Heart beats in the cloud: distributed analysis of electrophysiological 'Big Data' using cloud computing for epilepsy clinical research

The rapidly growing volume of multimodal electrophysiological signal data is playing a critical role in patient care and clinical research across multiple disease domains, such as epilepsy and sleep medicine. To facilitate secondary use of these data, there is an urgent need to develop novel algorit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Medical Informatics Association : JAMIA Jg. 21; H. 2; S. 263
Hauptverfasser: Sahoo, Satya S, Jayapandian, Catherine, Garg, Gaurav, Kaffashi, Farhad, Chung, Stephanie, Bozorgi, Alireza, Chen, Chien-Hun, Loparo, Kenneth, Lhatoo, Samden D, Zhang, Guo-Qiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 01.03.2014
Schlagworte:
ISSN:1527-974X, 1527-974X
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The rapidly growing volume of multimodal electrophysiological signal data is playing a critical role in patient care and clinical research across multiple disease domains, such as epilepsy and sleep medicine. To facilitate secondary use of these data, there is an urgent need to develop novel algorithms and informatics approaches using new cloud computing technologies as well as ontologies for collaborative multicenter studies. We present the Cloudwave platform, which (a) defines parallelized algorithms for computing cardiac measures using the MapReduce parallel programming framework, (b) supports real-time interaction with large volumes of electrophysiological signals, and (c) features signal visualization and querying functionalities using an ontology-driven web-based interface. Cloudwave is currently used in the multicenter National Institute of Neurological Diseases and Stroke (NINDS)-funded Prevention and Risk Identification of SUDEP (sudden unexplained death in epilepsy) Mortality (PRISM) project to identify risk factors for sudden death in epilepsy. Comparative evaluations of Cloudwave with traditional desktop approaches to compute cardiac measures (eg, QRS complexes, RR intervals, and instantaneous heart rate) on epilepsy patient data show one order of magnitude improvement for single-channel ECG data and 20 times improvement for four-channel ECG data. This enables Cloudwave to support real-time user interaction with signal data, which is semantically annotated with a novel epilepsy and seizure ontology. Data privacy is a critical issue in using cloud infrastructure, and cloud platforms, such as Amazon Web Services, offer features to support Health Insurance Portability and Accountability Act standards. The Cloudwave platform is a new approach to leverage of large-scale electrophysiological data for advancing multicenter clinical research.
AbstractList The rapidly growing volume of multimodal electrophysiological signal data is playing a critical role in patient care and clinical research across multiple disease domains, such as epilepsy and sleep medicine. To facilitate secondary use of these data, there is an urgent need to develop novel algorithms and informatics approaches using new cloud computing technologies as well as ontologies for collaborative multicenter studies. We present the Cloudwave platform, which (a) defines parallelized algorithms for computing cardiac measures using the MapReduce parallel programming framework, (b) supports real-time interaction with large volumes of electrophysiological signals, and (c) features signal visualization and querying functionalities using an ontology-driven web-based interface. Cloudwave is currently used in the multicenter National Institute of Neurological Diseases and Stroke (NINDS)-funded Prevention and Risk Identification of SUDEP (sudden unexplained death in epilepsy) Mortality (PRISM) project to identify risk factors for sudden death in epilepsy. Comparative evaluations of Cloudwave with traditional desktop approaches to compute cardiac measures (eg, QRS complexes, RR intervals, and instantaneous heart rate) on epilepsy patient data show one order of magnitude improvement for single-channel ECG data and 20 times improvement for four-channel ECG data. This enables Cloudwave to support real-time user interaction with signal data, which is semantically annotated with a novel epilepsy and seizure ontology. Data privacy is a critical issue in using cloud infrastructure, and cloud platforms, such as Amazon Web Services, offer features to support Health Insurance Portability and Accountability Act standards. The Cloudwave platform is a new approach to leverage of large-scale electrophysiological data for advancing multicenter clinical research.
The rapidly growing volume of multimodal electrophysiological signal data is playing a critical role in patient care and clinical research across multiple disease domains, such as epilepsy and sleep medicine. To facilitate secondary use of these data, there is an urgent need to develop novel algorithms and informatics approaches using new cloud computing technologies as well as ontologies for collaborative multicenter studies.OBJECTIVEThe rapidly growing volume of multimodal electrophysiological signal data is playing a critical role in patient care and clinical research across multiple disease domains, such as epilepsy and sleep medicine. To facilitate secondary use of these data, there is an urgent need to develop novel algorithms and informatics approaches using new cloud computing technologies as well as ontologies for collaborative multicenter studies.We present the Cloudwave platform, which (a) defines parallelized algorithms for computing cardiac measures using the MapReduce parallel programming framework, (b) supports real-time interaction with large volumes of electrophysiological signals, and (c) features signal visualization and querying functionalities using an ontology-driven web-based interface. Cloudwave is currently used in the multicenter National Institute of Neurological Diseases and Stroke (NINDS)-funded Prevention and Risk Identification of SUDEP (sudden unexplained death in epilepsy) Mortality (PRISM) project to identify risk factors for sudden death in epilepsy.MATERIALS AND METHODSWe present the Cloudwave platform, which (a) defines parallelized algorithms for computing cardiac measures using the MapReduce parallel programming framework, (b) supports real-time interaction with large volumes of electrophysiological signals, and (c) features signal visualization and querying functionalities using an ontology-driven web-based interface. Cloudwave is currently used in the multicenter National Institute of Neurological Diseases and Stroke (NINDS)-funded Prevention and Risk Identification of SUDEP (sudden unexplained death in epilepsy) Mortality (PRISM) project to identify risk factors for sudden death in epilepsy.Comparative evaluations of Cloudwave with traditional desktop approaches to compute cardiac measures (eg, QRS complexes, RR intervals, and instantaneous heart rate) on epilepsy patient data show one order of magnitude improvement for single-channel ECG data and 20 times improvement for four-channel ECG data. This enables Cloudwave to support real-time user interaction with signal data, which is semantically annotated with a novel epilepsy and seizure ontology.RESULTSComparative evaluations of Cloudwave with traditional desktop approaches to compute cardiac measures (eg, QRS complexes, RR intervals, and instantaneous heart rate) on epilepsy patient data show one order of magnitude improvement for single-channel ECG data and 20 times improvement for four-channel ECG data. This enables Cloudwave to support real-time user interaction with signal data, which is semantically annotated with a novel epilepsy and seizure ontology.Data privacy is a critical issue in using cloud infrastructure, and cloud platforms, such as Amazon Web Services, offer features to support Health Insurance Portability and Accountability Act standards.DISCUSSIONData privacy is a critical issue in using cloud infrastructure, and cloud platforms, such as Amazon Web Services, offer features to support Health Insurance Portability and Accountability Act standards.The Cloudwave platform is a new approach to leverage of large-scale electrophysiological data for advancing multicenter clinical research.CONCLUSIONThe Cloudwave platform is a new approach to leverage of large-scale electrophysiological data for advancing multicenter clinical research.
Author Lhatoo, Samden D
Kaffashi, Farhad
Garg, Gaurav
Zhang, Guo-Qiang
Bozorgi, Alireza
Chen, Chien-Hun
Sahoo, Satya S
Jayapandian, Catherine
Chung, Stephanie
Loparo, Kenneth
Author_xml – sequence: 1
  givenname: Satya S
  surname: Sahoo
  fullname: Sahoo, Satya S
  organization: Division of Medical Informatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
– sequence: 2
  givenname: Catherine
  surname: Jayapandian
  fullname: Jayapandian, Catherine
– sequence: 3
  givenname: Gaurav
  surname: Garg
  fullname: Garg, Gaurav
– sequence: 4
  givenname: Farhad
  surname: Kaffashi
  fullname: Kaffashi, Farhad
– sequence: 5
  givenname: Stephanie
  surname: Chung
  fullname: Chung, Stephanie
– sequence: 6
  givenname: Alireza
  surname: Bozorgi
  fullname: Bozorgi, Alireza
– sequence: 7
  givenname: Chien-Hun
  surname: Chen
  fullname: Chen, Chien-Hun
– sequence: 8
  givenname: Kenneth
  surname: Loparo
  fullname: Loparo, Kenneth
– sequence: 9
  givenname: Samden D
  surname: Lhatoo
  fullname: Lhatoo, Samden D
– sequence: 10
  givenname: Guo-Qiang
  surname: Zhang
  fullname: Zhang, Guo-Qiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24326538$$D View this record in MEDLINE/PubMed
BookMark eNpNUMtOwzAQtBAIaOELkJBvcAnYjuPE3KA8ilSJC0jcqo2zaV05cYidQ3-A7yZQkDjt7MzsrHYnZL_1LRJyxtkV56m6hsbCpnWJYDxNGBM8U3vkmGciT3Qu3_f_4SMyCWHDGFcizQ7JkZCpUFlaHJPPOUIfaYkQA7UtjWukxvmhuqGVDbG35RCxotCC2wYbqK8pOjSx9916JLzzK2vA0Ys7u6L3EOGCDsG2q10INb7phvjd176n2FmHXdiOom1_xnoM436zPiEHNbiAp791St4eH15n82Tx8vQ8u10kRrIsJqUuQBrQWqOCVOWZ0TVjRSUNN-NtqKpcKVmA5lrUeW4UL2owRqIqhTBaiSm53OV2vf8YMMRlY4NB56BFP4Qll1rzVOhCjtbzX-tQNlgtu9420G-Xf78TX1uYdsM
CitedBy_id crossref_primary_10_1177_1460458216660754
crossref_primary_10_3389_fpubh_2022_838438
crossref_primary_10_1109_TIM_2015_2490858
crossref_primary_10_1111_epi_16633
crossref_primary_10_1016_j_bspc_2019_03_004
crossref_primary_10_1007_s00530_020_00736_8
crossref_primary_10_1016_j_smrv_2021_101529
crossref_primary_10_1136_bmjopen_2015_010579
crossref_primary_10_1097_WCO_0000000000000184
crossref_primary_10_1111_ropr_12077
crossref_primary_10_1088_1361_6579_ab7cb5
crossref_primary_10_4137_BII_S31559
crossref_primary_10_1177_1176934319888904
crossref_primary_10_3390_info11020060
crossref_primary_10_1097_ANA_0000000000000659
crossref_primary_10_3390_e21030274
crossref_primary_10_1016_j_artmed_2017_12_004
crossref_primary_10_1371_journal_pone_0266565
crossref_primary_10_1007_s10844_019_00557_w
crossref_primary_10_1177_1460458215572924
crossref_primary_10_1016_j_techfore_2015_12_019
crossref_primary_10_1080_23270012_2016_1141332
crossref_primary_10_1016_j_ijmedinf_2016_11_006
crossref_primary_10_1186_s40537_023_00763_y
crossref_primary_10_1016_j_eswa_2018_12_056
crossref_primary_10_3390_electronics14122468
crossref_primary_10_1016_j_cnp_2025_09_003
crossref_primary_10_1016_j_im_2017_04_001
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1136/amiajnl-2013-002156
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1527-974X
ExternalDocumentID 24326538
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1TR000439
– fundername: NINDS NIH HHS
  grantid: 1-P20-NS076965-01
– fundername: NINDS NIH HHS
  grantid: P20 NS076965
– fundername: NCATS NIH HHS
  grantid: UL1 TR000439
GroupedDBID ---
--K
.DC
.GJ
0R~
18M
1B1
1TH
29L
2WC
4.4
48X
53G
5GY
5RE
5WD
6PF
7RV
7X7
7~T
88E
88I
8AF
8AO
8FE
8FG
8FI
8FJ
8FW
AABZA
AACZT
AAEDT
AAJQQ
AALRI
AAMVS
AAOGV
AAPGJ
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAWTL
AAXUO
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABNHQ
ABOCM
ABPQP
ABPTD
ABQLI
ABQNK
ABSMQ
ABUWG
ABVGC
ABWST
ABWVN
ABXVV
ACFRR
ACGFO
ACGFS
ACGOD
ACHQT
ACRPL
ACUFI
ACUTJ
ACVCV
ACYHN
ACZBC
ADBBV
ADGZP
ADHKW
ADHZD
ADIPN
ADJOM
ADMTO
ADMUD
ADNBA
ADNMO
ADQBN
ADRTK
ADVEK
ADYVW
AEGPL
AEJOX
AEKSI
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFQV
AFFZL
AFIYH
AFKRA
AFOFC
AFXAL
AFYAG
AGINJ
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AJDVS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APJGH
AQDSO
AQKUS
AQUVI
ARAPS
ATGXG
AVNTJ
AVWKF
AXUDD
AYCSE
AZQEC
BAWUL
BAYMD
BCRHZ
BENPR
BEYMZ
BGLVJ
BHONS
BKEYQ
BPHCQ
BTRTY
BVRKM
BVXVI
BZKNY
C1A
C45
CCPQU
CDBKE
CGR
CS3
CUY
CVF
DAKXR
DIK
DILTD
DU5
DWQXO
E3Z
EBD
EBS
ECM
EIF
EIHJH
EJD
EMOBN
ENERS
EO8
EX3
F5P
FDB
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
FYUFA
G-Q
GAUVT
GJXCC
GNUQQ
GX1
H13
HAR
HCIFZ
HMCUK
IH2
IHE
J21
JXSIZ
K6V
K7-
KBUDW
KOP
KSI
KSN
LSO
M0T
M1P
M2P
M2Q
M41
MBLQV
MHKGH
NAPCQ
NOMLY
NOYVH
NPM
NQ-
NU-
NVLIB
O9-
OAUYM
OAWHX
OBFPC
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P62
PAFKI
PCD
PEELM
PHGZT
PQQKQ
PROAC
PSQYO
Q5Y
R53
RIG
ROL
ROX
ROZ
RPM
RPZ
RUSNO
RWL
RXO
S0X
SSZ
SV3
TAE
TEORI
TJX
TMA
UKHRP
WOQ
WOW
YAYTL
YHZ
YKOAZ
YXANX
ZGI
~S-
77I
7X8
AJBYB
ID FETCH-LOGICAL-c405t-b98a4ca999e6a3675c9f008d4c1c162e6d76648a9192f77c618facc4e6b22c962
IEDL.DBID 7X8
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331263600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1527-974X
IngestDate Sun Sep 28 11:40:53 EDT 2025
Thu Apr 03 07:05:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Epilepsy and Seizure
Ontology
SUDEP
Cloudwave
Electrophsyiological Big Data
MapReduce
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-b98a4ca999e6a3675c9f008d4c1c162e6d76648a9192f77c618facc4e6b22c962
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/jamia/article-pdf/21/2/263/9517748/21-2-263.pdf
PMID 24326538
PQID 1499132984
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1499132984
pubmed_primary_24326538
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of the American Medical Informatics Association : JAMIA
PublicationTitleAlternate J Am Med Inform Assoc
PublicationYear 2014
SSID ssj0016235
Score 2.3397064
Snippet The rapidly growing volume of multimodal electrophysiological signal data is playing a critical role in patient care and clinical research across multiple...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 263
SubjectTerms Algorithms
Arrhythmias, Cardiac - complications
Arrhythmias, Cardiac - diagnosis
Biomedical Research
Computer Communication Networks - economics
Confidentiality
Cost-Benefit Analysis
Databases, Factual
Death, Sudden
Electrocardiography
Electrophysiologic Techniques, Cardiac
Epilepsy - complications
Epilepsy - physiopathology
Health Insurance Portability and Accountability Act
Humans
Internet
Signal Processing, Computer-Assisted
United States
Title Heart beats in the cloud: distributed analysis of electrophysiological 'Big Data' using cloud computing for epilepsy clinical research
URI https://www.ncbi.nlm.nih.gov/pubmed/24326538
https://www.proquest.com/docview/1499132984
Volume 21
WOSCitedRecordID wos000331263600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Uinjx_agvRhB6CrXpdpP1Ir5KD7b0oJJb2OyjVmoSTSv4B_zdziZbPAmCl5AcNoTdycw3O7PfR8jZORcqNIjcNAY7D-Ot8kTgY7JilOlY_jBTnuN-ug8GgzCK-NBtuBWurXLuE0tHrTJp98ibiOS5FUUP6WX-5lnVKFtddRIai6TWRihjW7qC6KeKgKG9U_Kl-oGHuDlyrEOtNmuK17F4SSdoJFbdwAY-9jvGLGNNd_2_X7lB1hzKhKvKLDbJgk63yErf1dG3yVcPDXwKCTriAsYpIAoEOclm6gKUZdK1IlhagXCMJZAZcHo55U7I3GFC43o8glsxFQ2wDfSj6iUgS6kI-4yQGHSOnicvPmF-ChMcw9DzDnns3j3c9DynyOBJBHZTL-GhoFIgqNRMtDHXkNwgiFBUtiTOtmYqYIyGgiNuNEEgWSs0QkqqWeL7kjN_lyylWar3CRhjUzUtEkspZ6iPNzzQSoVJW1GuTZ2czmc4Rou3ZQyR6mxWxD9zXCd71TLFeUXNEfsU4Sj68IM_jD4kq7j6tGooOyI1g_-7PibL8mM6Lt5PSlPC62DY_wbUZdYV
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heart+beats+in+the+cloud%3A+distributed+analysis+of+electrophysiological+%27Big+Data%27+using+cloud+computing+for+epilepsy+clinical+research&rft.jtitle=Journal+of+the+American+Medical+Informatics+Association+%3A+JAMIA&rft.au=Sahoo%2C+Satya+S&rft.au=Jayapandian%2C+Catherine&rft.au=Garg%2C+Gaurav&rft.au=Kaffashi%2C+Farhad&rft.date=2014-03-01&rft.issn=1527-974X&rft.eissn=1527-974X&rft.volume=21&rft.issue=2&rft.spage=263&rft_id=info:doi/10.1136%2Famiajnl-2013-002156&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-974X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-974X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-974X&client=summon