Significantly Fast and Robust Fuzzy C-Means Clustering Algorithm Based on Morphological Reconstruction and Membership Filtering
As fuzzy c-means clustering (FCM) algorithm is sensitive to noise, local spatial information is often introduced to an objective function to improve the robustness of the FCM algorithm for image segmentation. However, the introduction of local spatial information often leads to a high computational...
Uložené v:
| Vydané v: | IEEE transactions on fuzzy systems Ročník 26; číslo 5; s. 3027 - 3041 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1063-6706, 1941-0034 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | As fuzzy c-means clustering (FCM) algorithm is sensitive to noise, local spatial information is often introduced to an objective function to improve the robustness of the FCM algorithm for image segmentation. However, the introduction of local spatial information often leads to a high computational complexity, arising out of an iterative calculation of the distance between pixels within local spatial neighbors and clustering centers. To address this issue, an improved FCM algorithm based on morphological reconstruction and membership filtering (FRFCM) that is significantly faster and more robust than FCM is proposed in this paper. First, the local spatial information of images is incorporated into FRFCM by introducing morphological reconstruction operation to guarantee noise-immunity and image detail-preservation. Second, the modification of membership partition, based on the distance between pixels within local spatial neighbors and clustering centers, is replaced by local membership filtering that depends only on the spatial neighbors of membership partition. Compared with state-of-the-art algorithms, the proposed FRFCM algorithm is simpler and significantly faster, since it is unnecessary to compute the distance between pixels within local spatial neighbors and clustering centers. In addition, it is efficient for noisy image segmentation because membership filtering are able to improve membership partition matrix efficiently. Experiments performed on synthetic and real-world images demonstrate that the proposed algorithm not only achieves better results, but also requires less time than the state-of-the-art algorithms for image segmentation. |
|---|---|
| AbstractList | As fuzzy c-means clustering (FCM) algorithm is sensitive to noise, local spatial information is often introduced to an objective function to improve the robustness of the FCM algorithm for image segmentation. However, the introduction of local spatial information often leads to a high computational complexity, arising out of an iterative calculation of the distance between pixels within local spatial neighbors and clustering centers. To address this issue, an improved FCM algorithm based on morphological reconstruction and membership filtering (FRFCM) that is significantly faster and more robust than FCM is proposed in this paper. First, the local spatial information of images is incorporated into FRFCM by introducing morphological reconstruction operation to guarantee noise-immunity and image detail-preservation. Second, the modification of membership partition, based on the distance between pixels within local spatial neighbors and clustering centers, is replaced by local membership filtering that depends only on the spatial neighbors of membership partition. Compared with state-of-the-art algorithms, the proposed FRFCM algorithm is simpler and significantly faster, since it is unnecessary to compute the distance between pixels within local spatial neighbors and clustering centers. In addition, it is efficient for noisy image segmentation because membership filtering are able to improve membership partition matrix efficiently. Experiments performed on synthetic and real-world images demonstrate that the proposed algorithm not only achieves better results, but also requires less time than the state-of-the-art algorithms for image segmentation. |
| Author | Meng, Hongying Lei, Tao Nandi, Asoke K. He, Lifeng Zhang, Yanning Jia, Xiaohong |
| Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0002-2104-9298 surname: Lei fullname: Lei, Tao email: leitao@sust.edu.cn organization: College of Electronical and Information Engineering, Shaanxi University of Science and Technology, Xi'an, China – sequence: 2 givenname: Xiaohong surname: Jia fullname: Jia, Xiaohong email: jiaxhsust@163.com organization: College of Electronical and Information Engineering, Shaanxi University of Science and Technology, Xi'an, China – sequence: 3 givenname: Yanning surname: Zhang fullname: Zhang, Yanning email: ynzhang@nwpu.edu.cn organization: School of Computer Science, Northwestern Polytechnical University, Xi’an, China – sequence: 4 givenname: Lifeng surname: He fullname: He, Lifeng email: helifeng@ist.aichi-pu.ac.jp organization: College of Electronical and Information Engineering, Shaanxi University of Science and Technology, Xi'an, China – sequence: 5 givenname: Hongying orcidid: 0000-0002-8836-1382 surname: Meng fullname: Meng, Hongying email: hongying.meng@brunel.ac.uk organization: Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, Middlesex, U.K – sequence: 6 givenname: Asoke K. orcidid: 0000-0001-6248-2875 surname: Nandi fullname: Nandi, Asoke K. email: asoke.nandi@brunel.ac.uk organization: Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, Middlesex, U.K |
| BookMark | eNp9UT1PwzAQtRBIQOEPwGKJOcVnOx8eoSKARIVU2oUlchKnNUrtYjtDWfjruBQxMDDd6e7ee3fvTtGhsUYhdAFkDEDE9bxcvL6OKYFiTHORkZwfoBMQHBJCGD-MOclYkuUkO0an3r8RAjyF4gR9vuil0Z1upAn9FpfSByxNi2e2HmJaDh8fWzxJpkoajyd9rCmnzRLf9EvrdFit8a30qsXW4Kl1m5Xt7TKS9XimGmt8cEMTdGzuOKdqXSvnV3qDS93vic7QUSd7r85_4ggtyrv55CF5er5_nNw8JQ0naUjqljJRiFqIXBBGedy_YSpVLM07qYC0lIq0A5rWwAvSAWRE5KwWINuubtKOjdDVnnfj7PugfKje7OBMlKwoQA4FB57FKbqfapz13qmu2ji9lm5bAal2RlffRlc7o6sfoyOo-ANqdJC7q4OTuv8fermHaqXUr1ZBs_ibjH0Bz7OPQw |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1007_s11042_022_12840_0 crossref_primary_10_1007_s13042_025_02575_3 crossref_primary_10_1016_j_bspc_2019_101780 crossref_primary_10_32604_cmc_2024_046094 crossref_primary_10_1016_j_eswa_2024_124943 crossref_primary_10_1049_ipr2_13023 crossref_primary_10_1016_j_optcom_2023_130064 crossref_primary_10_1088_1742_6596_3004_1_012004 crossref_primary_10_1016_j_mehy_2019_109507 crossref_primary_10_1002_ima_22416 crossref_primary_10_1109_TIM_2025_3527611 crossref_primary_10_2478_amns_2024_3398 crossref_primary_10_3233_IDT_210091 crossref_primary_10_1080_23311916_2018_1513304 crossref_primary_10_1016_j_optlaseng_2023_107872 crossref_primary_10_1016_j_advengsoft_2022_103377 crossref_primary_10_1109_TFUZZ_2020_2985930 crossref_primary_10_1007_s10489_022_04315_4 crossref_primary_10_1109_ACCESS_2021_3069747 crossref_primary_10_1016_j_engappai_2024_109229 crossref_primary_10_1155_2019_5984649 crossref_primary_10_1016_j_fss_2023_108792 crossref_primary_10_1155_2019_6397905 crossref_primary_10_1007_s11042_022_12295_3 crossref_primary_10_1007_s00371_024_03470_8 crossref_primary_10_3390_nano11081876 crossref_primary_10_1109_TFUZZ_2024_3435390 crossref_primary_10_1016_j_compbiomed_2020_103751 crossref_primary_10_1007_s11042_024_19080_4 crossref_primary_10_1016_j_bbe_2020_07_001 crossref_primary_10_1109_ACCESS_2024_3430973 crossref_primary_10_1002_mma_10826 crossref_primary_10_1038_s41598_024_56698_8 crossref_primary_10_1049_ipr2_12078 crossref_primary_10_1515_phys_2019_0010 crossref_primary_10_1016_j_ins_2019_07_027 crossref_primary_10_1007_s40747_024_01431_1 crossref_primary_10_1016_j_asoc_2020_106318 crossref_primary_10_1007_s00371_023_02821_1 crossref_primary_10_3390_mi13040546 crossref_primary_10_1016_j_ultras_2020_106268 crossref_primary_10_1049_ipr2_12194 crossref_primary_10_1109_THMS_2020_3047914 crossref_primary_10_1002_cpe_70035 crossref_primary_10_1109_ACCESS_2020_3015270 crossref_primary_10_1109_ACCESS_2023_3348123 crossref_primary_10_1109_TFUZZ_2024_3387429 crossref_primary_10_1016_j_sigpro_2024_109690 crossref_primary_10_1109_ACCESS_2020_2994985 crossref_primary_10_1016_j_asoc_2025_113926 crossref_primary_10_3390_bioengineering10020215 crossref_primary_10_1007_s11633_019_1171_1 crossref_primary_10_1016_j_engappai_2022_104672 crossref_primary_10_1049_itr2_12109 crossref_primary_10_1088_1361_6501_ac7779 crossref_primary_10_1016_j_is_2022_102124 crossref_primary_10_1016_j_engappai_2024_108955 crossref_primary_10_1007_s11042_023_15230_2 crossref_primary_10_1007_s42835_019_00259_x crossref_primary_10_1080_2150704X_2023_2273244 crossref_primary_10_3103_S0146411622010047 crossref_primary_10_1016_j_engappai_2024_109135 crossref_primary_10_3233_XST_210928 crossref_primary_10_1007_s10489_024_05813_3 crossref_primary_10_3390_s19061289 crossref_primary_10_1016_j_jbusres_2024_114914 crossref_primary_10_1016_j_knosys_2023_110736 crossref_primary_10_1049_ipr2_12650 crossref_primary_10_1007_s10044_024_01228_5 crossref_primary_10_1038_s41598_024_60668_5 crossref_primary_10_1109_JSTARS_2023_3257548 crossref_primary_10_1007_s40815_020_00824_x crossref_primary_10_1007_s11042_024_19018_w crossref_primary_10_1016_j_dsp_2024_104801 crossref_primary_10_1109_TFUZZ_2020_3029296 crossref_primary_10_1016_j_engappai_2023_107776 crossref_primary_10_1016_j_dsp_2021_103036 crossref_primary_10_1029_2021JB022250 crossref_primary_10_1109_ACCESS_2020_2998486 crossref_primary_10_23919_cje_2023_00_268 crossref_primary_10_1007_s00779_019_01343_9 crossref_primary_10_1016_j_procs_2020_04_290 crossref_primary_10_1007_s00357_023_09443_1 crossref_primary_10_1007_s00371_023_02910_1 crossref_primary_10_1016_j_dsp_2019_102615 crossref_primary_10_1109_ACCESS_2020_2992937 crossref_primary_10_1007_s00371_023_03218_w crossref_primary_10_1109_TFUZZ_2024_3373509 crossref_primary_10_1016_j_asoc_2021_107759 crossref_primary_10_1016_j_bspc_2021_103093 crossref_primary_10_1016_j_ins_2021_08_036 crossref_primary_10_4018_IJAMC_292516 crossref_primary_10_1007_s12517_021_07069_4 crossref_primary_10_3390_sym17050679 crossref_primary_10_1109_JAS_2020_1003420 crossref_primary_10_1109_TSMC_2024_3418411 crossref_primary_10_20965_jrm_2019_p0339 crossref_primary_10_1007_s11042_020_09999_9 crossref_primary_10_1016_j_compeleceng_2021_107022 crossref_primary_10_1007_s42452_020_04110_1 crossref_primary_10_1007_s40815_023_01485_2 crossref_primary_10_1007_s00500_023_08844_z crossref_primary_10_3233_JIFS_200349 crossref_primary_10_1109_TFUZZ_2018_2883033 crossref_primary_10_1007_s10489_022_03690_2 crossref_primary_10_1109_TFUZZ_2018_2889018 crossref_primary_10_1109_TIP_2019_2930148 crossref_primary_10_3233_JIFS_179583 crossref_primary_10_3390_rs14081818 crossref_primary_10_1109_TFUZZ_2021_3081990 crossref_primary_10_1016_j_engappai_2021_104209 crossref_primary_10_3390_rs11232787 crossref_primary_10_3390_sym11060753 crossref_primary_10_3390_sym10110610 crossref_primary_10_1016_j_coldregions_2024_104381 crossref_primary_10_1109_ACCESS_2019_2955992 crossref_primary_10_1371_journal_pone_0214406 crossref_primary_10_3390_rs13214308 crossref_primary_10_1016_j_dsp_2025_105083 crossref_primary_10_1109_ACCESS_2020_2996603 crossref_primary_10_3233_JIFS_202401 crossref_primary_10_1007_s13137_023_00243_8 crossref_primary_10_1145_3380743 crossref_primary_10_1016_j_enggeo_2021_106495 crossref_primary_10_1007_s00138_024_01654_9 crossref_primary_10_1007_s42835_023_01460_9 crossref_primary_10_1007_s00371_021_02126_1 crossref_primary_10_1007_s11227_020_03344_5 crossref_primary_10_1016_j_eswa_2023_122270 crossref_primary_10_1007_s12652_022_03893_y crossref_primary_10_1109_TFUZZ_2020_3029285 crossref_primary_10_1109_JSEN_2021_3092432 crossref_primary_10_1007_s11063_022_10876_9 crossref_primary_10_1007_s00500_022_07269_4 crossref_primary_10_1007_s44336_024_00008_3 crossref_primary_10_1007_s00371_020_01861_1 crossref_primary_10_1016_j_cmpb_2019_03_003 crossref_primary_10_1007_s10916_019_1462_7 crossref_primary_10_1117_1_JEI_34_2_023020 crossref_primary_10_1016_j_eswa_2023_120419 crossref_primary_10_1109_TIM_2021_3052018 crossref_primary_10_1109_TCYB_2021_3099503 crossref_primary_10_1007_s11760_023_02911_6 crossref_primary_10_1007_s13042_020_01151_1 crossref_primary_10_1016_j_optlastec_2020_106911 crossref_primary_10_1016_j_artmed_2019_101768 crossref_primary_10_1007_s42001_024_00315_1 crossref_primary_10_1109_ACCESS_2020_3039742 crossref_primary_10_3390_rs15143463 crossref_primary_10_3390_s21030696 crossref_primary_10_1109_TCSVT_2023_3290363 crossref_primary_10_1109_TFUZZ_2019_2930030 crossref_primary_10_1109_ACCESS_2020_2977108 crossref_primary_10_1007_s11042_023_14703_8 crossref_primary_10_1016_j_jocs_2019_03_003 crossref_primary_10_1007_s40815_020_01015_4 crossref_primary_10_1016_j_sasc_2025_200344 crossref_primary_10_1166_jmihi_2021_3860 crossref_primary_10_1007_s11042_023_14861_9 crossref_primary_10_3390_rs14153604 crossref_primary_10_3390_rs14143490 crossref_primary_10_3390_math9192383 crossref_primary_10_1007_s11760_022_02144_z crossref_primary_10_1007_s40815_025_02081_2 crossref_primary_10_1016_j_compeleceng_2025_110358 crossref_primary_10_1016_j_neucom_2018_09_034 crossref_primary_10_1016_j_dsp_2024_104798 crossref_primary_10_1109_TFUZZ_2020_3030498 crossref_primary_10_1016_j_knosys_2023_110522 crossref_primary_10_1109_ACCESS_2019_2895636 crossref_primary_10_1016_j_apm_2020_09_008 crossref_primary_10_1007_s11042_023_14512_z crossref_primary_10_1016_j_matcom_2025_02_012 crossref_primary_10_1109_LGRS_2018_2889307 crossref_primary_10_1109_TFUZZ_2022_3220925 crossref_primary_10_1007_s11042_020_09402_7 crossref_primary_10_1016_j_sigpro_2020_107767 crossref_primary_10_1049_iet_bmt_2019_0026 crossref_primary_10_1587_transinf_2020EDL8025 crossref_primary_10_1007_s11042_020_08636_9 crossref_primary_10_1007_s00034_024_02804_0 crossref_primary_10_1007_s10791_025_09528_y crossref_primary_10_1016_j_ijar_2023_02_013 crossref_primary_10_1109_TIP_2020_2975717 crossref_primary_10_1016_j_imavis_2023_104712 crossref_primary_10_1111_exsy_12625 crossref_primary_10_1109_TFUZZ_2020_2991306 crossref_primary_10_3390_a15100380 crossref_primary_10_1016_j_ijleo_2022_169039 crossref_primary_10_1109_ACCESS_2018_2863719 crossref_primary_10_1109_TFUZZ_2020_3003441 crossref_primary_10_1007_s11042_023_14546_3 crossref_primary_10_1109_TFUZZ_2023_3235392 crossref_primary_10_1007_s00500_021_06397_7 crossref_primary_10_1631_FITEE_2000695 crossref_primary_10_3390_app14020644 crossref_primary_10_1109_JIOT_2020_3004469 crossref_primary_10_3390_s20174920 crossref_primary_10_1109_ACCESS_2019_2897597 crossref_primary_10_3390_s23167309 crossref_primary_10_1007_s00034_024_02758_3 crossref_primary_10_1016_j_jvcir_2021_103357 crossref_primary_10_1007_s00500_023_09358_4 crossref_primary_10_1155_2023_6662911 crossref_primary_10_1007_s11831_021_09629_z crossref_primary_10_1109_ACCESS_2019_2928415 crossref_primary_10_1016_j_asoc_2021_107778 crossref_primary_10_1049_ipr2_12245 crossref_primary_10_1016_j_dsp_2023_104032 crossref_primary_10_1016_j_knosys_2021_108008 crossref_primary_10_1109_ACCESS_2020_3024718 crossref_primary_10_1007_s00500_022_07531_9 crossref_primary_10_1109_TFUZZ_2019_2923963 crossref_primary_10_1080_1206212X_2019_1662984 crossref_primary_10_1109_ACCESS_2024_3448301 crossref_primary_10_1016_j_aei_2021_101317 crossref_primary_10_1007_s10489_021_02886_2 crossref_primary_10_1109_ACCESS_2020_2995660 crossref_primary_10_1109_TFUZZ_2019_2949771 crossref_primary_10_1142_S201032472550002X crossref_primary_10_1007_s10586_024_05027_9 crossref_primary_10_1016_j_ins_2021_12_058 crossref_primary_10_1016_j_sigpro_2024_109515 crossref_primary_10_1007_s10489_025_06502_5 crossref_primary_10_1016_j_bspc_2023_104746 crossref_primary_10_1016_j_eswa_2022_117015 crossref_primary_10_1016_j_eswa_2020_114370 crossref_primary_10_1109_TKDE_2022_3200685 crossref_primary_10_1007_s11042_023_16569_2 crossref_primary_10_1016_j_eswa_2022_117019 crossref_primary_10_1007_s42235_021_0049_4 crossref_primary_10_1109_TCSVT_2020_3019109 crossref_primary_10_1139_cjce_2019_0153 crossref_primary_10_1007_s10489_024_06078_6 crossref_primary_10_1016_j_jvcir_2022_103694 crossref_primary_10_1186_s13638_022_02117_3 crossref_primary_10_1007_s11760_021_01957_8 crossref_primary_10_1007_s42979_024_02678_8 crossref_primary_10_1016_j_ijleo_2023_170642 crossref_primary_10_1007_s13042_024_02419_6 crossref_primary_10_1007_s00500_023_08565_3 crossref_primary_10_1007_s10489_020_01977_w crossref_primary_10_3390_rs16163096 crossref_primary_10_1016_j_cviu_2023_103765 crossref_primary_10_1007_s00357_024_09472_4 crossref_primary_10_1016_j_patcog_2023_109611 crossref_primary_10_1002_ima_22321 crossref_primary_10_1109_JSTARS_2022_3225665 crossref_primary_10_1016_j_dsp_2021_103200 crossref_primary_10_1049_el_2019_1281 crossref_primary_10_1109_TIP_2019_2920514 crossref_primary_10_1109_TSMC_2022_3205365 crossref_primary_10_1016_j_aej_2025_05_036 crossref_primary_10_1109_TFUZZ_2024_3463792 crossref_primary_10_3233_JIFS_210336 crossref_primary_10_1007_s12652_020_02762_w crossref_primary_10_1109_TCYB_2020_2994235 crossref_primary_10_1049_ipr2_12939 crossref_primary_10_1109_TASE_2025_3550681 crossref_primary_10_1007_s10278_020_00354_w crossref_primary_10_1016_j_asoc_2022_109005 crossref_primary_10_1049_iet_ipr_2020_0402 crossref_primary_10_1007_s11042_020_08699_8 crossref_primary_10_1109_TSMC_2019_2931699 crossref_primary_10_1016_j_asoc_2021_107245 crossref_primary_10_1007_s11042_020_09797_3 crossref_primary_10_1109_TFUZZ_2021_3099560 crossref_primary_10_1080_1206212X_2024_2380975 crossref_primary_10_3390_app13106099 crossref_primary_10_1016_j_compeleceng_2024_109815 crossref_primary_10_1007_s41066_020_00230_6 crossref_primary_10_1007_s00500_022_06751_3 crossref_primary_10_3390_rs10091381 crossref_primary_10_1109_TFUZZ_2020_3037972 crossref_primary_10_1109_TIE_2021_3066918 crossref_primary_10_1109_TSMC_2024_3388475 crossref_primary_10_1109_JIOT_2020_3007130 crossref_primary_10_1007_s13042_021_01429_y crossref_primary_10_1049_ipr2_12701 crossref_primary_10_3233_JIFS_219370 crossref_primary_10_1016_j_knosys_2022_108501 crossref_primary_10_1007_s00521_024_10899_4 crossref_primary_10_1016_j_infrared_2022_104473 crossref_primary_10_1049_iet_gtd_2019_1038 crossref_primary_10_1109_TIP_2020_2990346 crossref_primary_10_3390_info9100261 crossref_primary_10_1016_j_patrec_2021_12_001 crossref_primary_10_1007_s12530_024_09591_8 crossref_primary_10_3233_JCM_226001 crossref_primary_10_1016_j_patcog_2022_108686 crossref_primary_10_1109_TCYB_2022_3217897 crossref_primary_10_1016_j_jneumeth_2021_109091 crossref_primary_10_1016_j_sigpro_2020_107623 crossref_primary_10_1007_s11227_022_04769_w crossref_primary_10_1007_s41095_019_0151_2 crossref_primary_10_1109_ACCESS_2022_3217769 crossref_primary_10_1371_journal_pone_0282364 crossref_primary_10_1016_j_knosys_2021_106814 crossref_primary_10_1007_s00521_021_06610_6 crossref_primary_10_1093_comjnl_bxz086 crossref_primary_10_1109_ACCESS_2021_3080180 |
| Cites_doi | 10.1109/TMI.2006.879955 10.1109/TIP.2014.2321506 10.1109/TPAMI.2007.1046 10.1109/34.1000236 10.1109/TPAMI.2010.161 10.1049/iet-ipr.2015.0236 10.1109/TIP.2016.2621663 10.1109/TFUZZ.2011.2160025 10.1109/42.996338 10.1016/0098-3004(84)90020-7 10.1109/34.546254 10.1109/TSMCB.2004.831165 10.1109/TFUZZ.2015.2505328 10.1016/j.patcog.2006.07.011 10.1109/TIP.2011.2166558 10.1109/83.217222 10.1109/TFUZZ.2006.876740 10.1109/TPAMI.2014.2303095 10.1109/TIP.2017.2658941 10.1109/TFUZZ.2013.2249072 10.1109/TNNLS.2015.2411613 10.1109/TFUZZ.2015.2502278 10.1016/j.ins.2017.01.003 10.1109/TPAMI.2016.2537320 10.1109/TMI.2004.824224 10.1109/TGRS.2015.2480863 10.1016/j.patcog.2016.09.030 10.1049/iet-ipr.2011.0128 10.1109/TBME.2015.2462750 10.1109/TPAMI.2015.2513407 10.1109/TIP.2015.2397313 10.1109/TIP.2010.2040763 10.1109/TFUZZ.2008.2005008 10.1109/TIP.2011.2170702 10.1109/TIP.2016.2518805 10.1109/TIP.2012.2219547 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TFUZZ.2018.2796074 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 3041 |
| ExternalDocumentID | 10_1109_TFUZZ_2018_2796074 8265186 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2016M602856 funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China grantid: 61461025; 61520106006; 61672333 funderid: 10.13039/501100001809 – fundername: National Science Foundation of Shanghai grantid: 16JC1401300 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c405t-bd23989b99790324001c3e5e357fae10d2295f125b1480f1160973b91adfbc5f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 356 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446675400043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6706 |
| IngestDate | Mon Jun 30 04:24:37 EDT 2025 Sat Nov 29 03:12:36 EST 2025 Tue Nov 18 21:52:29 EST 2025 Wed Aug 27 08:30:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c405t-bd23989b99790324001c3e5e357fae10d2295f125b1480f1160973b91adfbc5f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2104-9298 0000-0002-8836-1382 0000-0001-6248-2875 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/8265186 |
| PQID | 2117184146 |
| PQPubID | 85428 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_8265186 crossref_primary_10_1109_TFUZZ_2018_2796074 proquest_journals_2117184146 crossref_citationtrail_10_1109_TFUZZ_2018_2796074 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Oct. 2018-10-00 20181001 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-Oct. |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref12 ref15 soille (ref37) 2013 ref36 ref31 ref30 ref11 ref32 ref10 wang (ref1) 0 nandi (ref34) 2015 ref2 ref39 ref17 ref38 ref19 ref18 zhao (ref28) 2014; 8 szilagyi (ref20) 0 li (ref14) 0 ref24 ref23 ref26 ref25 ref42 ref41 ref22 ref21 ref43 ref27 ref29 teodoro (ref33) 2012 ref8 pathak (ref16) 0 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref35 doi: 10.1109/TMI.2006.879955 – ident: ref38 doi: 10.1109/TIP.2014.2321506 – start-page: 17 year: 0 ident: ref20 article-title: MR brain image segmentation using an enhanced fuzzy c-means algorithm publication-title: Proc 25th Annu Int Conf IEEE Eng Med Biol Soc – ident: ref42 doi: 10.1109/TPAMI.2007.1046 – start-page: 1796 year: 0 ident: ref16 article-title: Constrained convolutional neural networks for weakly supervised segmentation publication-title: Proc IEEE Int Conf Comput Vis – ident: ref12 doi: 10.1109/34.1000236 – ident: ref41 doi: 10.1109/TPAMI.2010.161 – ident: ref29 doi: 10.1049/iet-ipr.2015.0236 – ident: ref5 doi: 10.1109/TIP.2016.2621663 – start-page: 2312 year: 0 ident: ref1 article-title: Affinity learning via self-diffusion for image segmentation and clustering publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref8 doi: 10.1109/TFUZZ.2011.2160025 – ident: ref18 doi: 10.1109/42.996338 – ident: ref17 doi: 10.1016/0098-3004(84)90020-7 – year: 2012 ident: ref33 article-title: A fast parallel implementation of queue-based morphological reconstruction using GPUs – ident: ref31 doi: 10.1109/34.546254 – ident: ref19 doi: 10.1109/TSMCB.2004.831165 – ident: ref11 doi: 10.1109/TFUZZ.2015.2505328 – ident: ref21 doi: 10.1016/j.patcog.2006.07.011 – ident: ref36 doi: 10.1109/TIP.2011.2166558 – ident: ref30 doi: 10.1109/83.217222 – ident: ref7 doi: 10.1109/TFUZZ.2006.876740 – ident: ref2 doi: 10.1109/TPAMI.2014.2303095 – ident: ref26 doi: 10.1109/TIP.2017.2658941 – ident: ref32 doi: 10.1109/TFUZZ.2013.2249072 – ident: ref39 doi: 10.1109/TNNLS.2015.2411613 – ident: ref6 doi: 10.1109/TFUZZ.2015.2502278 – year: 2013 ident: ref37 publication-title: Morphological Image Analysis Principles and Applications – ident: ref40 doi: 10.1016/j.ins.2017.01.003 – ident: ref3 doi: 10.1109/TPAMI.2016.2537320 – ident: ref10 doi: 10.1109/TMI.2004.824224 – ident: ref27 doi: 10.1109/TGRS.2015.2480863 – ident: ref13 doi: 10.1016/j.patcog.2016.09.030 – volume: 8 start-page: 150 year: 2014 ident: ref28 article-title: Neighbourhood weighted fuzzy c-means clustering algorithm for image segmentation publication-title: IET Image Process doi: 10.1049/iet-ipr.2011.0128 – ident: ref9 doi: 10.1109/TBME.2015.2462750 – ident: ref4 doi: 10.1109/TPAMI.2015.2513407 – ident: ref43 doi: 10.1109/TIP.2015.2397313 – ident: ref22 doi: 10.1109/TIP.2010.2040763 – start-page: 1356 year: 0 ident: ref14 article-title: Superpixel segmentation using linear spectral clustering publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref15 doi: 10.1109/TFUZZ.2008.2005008 – ident: ref23 doi: 10.1109/TIP.2011.2170702 – ident: ref25 doi: 10.1109/TIP.2016.2518805 – year: 2015 ident: ref34 publication-title: Integrative Cluster Analysis in Bioinformatics – ident: ref24 doi: 10.1109/TIP.2012.2219547 |
| SSID | ssj0014518 |
| Score | 2.6817245 |
| Snippet | As fuzzy c-means clustering (FCM) algorithm is sensitive to noise, local spatial information is often introduced to an objective function to improve the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3027 |
| SubjectTerms | Algorithms Clustering Clustering algorithms Computational complexity Electronic mail Filtration Fuzzy c-means clustering (FCM) Image filters Image reconstruction Image segmentation Immunity Iterative methods Linear programming local spatial information Matrix partitioning morphological reconstruction (MR) Morphology Noise sensitivity Partitioning algorithms Pixels Robustness Spatial data State of the art |
| Title | Significantly Fast and Robust Fuzzy C-Means Clustering Algorithm Based on Morphological Reconstruction and Membership Filtering |
| URI | https://ieeexplore.ieee.org/document/8265186 https://www.proquest.com/docview/2117184146 |
| Volume | 26 |
| WOSCitedRecordID | wos000446675400043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6gEOpYUiltLKh96Kwfn0-khXjXpZVLUgIS6R4w9YKSSI3a0EF_56Z5xk26oVUm8-2KPIL_bMJDPvAXzInMEjZFNuc-94qlXMdeUFl8qlPs4S9CEiiE3Is7Px5aX6ugZHq14Y51woPnPHNAz_8m1rlvSp7ARD4Swa5-uwLqXserVWfwzSLOra3vKE51LkQ4OMUCfnxcXVFVVxjY9jiRG7TP9wQkFV5a-rOPiXYvv_nuwVvOzjSHbaAf8a1lyzA9uDRgPrj-wObP1GOLgLT99n1w0VB-F-1g-s0PMF041l39pqicNi-fj4wCZ86tCBsUm9JBYFXMhO6-v2fra4uWWf0OtZ1jZs2iJCw83JKIv9xUUbbE4daY1QMRgrZnVn6A1cFJ_PJ194L8HADUZyC15Z4gdUlVJSCeLuE5FJXOaSTHrtImFJDdxjkFRhWiV8FOVE_1OpSFtfmcwne7DRtI3bB2Y0idl5lxqMgkxidRyPNQ7Rdu5zr0YQDZiUpucnJ5mMugx5ilBlwLEkHMsexxF8XK2569g5np29S8itZvagjeBwgL7sD_C8xLwYvXaKfuTg36vewibZ7ur6DmEDd9i9gxfmx2I2v38f3s2fCMriiQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VgkR7oNBSdaGAD9zArZ04yfpYVkRFdFcItlLVS-T4o6yUJlV3t1J76V9n7CQLCITEzQfbifxiz0w88x7A28Rq3EJGUJM6S4WSEVWlYzSTVrgoidGGsCA2kU0mw7Mz-WUN3q9qYay1IfnMHvhmuMs3jV76X2WH6AonfJg-gIeJEBFvq7VWdwYi4W3hWxrTNGNpXyLD5OE0Pz0_93lcw4MoQ589E7-ZoaCr8sdhHCxMvvV_7_YUnnSeJDlqoX8Ga7behq1epYF0m3YbNn-hHNyB-2-zi9qnB-GKVrckV_MFUbUhX5tyic18eXd3S0Z0bNGEkVG19DwKOJAcVRfN9Wzx_ZJ8QLtnSFOTcYMY9Wcn8XHsTzbaMOfYerURnw5G8lnVTvQcTvOP09Ex7UQYqEZfbkFL4xkCZSllJpln72NcxzaxcZI5ZTkzXg_coZtUYmDFHOepJwAqJVfGlTpx8S6s101t94Bo5eXsnBUa_SAdGxVFQ4VNnDt1qZMD4D0mhe4Yyr1QRlWESIXJIuBYeByLDscBvFuNuWr5Of7Ze8cjt-rZgTaA_R76otvC8wIjY7TbAi3Ji7-PegOPj6fjk-Lk0-TzS9jwz2mz_PZhHVfbvoJH-mYxm1-_Dt_pD_TP5dA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Significantly+Fast+and+Robust+Fuzzy+C-Means+Clustering+Algorithm+Based+on+Morphological+Reconstruction+and+Membership+Filtering&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Lei%2C+Tao&rft.au=Jia%2C+Xiaohong&rft.au=Zhang%2C+Yanning&rft.au=He%2C+Lifeng&rft.date=2018-10-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=26&rft.issue=5&rft.spage=3027&rft.epage=3041&rft_id=info:doi/10.1109%2FTFUZZ.2018.2796074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2018_2796074 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |