390_sym11060753
crossref_primary_10_3390_sym10110610
crossref_primary_10_1016_j_coldregions_2024_104381
crossref_primary_10_1109_ACCESS_2019_2955992
crossref_primary_10_1371_journal_pone_0214406
crossref_primary_10_3390_rs13214308
crossref_primary_10_1016_j_dsp_2025_105083
crossref_primary_10_1109_ACCESS_2020_2996603
crossref_primary_10_3233_JIFS_202401
crossref_primary_10_1007_s13137_023_00243_8
crossref_primary_10_1145_3380743
crossref_primary_10_1016_j_enggeo_2021_106495
crossref_primary_10_1007_s00138_024_01654_9
crossref_primary_10_1007_s42835_023_01460_9
crossref_primary_10_1007_s00371_021_02126_1
crossref_primary_10_1007_s11227_020_03344_5
crossref_primary_10_1016_j_eswa_2023_122270
crossref_primary_10_1007_s12652_022_03893_y
crossref_primary_10_1109_TFUZZ_2020_3029285
crossref_primary_10_1109_JSEN_2021_3092432
crossref_primary_10_1007_s11063_022_10876_9
crossref_primary_10_1007_s00500_022_07269_4
crossref_primary_10_1007_s44336_024_00008_3
crossref_primary_10_1007_s00371_020_01861_1
crossref_primary_10_1016_j_cmpb_2019_03_003
crossref_primary_10_1007_s10916_019_1462_7
crossref_primary_10_1117_1_JEI_34_2_023020
crossref_primary_10_1016_j_eswa_2023_120419
crossref_primary_10_1109_TIM_2021_3052018
crossref_primary_10_1109_TCYB_2021_3099503
crossref_primary_10_1007_s11760_023_02911_6
crossref_primary_10_1007_s13042_020_01151_1
crossref_primary_10_1016_j_optlastec_2020_106911
crossref_primary_10_1016_j_artmed_2019_101768
crossref_primary_10_1007_s42001_024_00315_1
crossref_primary_10_1109_ACCESS_2020_3039742
crossref_primary_10_3390_rs15143463
crossref_primary_10_3390_s21030696
crossref_primary_10_1109_TCSVT_2023_3290363
crossref_primary_10_1109_TFUZZ_2019_2930030
crossref_primary_10_1109_ACCESS_2020_2977108
crossref_primary_10_1007_s11042_023_14703_8
crossref_primary_10_1016_j_jocs_2019_03_003
crossref_primary_10_1007_s40815_020_01015_4
crossref_primary_10_1016_j_sasc_2025_200344
crossref_primary_10_1166_jmihi_2021_3860
crossref_primary_10_1007_s11042_023_14861_9
crossref_primary_10_3390_rs14153604
crossref_primary_10_3390_rs14143490
crossref_primary_10_3390_math9192383
crossref_primary_10_1007_s11760_022_02144_z
crossref_primary_10_1007_s40815_025_02081_2
crossref_primary_10_1016_j_compeleceng_2025_110358
crossref_primary_10_1016_j_neucom_2018_09_034
crossref_primary_10_1016_j_dsp_2024_104798
crossref_primary_10_1109_TFUZZ_2020_3030498
crossref_primary_10_1016_j_knosys_2023_110522
crossref_primary_10_1109_ACCESS_2019_2895636
crossref_primary_10_1016_j_apm_2020_09_008
crossref_primary_10_1007_s11042_023_14512_z
crossref_primary_10_1016_j_matcom_2025_02_012
crossref_primary_10_1109_LGRS_2018_2889307
crossref_primary_10_1109_TFUZZ_2022_3220925
crossref_primary_10_1007_s11042_020_09402_7
crossref_primary_10_1016_j_sigpro_2020_107767
crossref_primary_10_1049_iet_bmt_2019_0026
crossref_primary_10_1587_transinf_2020EDL8025
crossref_primary_10_1007_s11042_020_08636_9
crossref_primary_10_1007_s00034_024_02804_0
crossref_primary_10_1007_s10791_025_09528_y
crossref_primary_10_1016_j_ijar_2023_02_013
crossref_primary_10_1109_TIP_2020_2975717
crossref_primary_10_1016_j_imavis_2023_104712
crossref_primary_10_1111_exsy_12625
crossref_primary_10_1109_TFUZZ_2020_2991306
crossref_primary_10_3390_a15100380
crossref_primary_10_1016_j_ijleo_2022_169039
crossref_primary_10_1109_ACCESS_2018_2863719
crossref_primary_10_1109_TFUZZ_2020_3003441
crossref_primary_10_1007_s11042_023_14546_3
crossref_primary_10_1109_TFUZZ_2023_3235392
crossref_primary_10_1007_s00500_021_06397_7
crossref_primary_10_1631_FITEE_2000695
crossref_primary_10_3390_app14020644
crossref_primary_10_1109_JIOT_2020_3004469
crossref_primary_10_3390_s20174920
crossref_primary_10_1109_ACCESS_2019_2897597
crossref_primary_10_3390_s23167309
crossref_primary_10_1007_s00034_024_02758_3
crossref_primary_10_1016_j_jvcir_2021_103357
crossref_primary_10_1007_s00500_023_09358_4
crossref_primary_10_1155_2023_6662911
crossref_primary_10_1007_s11831_021_09629_z
crossref_primary_10_1109_ACCESS_2019_2928415
crossref_primary_10_1016_j_asoc_2021_107778
crossref_primary_10_1049_ipr2_12245
crossref_primary_10_1016_j_dsp_2023_104032
crossref_primary_10_1016_j_knosys_2021_108008
crossref_primary_10_1109_ACCESS_2020_3024718
crossref_primary_10_1007_s00500_022_07531_9
crossref_primary_10_1109_TFUZZ_2019_2923963
crossref_primary_10_1080_1206212X_2019_1662984
crossref_primary_10_1109_ACCESS_2024_3448301
crossref_primary_10_1016_j_aei_2021_101317
crossref_primary_10_1007_s10489_021_02886_2
crossref_primary_10_1109_ACCESS_2020_2995660
crossref_primary_10_1109_TFUZZ_2019_2949771
crossref_primary_10_1142_S201032472550002X
crossref_primary_10_1007_s10586_024_05027_9
crossref_primary_10_1016_j_ins_2021_12_058
crossref_primary_10_1016_j_sigpro_2024_109515
crossref_primary_10_1007_s10489_025_06502_5
crossref_primary_10_1016_j_bspc_2023_104746
crossref_primary_10_1016_j_eswa_2022_117015
crossref_primary_10_1016_j_eswa_2020_114370
crossref_primary_10_1109_TKDE_2022_3200685
crossref_primary_10_1007_s11042_023_16569_2
crossref_primary_10_1016_j_eswa_2022_117019
crossref_primary_10_1007_s42235_021_0049_4
crossref_primary_10_1109_TCSVT_2020_3019109
crossref_primary_10_1139_cjce_2019_0153
crossref_primary_10_1007_s10489_024_06078_6
crossref_primary_10_1016_j_jvcir_2022_103694
crossref_primary_10_1186_s13638_022_02117_3
crossref_primary_10_1007_s11760_021_01957_8
crossref_primary_10_1007_s42979_024_02678_8
crossref_primary_10_1016_j_ijleo_2023_170642
crossref_primary_10_1007_s13042_024_02419_6
crossref_primary_10_1007_s00500_023_08565_3
crossref_primary_10_1007_s10489_020_01977_w
crossref_primary_10_3390_rs16163096
crossref_primary_10_1016_j_cviu_2023_103765
crossref_primary_10_1007_s00357_024_09472_4
crossref_primary_10_1016_j_patcog_2023_109611
crossref_primary_10_1002_ima_22321
crossref_primary_10_1109_JSTARS_2022_3225665
crossref_primary_10_1016_j_dsp_2021_103200
crossref_primary_10_1049_el_2019_1281
crossref_primary_10_1109_TIP_2019_2920514
crossref_primary_10_1109_TSMC_2022_3205365
crossref_primary_10_1016_j_aej_2025_05_036
crossref_primary_10_1109_TFUZZ_2024_3463792
crossref_primary_10_3233_JIFS_210336
crossref_primary_10_1007_s12652_020_02762_w
crossref_primary_10_1109_TCYB_2020_2994235
crossref_primary_10_1049_ipr2_12939
crossref_primary_10_1109_TASE_2025_3550681
crossref_primary_10_1007_s10278_020_00354_w
crossref_primary_10_1016_j_asoc_2022_109005
crossref_primary_10_1049_iet_ipr_2020_0402
crossref_primary_10_1007_s11042_020_08699_8
crossref_primary_10_1109_TSMC_2019_2931699
crossref_primary_10_1016_j_asoc_2021_107245
crossref_primary_10_1007_s11042_020_09797_3
crossref_primary_10_1109_TFUZZ_2021_3099560
crossref_primary_10_1080_1206212X_2024_2380975
crossref_primary_10_3390_app13106099
crossref_primary_10_1016_j_compeleceng_2024_109815
crossref_primary_10_1007_s41066_020_00230_6
crossref_primary_10_1007_s00500_022_06751_3
crossref_primary_10_3390_rs10091381
crossref_primary_10_1109_TFUZZ_2020_3037972
crossref_primary_10_1109_TIE_2021_3066918
crossref_primary_10_1109_TSMC_2024_3388475
crossref_primary_10_1109_JIOT_2020_3007130
crossref_primary_10_1007_s13042_021_01429_y
crossref_primary_10_1049_ipr2_12701
crossref_primary_10_3233_JIFS_219370
crossref_primary_10_1016_j_knosys_2022_108501
crossref_primary_10_1007_s00521_024_10899_4
crossref_primary_10_1016_j_infrared_2022_104473
crossref_primary_10_1049_iet_gtd_2019_1038
crossref_primary_10_1109_TIP_2020_2990346
crossref_primary_10_3390_info9100261
crossref_primary_10_1016_j_patrec_2021_12_001
crossref_primary_10_1007_s12530_024_09591_8
crossref_primary_10_3233_JCM_226001
crossref_primary_10_1016_j_patcog_2022_108686
crossref_primary_10_1109_TCYB_2022_3217897
crossref_primary_10_1016_j_jneumeth_2021_109091
crossref_primary_10_1016_j_sigpro_2020_107623
crossref_primary_10_1007_s11227_022_04769_w
crossref_primary_10_1007_s41095_019_0151_2
crossref_primary_10_1109_ACCESS_2022_3217769
crossref_primary_10_1371_journal_pone_0282364
crossref_primary_10_1016_j_knosys_2021_106814
crossref_primary_10_1007_s00521_021_06610_6
crossref_primary_10_1093_comjnl_bxz086
crossref_primary_10_1109_ACCESS_2021_3080180
Cites_doi 10.1109/TMI.2006.879955
10.1109/TIP.2014.2321506
10.1109/TPAMI.2007.1046
10.1109/34.1000236
10.1109/TPAMI.2010.161
10.1049/iet-ipr.2015.0236
10.1109/TIP.2016.2621663
10.1109/TFUZZ.2011.2160025
10.1109/42.996338
10.1016/0098-3004(84)90020-7
10.1109/34.546254
10.1109/TSMCB.2004.831165
10.1109/TFUZZ.2015.2505328
10.1016/j.patcog.2006.07.011
10.1109/TIP.2011.2166558
10.1109/83.217222
10.1109/TFUZZ.2006.876740
10.1109/TPAMI.2014.2303095
10.1109/TIP.2017.2658941
10.1109/TFUZZ.2013.2249072
10.1109/TNNLS.2015.2411613
10.1109/TFUZZ.2015.2502278
10.1016/j.ins.2017.01.003
10.1109/TPAMI.2016.2537320
10.1109/TMI.2004.824224
10.1109/TGRS.2015.2480863
10.1016/j.patcog.2016.09.030
10.1049/iet-ipr.2011.0128
10.1109/TBME.2015.2462750
10.1109/TPAMI.2015.2513407
10.1109/TIP.2015.2397313
10.1109/TIP.2010.2040763
10.1109/TFUZZ.2008.2005008
10.1109/TIP.2011.2170702
10.1109/TIP.2016.2518805
10.1109/TIP.2012.2219547
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2018.2796074
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 3041
ExternalDocumentID 10_1109_TFUZZ_2018_2796074
8265186
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2016M602856
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 61461025; 61520106006; 61672333
  funderid: 10.13039/501100001809
– fundername: National Science Foundation of Shanghai
  grantid: 16JC1401300
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c405t-bd23989b99790324001c3e5e357fae10d2295f125b1480f1160973b91adfbc5f3
IEDL.DBID RIE
ISICitedReferencesCount 356
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446675400043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Mon Jun 30 04:24:37 EDT 2025
Sat Nov 29 03:12:36 EST 2025
Tue Nov 18 21:52:29 EST 2025
Wed Aug 27 08:30:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-bd23989b99790324001c3e5e357fae10d2295f125b1480f1160973b91adfbc5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2104-9298
0000-0002-8836-1382
0000-0001-6248-2875
OpenAccessLink https://ieeexplore.ieee.org/document/8265186
PQID 2117184146
PQPubID 85428
PageCount 15
ParticipantIDs ieee_primary_8265186
crossref_primary_10_1109_TFUZZ_2018_2796074
proquest_journals_2117184146
crossref_citationtrail_10_1109_TFUZZ_2018_2796074
PublicationCentury 2000
PublicationDate 2018-Oct.
2018-10-00
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-Oct.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref15
soille (ref37) 2013
ref36
ref31
ref30
ref11
ref32
ref10
wang (ref1) 0
nandi (ref34) 2015
ref2
ref39
ref17
ref38
ref19
ref18
zhao (ref28) 2014; 8
szilagyi (ref20) 0
li (ref14) 0
ref24
ref23
ref26
ref25
ref42
ref41
ref22
ref21
ref43
ref27
ref29
teodoro (ref33) 2012
ref8
pathak (ref16) 0
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref35
  doi: 10.1109/TMI.2006.879955
– ident: ref38
  doi: 10.1109/TIP.2014.2321506
– start-page: 17
  year: 0
  ident: ref20
  article-title: MR brain image segmentation using an enhanced fuzzy c-means algorithm
  publication-title: Proc 25th Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref42
  doi: 10.1109/TPAMI.2007.1046
– start-page: 1796
  year: 0
  ident: ref16
  article-title: Constrained convolutional neural networks for weakly supervised segmentation
  publication-title: Proc IEEE Int Conf Comput Vis
– ident: ref12
  doi: 10.1109/34.1000236
– ident: ref41
  doi: 10.1109/TPAMI.2010.161
– ident: ref29
  doi: 10.1049/iet-ipr.2015.0236
– ident: ref5
  doi: 10.1109/TIP.2016.2621663
– start-page: 2312
  year: 0
  ident: ref1
  article-title: Affinity learning via self-diffusion for image segmentation and clustering
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref8
  doi: 10.1109/TFUZZ.2011.2160025
– ident: ref18
  doi: 10.1109/42.996338
– ident: ref17
  doi: 10.1016/0098-3004(84)90020-7
– year: 2012
  ident: ref33
  article-title: A fast parallel implementation of queue-based morphological reconstruction using GPUs
– ident: ref31
  doi: 10.1109/34.546254
– ident: ref19
  doi: 10.1109/TSMCB.2004.831165
– ident: ref11
  doi: 10.1109/TFUZZ.2015.2505328
– ident: ref21
  doi: 10.1016/j.patcog.2006.07.011
– ident: ref36
  doi: 10.1109/TIP.2011.2166558
– ident: ref30
  doi: 10.1109/83.217222
– ident: ref7
  doi: 10.1109/TFUZZ.2006.876740
– ident: ref2
  doi: 10.1109/TPAMI.2014.2303095
– ident: ref26
  doi: 10.1109/TIP.2017.2658941
– ident: ref32
  doi: 10.1109/TFUZZ.2013.2249072
– ident: ref39
  doi: 10.1109/TNNLS.2015.2411613
– ident: ref6
  doi: 10.1109/TFUZZ.2015.2502278
– year: 2013
  ident: ref37
  publication-title: Morphological Image Analysis Principles and Applications
– ident: ref40
  doi: 10.1016/j.ins.2017.01.003
– ident: ref3
  doi: 10.1109/TPAMI.2016.2537320
– ident: ref10
  doi: 10.1109/TMI.2004.824224
– ident: ref27
  doi: 10.1109/TGRS.2015.2480863
– ident: ref13
  doi: 10.1016/j.patcog.2016.09.030
– volume: 8
  start-page: 150
  year: 2014
  ident: ref28
  article-title: Neighbourhood weighted fuzzy c-means clustering algorithm for image segmentation
  publication-title: IET Image Process
  doi: 10.1049/iet-ipr.2011.0128
– ident: ref9
  doi: 10.1109/TBME.2015.2462750
– ident: ref4
  doi: 10.1109/TPAMI.2015.2513407
– ident: ref43
  doi: 10.1109/TIP.2015.2397313
– ident: ref22
  doi: 10.1109/TIP.2010.2040763
– start-page: 1356
  year: 0
  ident: ref14
  article-title: Superpixel segmentation using linear spectral clustering
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref15
  doi: 10.1109/TFUZZ.2008.2005008
– ident: ref23
  doi: 10.1109/TIP.2011.2170702
– ident: ref25
  doi: 10.1109/TIP.2016.2518805
– year: 2015
  ident: ref34
  publication-title: Integrative Cluster Analysis in Bioinformatics
– ident: ref24
  doi: 10.1109/TIP.2012.2219547
SSID ssj0014518
Score 2.6817245
Snippet As fuzzy c-means clustering (FCM) algorithm is sensitive to noise, local spatial information is often introduced to an objective function to improve the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3027
SubjectTerms Algorithms
Clustering
Clustering algorithms
Computational complexity
Electronic mail
Filtration
Fuzzy c-means clustering (FCM)
Image filters
Image reconstruction
Image segmentation
Immunity
Iterative methods
Linear programming
local spatial information
Matrix partitioning
morphological reconstruction (MR)
Morphology
Noise sensitivity
Partitioning algorithms
Pixels
Robustness
Spatial data
State of the art
Title Significantly Fast and Robust Fuzzy C-Means Clustering Algorithm Based on Morphological Reconstruction and Membership Filtering
URI https://ieeexplore.ieee.org/document/8265186
https://www.proquest.com/docview/2117184146
Volume 26
WOSCitedRecordID wos000446675400043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6gEOpYUiltLKh96Kwfn0-khXjXpZVLUgIS6R4w9YKSSI3a0EF_56Z5xk26oVUm8-2KPIL_bMJDPvAXzInMEjZFNuc-94qlXMdeUFl8qlPs4S9CEiiE3Is7Px5aX6ugZHq14Y51woPnPHNAz_8m1rlvSp7ARD4Swa5-uwLqXserVWfwzSLOra3vKE51LkQ4OMUCfnxcXVFVVxjY9jiRG7TP9wQkFV5a-rOPiXYvv_nuwVvOzjSHbaAf8a1lyzA9uDRgPrj-wObP1GOLgLT99n1w0VB-F-1g-s0PMF041l39pqicNi-fj4wCZ86tCBsUm9JBYFXMhO6-v2fra4uWWf0OtZ1jZs2iJCw83JKIv9xUUbbE4daY1QMRgrZnVn6A1cFJ_PJ194L8HADUZyC15Z4gdUlVJSCeLuE5FJXOaSTHrtImFJDdxjkFRhWiV8FOVE_1OpSFtfmcwne7DRtI3bB2Y0idl5lxqMgkxidRyPNQ7Rdu5zr0YQDZiUpucnJ5mMugx5ilBlwLEkHMsexxF8XK2569g5np29S8itZvagjeBwgL7sD_C8xLwYvXaKfuTg36vewibZ7ur6DmEDd9i9gxfmx2I2v38f3s2fCMriiQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VgkR7oNBSdaGAD9zArZ04yfpYVkRFdFcItlLVS-T4o6yUJlV3t1J76V9n7CQLCITEzQfbifxiz0w88x7A28Rq3EJGUJM6S4WSEVWlYzSTVrgoidGGsCA2kU0mw7Mz-WUN3q9qYay1IfnMHvhmuMs3jV76X2WH6AonfJg-gIeJEBFvq7VWdwYi4W3hWxrTNGNpXyLD5OE0Pz0_93lcw4MoQ589E7-ZoaCr8sdhHCxMvvV_7_YUnnSeJDlqoX8Ga7behq1epYF0m3YbNn-hHNyB-2-zi9qnB-GKVrckV_MFUbUhX5tyic18eXd3S0Z0bNGEkVG19DwKOJAcVRfN9Wzx_ZJ8QLtnSFOTcYMY9Wcn8XHsTzbaMOfYerURnw5G8lnVTvQcTvOP09Ex7UQYqEZfbkFL4xkCZSllJpln72NcxzaxcZI5ZTkzXg_coZtUYmDFHOepJwAqJVfGlTpx8S6s101t94Bo5eXsnBUa_SAdGxVFQ4VNnDt1qZMD4D0mhe4Yyr1QRlWESIXJIuBYeByLDscBvFuNuWr5Of7Ze8cjt-rZgTaA_R76otvC8wIjY7TbAi3Ji7-PegOPj6fjk-Lk0-TzS9jwz2mz_PZhHVfbvoJH-mYxm1-_Dt_pD_TP5dA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Significantly+Fast+and+Robust+Fuzzy+C-Means+Clustering+Algorithm+Based+on+Morphological+Reconstruction+and+Membership+Filtering&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Lei%2C+Tao&rft.au=Jia%2C+Xiaohong&rft.au=Zhang%2C+Yanning&rft.au=He%2C+Lifeng&rft.date=2018-10-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=26&rft.issue=5&rft.spage=3027&rft.epage=3041&rft_id=info:doi/10.1109%2FTFUZZ.2018.2796074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2018_2796074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon