Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads

Identification and timely interpretation of changes occurring in the 12 electrocardiogram (ECG) leads is crucial to identify the types of myocardial infarction (MI). However, manual annotation of this complex nonlinear ECG signal is not only cumbersome and time consuming but also inaccurate. Hence,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems Jg. 99; S. 146 - 156
Hauptverfasser: Acharya, U. Rajendra, Fujita, Hamido, Sudarshan, Vidya K., Oh, Shu Lih, Adam, Muhammad, Koh, Joel E.W., Tan, Jen Hong, Ghista, Dhanjoo N., Martis, Roshan Joy, Chua, Chua K., Poo, Chua Kok, Tan, Ru San
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.05.2016
Schlagworte:
ISSN:0950-7051, 1872-7409
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Identification and timely interpretation of changes occurring in the 12 electrocardiogram (ECG) leads is crucial to identify the types of myocardial infarction (MI). However, manual annotation of this complex nonlinear ECG signal is not only cumbersome and time consuming but also inaccurate. Hence, there is a need of computer aided techniques to be applied for the ECG signal analysis process. Going further, there is a need for incorporating this computerized software into the ECG equipment, so as to enable automated detection of MIs in clinics. Therefore, this paper proposes a novel method of automated detection and localization of MI by using ECG signal analysis. In our study, a total of 200 twelve lead ECG subjects (52 normal and 148 with MI) involving 611,405 beats (125,652 normal beats and 485,753 beats of MI ECG) are segmented from the 12 lead ECG signals. Firstly, ECG signal obtained from 12 ECG leads are subjected to discrete wavelet transform (DWT) up to four levels of decomposition. Then, 12 nonlinear features namely, approximate entropy (Eax), signal energy (Ωx), fuzzy entropy (Efx), Kolmogorov–Sinai entropy (Eksx), permutation entropy (Epx), Renyi entropy (Erx), Shannon entropy (Eshx), Tsallis entropy (Etsx), wavelet entropy (Ewx), fractal dimension (FDx), Kolmogorov complexity (Ckx), and largest Lyapunov exponent (ELLEx) are extracted from these DWT coefficients. The extracted features are then ranked based on the t value. Then these features are fed into the k-nearest neighbor (KNN) classifier one by one to get the highest classification performance by using minimum number of features. Our proposed method has achieved the highest average accuracy of 98.80%, sensitivity of 99.45% and specificity of 96.27% in classifying normal and MI ECG (two classes), by using 47 features obtained from lead 11 (V5). We have also obtained the highest average accuracy of 98.74%, sensitivity of 99.55% and specificity of 99.16% in differentiating the 10 types of MI and normal ECG beats (11 class), by using 25 features obtained from lead 9 (V3). In addition, our study results achieved an accuracy of 99.97% in locating inferior posterior infarction by using only lead 9 (V3) ECG signal. Our proposed method can be used as an automated diagnostic tool for (i) the detection of different (10 types of) MI by using 12 lead ECG signal, and also (ii) to locate the MI by analyzing only one lead without the need to analyze other leads. Thus, our proposed algorithm and computerized system software (incorporated into the ECG equipment) can aid the physicians and clinicians in accurate and faster location of MIs, and thereby providing adequate time available for the requisite treatment decision.
AbstractList Identification and timely interpretation of changes occurring in the 12 electrocardiogram (ECG) leads is crucial to identify the types of myocardial infarction (MI). However, manual annotation of this complex nonlinear ECG signal is not only cumbersome and time consuming but also inaccurate. Hence, there is a need of computer aided techniques to be applied for the ECG signal analysis process. Going further, there is a need for incorporating this computerized software into the ECG equipment, so as to enable automated detection of MIs in clinics. Therefore, this paper proposes a novel method of automated detection and localization of MI by using ECG signal analysis. In our study, a total of 200 twelve lead ECG subjects (52 normal and 148 with MI) involving 611,405 beats (125,652 normal beats and 485,753 beats of MI ECG) are segmented from the 12 lead ECG signals. Firstly, ECG signal obtained from 12 ECG leads are subjected to discrete wavelet transform (DWT) up to four levels of decomposition. Then, 12 nonlinear features namely, approximate entropy (Eax), signal energy (Ωx), fuzzy entropy (Efx), Kolmogorov–Sinai entropy (Eksx), permutation entropy (Epx), Renyi entropy (Erx), Shannon entropy (Eshx), Tsallis entropy (Etsx), wavelet entropy (Ewx), fractal dimension (FDx), Kolmogorov complexity (Ckx), and largest Lyapunov exponent (ELLEx) are extracted from these DWT coefficients. The extracted features are then ranked based on the t value. Then these features are fed into the k-nearest neighbor (KNN) classifier one by one to get the highest classification performance by using minimum number of features. Our proposed method has achieved the highest average accuracy of 98.80%, sensitivity of 99.45% and specificity of 96.27% in classifying normal and MI ECG (two classes), by using 47 features obtained from lead 11 (V5). We have also obtained the highest average accuracy of 98.74%, sensitivity of 99.55% and specificity of 99.16% in differentiating the 10 types of MI and normal ECG beats (11 class), by using 25 features obtained from lead 9 (V3). In addition, our study results achieved an accuracy of 99.97% in locating inferior posterior infarction by using only lead 9 (V3) ECG signal. Our proposed method can be used as an automated diagnostic tool for (i) the detection of different (10 types of) MI by using 12 lead ECG signal, and also (ii) to locate the MI by analyzing only one lead without the need to analyze other leads. Thus, our proposed algorithm and computerized system software (incorporated into the ECG equipment) can aid the physicians and clinicians in accurate and faster location of MIs, and thereby providing adequate time available for the requisite treatment decision.
Identification and timely interpretation of changes occurring in the 12 electrocardiogram (ECG) leads is crucial to identify the types of myocardial infarction (MI). However, manual annotation of this complex nonlinear ECG signal is not only cumbersome and time consuming but also inaccurate. Hence, there is a need of computer aided techniques to be applied for the ECG signal analysis process. Going further, there is a need for incorporating this computerized software into the ECG equipment, so as to enable automated detection of MIs in clinics. Therefore, this paper proposes a novel method of automated detection and localization of MI by using ECG signal analysis. In our study, a total of 200 twelve lead ECG subjects (52 normal and 148 with MI) involving 611,405 beats (125,652 normal beats and 485,753 beats of MI ECG) are segmented from the 12 lead ECG signals. Firstly, ECG signal obtained from 12 ECG leads are subjected to discrete wavelet transform (DWT) up to four levels of decomposition. Then, 12 nonlinear features namely, approximate entropy (View the MathML sourceEax), signal energy ( Omega super(x) ), fuzzy entropy (View the MathML sourceEfx), Kolmogorov-Sinai entropy (View the MathML sourceEksx), permutation entropy (View the MathML sourceEpx), Renyi entropy (View the MathML sourceErx), Shannon entropy (View the MathML sourceEshx), Tsallis entropy (View the MathML sourceEtsx), wavelet entropy (View the MathML sourceEwx), fractal dimension (View the MathML sourceFDx), Kolmogorov complexity (View the MathML sourceCkx), and largest Lyapunov exponent (View the MathML sourceELLEx) are extracted from these DWT coefficients. The extracted features are then ranked based on the t value. Then these features are fed into the k-nearest neighbor (KNN) classifier one by one to get the highest classification performance by using minimum number of features. Our proposed method has achieved the highest average accuracy of 98.80%, sensitivity of 99.45% and specificity of 96.27% in classifying normal and MI ECG (two classes), by using 47 features obtained from lead 11 (V sub(5)). We have also obtained the highest average accuracy of 98.74%, sensitivity of 99.55% and specificity of 99.16% in differentiating the 10 types of MI and normal ECG beats (11 class), by using 25 features obtained from lead 9 (V sub(3)). In addition, our study results achieved an accuracy of 99.97% in locating inferior posterior infarction by using only lead 9 (V sub(3)) ECG signal. Our proposed method can be used as an automated diagnostic tool for (i) the detection of different (10 types of) MI by using 12 lead ECG signal, and also (ii) to locate the MI by analyzing only one lead without the need to analyze other leads. Thus, our proposed algorithm and computerized system software (incorporated into the ECG equipment) can aid the physicians and clinicians in accurate and faster location of MIs, and thereby providing adequate time available for the requisite treatment decision.
Author Oh, Shu Lih
Martis, Roshan Joy
Chua, Chua K.
Tan, Jen Hong
Fujita, Hamido
Adam, Muhammad
Tan, Ru San
Acharya, U. Rajendra
Sudarshan, Vidya K.
Koh, Joel E.W.
Ghista, Dhanjoo N.
Poo, Chua Kok
Author_xml – sequence: 1
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 2
  givenname: Hamido
  surname: Fujita
  fullname: Fujita, Hamido
  organization: Faculty of Software and Information Science, Iwate Prefectural University (IPU), Iwate, Japan
– sequence: 3
  givenname: Vidya K.
  surname: Sudarshan
  fullname: Sudarshan, Vidya K.
  email: vidya.2kus@gmail.com
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 4
  givenname: Shu Lih
  surname: Oh
  fullname: Oh, Shu Lih
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 5
  givenname: Muhammad
  surname: Adam
  fullname: Adam, Muhammad
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 6
  givenname: Joel E.W.
  surname: Koh
  fullname: Koh, Joel E.W.
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 7
  givenname: Jen Hong
  surname: Tan
  fullname: Tan, Jen Hong
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 8
  givenname: Dhanjoo N.
  surname: Ghista
  fullname: Ghista, Dhanjoo N.
  organization: University 2020 Foundation, MA, USA
– sequence: 9
  givenname: Roshan Joy
  surname: Martis
  fullname: Martis, Roshan Joy
  organization: Department of Electronics and Communication Engineering, St. Joseph Engineering College, Mangalore, India
– sequence: 10
  givenname: Chua K.
  surname: Chua
  fullname: Chua, Chua K.
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 11
  givenname: Chua Kok
  surname: Poo
  fullname: Poo, Chua Kok
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 12
  givenname: Ru San
  surname: Tan
  fullname: Tan, Ru San
  organization: Department of Cardiology, National Heart Centre, Singapore
BookMark eNqFkE1r3DAQhkVJIZuk_yAHHXuxO7LlrxwKIfQjEOilOYuRNA7a2tJWkgNbyH-vN-6ph_Y0zMz7vIfngp354ImxawGlANF-2Jc_fEjHVFbrVoIoQcIbthN9VxWdhOGM7WBooOigEefsIqU9AFSV6Hfs5XbJYcZMllvKZLILnqO3fAoGJ_cLXw9h5PNxPUTrcOLOjxi35JKcf-I0rWDc_uEp4nzDkZswHzCu_DPxlBd7PLVYN44UyWc-Edp0xd6OOCV692dessfPn77ffS0evn25v7t9KIyEJhe6adBAaxFAS93auh2ox7Gvm7rRRFRR21R21LoH05mu7zS2Wg-ybXBsZT_Ul-z91nuI4edCKavZJUPThJ7CkpToRQu1lKJao3KLmhhSijSqQ3QzxqMSoE621V5tttXJtgKhVtsrdvMXZlx-lZcjuul_8McNptXBs6OoknHkDVkXV7PKBvfvgt_cH6RS
CitedBy_id crossref_primary_10_1007_s10489_019_01461_0
crossref_primary_10_1016_j_procs_2018_05_034
crossref_primary_10_1109_ACCESS_2022_3165966
crossref_primary_10_1109_JSEN_2020_2984493
crossref_primary_10_1016_j_bspc_2019_101700
crossref_primary_10_1016_j_knosys_2019_105446
crossref_primary_10_3389_fcvm_2022_1001982
crossref_primary_10_1016_j_bspc_2023_104671
crossref_primary_10_1109_TIM_2018_2816458
crossref_primary_10_1016_j_bspc_2023_105766
crossref_primary_10_1016_j_cmpb_2018_05_009
crossref_primary_10_1016_j_procs_2022_09_342
crossref_primary_10_1007_s11042_020_08769_x
crossref_primary_10_1016_j_bbe_2018_04_004
crossref_primary_10_2478_jce_2023_0019
crossref_primary_10_1016_j_knosys_2024_111906
crossref_primary_10_1016_j_bspc_2023_104701
crossref_primary_10_1016_j_ins_2016_10_013
crossref_primary_10_1016_j_irbm_2019_09_003
crossref_primary_10_3390_bioengineering9090430
crossref_primary_10_1016_j_eswa_2023_122402
crossref_primary_10_1016_j_ejmp_2019_05_004
crossref_primary_10_1016_j_knosys_2017_06_026
crossref_primary_10_1016_j_bspc_2022_104041
crossref_primary_10_3389_fphys_2022_783184
crossref_primary_10_1016_j_jocs_2017_03_005
crossref_primary_10_1016_j_knosys_2018_09_001
crossref_primary_10_3390_bios15060392
crossref_primary_10_1109_JBHI_2021_3100425
crossref_primary_10_1515_bmt_2020_0329
crossref_primary_10_1109_TIM_2023_3258521
crossref_primary_10_1155_2021_4123471
crossref_primary_10_1007_s11760_017_1146_z
crossref_primary_10_1109_JSEN_2024_3351918
crossref_primary_10_1109_ACCESS_2021_3095248
crossref_primary_10_1109_JSEN_2019_2935552
crossref_primary_10_1016_j_ins_2017_06_027
crossref_primary_10_3390_pr10112348
crossref_primary_10_1016_j_bbe_2017_12_002
crossref_primary_10_1016_j_artmed_2021_102179
crossref_primary_10_3390_app122412957
crossref_primary_10_1016_j_artmed_2019_101789
crossref_primary_10_1016_j_bbe_2017_08_005
crossref_primary_10_1016_j_cmpb_2021_105941
crossref_primary_10_1016_j_eswa_2025_126901
crossref_primary_10_1109_JSEN_2019_2896308
crossref_primary_10_1088_1361_6579_ad3d25
crossref_primary_10_1155_2021_6455053
crossref_primary_10_1016_j_cmpb_2022_107124
crossref_primary_10_3390_a18020090
crossref_primary_10_1007_s11760_021_02009_x
crossref_primary_10_1109_ACCESS_2019_2955555
crossref_primary_10_1109_ACCESS_2020_3026968
crossref_primary_10_1049_htl_2016_0089
crossref_primary_10_1109_TIM_2021_3132833
crossref_primary_10_1007_s13042_022_01718_0
crossref_primary_10_1038_s41467_020_17804_2
crossref_primary_10_3389_fphys_2022_854191
crossref_primary_10_1109_ACCESS_2019_2912519
crossref_primary_10_1016_j_engappai_2020_104092
crossref_primary_10_1088_1361_6579_ad46e1
crossref_primary_10_1097_MCA_0000000000000763
crossref_primary_10_1038_s41598_017_06596_z
crossref_primary_10_1142_S0219519417400085
crossref_primary_10_3390_s20174777
crossref_primary_10_1109_TBCAS_2018_2848477
crossref_primary_10_1109_TIM_2021_3104394
crossref_primary_10_1145_3534580
crossref_primary_10_3390_app12115603
crossref_primary_10_3390_s17091937
crossref_primary_10_1016_j_asoc_2025_113655
crossref_primary_10_1515_bmt_2022_0406
crossref_primary_10_3390_s20041020
crossref_primary_10_3390_e19090488
crossref_primary_10_1016_j_asoc_2023_110919
crossref_primary_10_1016_j_bbe_2019_05_010
crossref_primary_10_1016_j_bspc_2020_101997
crossref_primary_10_1016_j_knosys_2019_105402
crossref_primary_10_1016_j_cmpb_2021_106379
crossref_primary_10_1109_TIM_2024_3418105
crossref_primary_10_1016_j_bspc_2022_103663
crossref_primary_10_1016_j_bspc_2024_106377
crossref_primary_10_1117_1_JEI_34_1_013050
crossref_primary_10_1007_s11042_024_18116_z
crossref_primary_10_1109_RBME_2017_2757953
crossref_primary_10_1016_j_patrec_2019_02_016
crossref_primary_10_3390_ijerph18115838
crossref_primary_10_1016_j_bspc_2021_102846
crossref_primary_10_1016_j_ins_2021_12_083
crossref_primary_10_1088_1361_6579_ad6529
crossref_primary_10_1109_TMC_2020_3012681
crossref_primary_10_1016_j_asoc_2020_106383
crossref_primary_10_1049_sil2_12072
crossref_primary_10_3390_electronics10020170
crossref_primary_10_1088_1361_6579_ac7fd9
crossref_primary_10_1016_j_cogsys_2019_09_001
crossref_primary_10_1016_j_bspc_2024_106382
crossref_primary_10_3389_fcvm_2022_860032
crossref_primary_10_1007_s10489_021_02696_6
crossref_primary_10_1007_s11760_017_1068_9
crossref_primary_10_1016_j_bspc_2023_105710
crossref_primary_10_3390_s19112558
crossref_primary_10_1109_JBHI_2019_2910082
crossref_primary_10_1016_j_bbe_2020_06_004
crossref_primary_10_1016_j_bspc_2021_102683
crossref_primary_10_1016_j_cmpb_2021_106024
crossref_primary_10_1016_j_knosys_2016_05_027
crossref_primary_10_1007_s12652_020_02536_4
crossref_primary_10_1016_j_bspc_2022_104238
crossref_primary_10_1109_ACCESS_2024_3491073
crossref_primary_10_1049_htl_2020_0015
crossref_primary_10_1155_2021_6630643
crossref_primary_10_3390_s24030828
crossref_primary_10_1007_s12652_023_04745_z
crossref_primary_10_1109_ACCESS_2019_2919068
crossref_primary_10_3390_healthcare10020232
crossref_primary_10_1016_j_knosys_2016_07_004
crossref_primary_10_1016_j_cmpb_2019_03_012
crossref_primary_10_1016_j_ins_2023_118978
crossref_primary_10_1016_j_cmpb_2019_105138
crossref_primary_10_1016_j_cmpb_2021_106035
crossref_primary_10_1016_j_ijcard_2021_11_039
crossref_primary_10_1016_j_ins_2022_05_070
crossref_primary_10_1016_j_bspc_2023_104725
crossref_primary_10_1016_j_engappai_2025_111894
crossref_primary_10_1109_JBHI_2022_3145999
crossref_primary_10_1134_S1054661819040151
crossref_primary_10_1109_ACCESS_2024_3401744
crossref_primary_10_1109_TIM_2025_3545189
crossref_primary_10_1016_j_cmpb_2018_04_018
crossref_primary_10_3389_fphys_2019_00809
crossref_primary_10_1109_LSENS_2024_3450176
crossref_primary_10_3390_s20247246
crossref_primary_10_1016_j_premed_2025_100021
crossref_primary_10_1109_JSEN_2024_3523035
crossref_primary_10_1080_10255842_2023_2270101
crossref_primary_10_1109_TIM_2021_3117663
crossref_primary_10_1007_s11042_023_17246_0
crossref_primary_10_1007_s11760_019_01617_y
crossref_primary_10_1016_j_cmpb_2019_105120
crossref_primary_10_1109_JSEN_2021_3079241
crossref_primary_10_1088_1361_6579_acaa1a
crossref_primary_10_1016_j_knosys_2021_107473
crossref_primary_10_1007_s10916_016_0505_6
crossref_primary_10_3390_s22134960
crossref_primary_10_1016_j_compbiomed_2022_105599
crossref_primary_10_1109_JBHI_2021_3060433
crossref_primary_10_32604_cmc_2022_022123
crossref_primary_10_1016_j_knosys_2019_04_023
crossref_primary_10_1016_j_compbiomed_2018_09_027
crossref_primary_10_4018_IJSKD_313589
crossref_primary_10_1109_ACCESS_2019_2946932
crossref_primary_10_3390_s18082739
Cites_doi 10.1016/S0165-0270(00)00356-3
10.4236/jbise.2014.710081
10.1109/RBME.2012.2184750
10.1007/978-1-4899-2305-9_2
10.1515/zna-1982-1117
10.1088/0967-3334/26/5/R01
10.1111/j.1475-097X.2007.00761.x
10.1136/bmj.301.6758.941
10.1016/j.mcna.2007.03.007
10.1016/S0375-9601(03)00949-6
10.1016/0167-2789(93)90009-P
10.1103/PhysRevLett.88.174102
10.1016/j.compbiomed.2014.08.010
10.3390/e14081553
10.1109/TBME.2012.2213597
10.1136/hrt.71.4.311
10.1378/chest.108.6.1502
10.1103/PhysRevA.36.842
10.1016/j.medengphy.2008.06.010
10.1016/0167-2789(88)90081-4
10.1109/CIC.1992.269345
10.1136/hrt.71.4.309
10.1016/j.knosys.2015.08.004
10.1016/0020-0255(86)90006-X
10.1007/s10916-010-9474-3
10.1002/j.1538-7305.1948.tb01338.x
10.1161/01.CIR.101.23.e215
10.1114/1.1541013
10.1016/j.eplepsyres.2007.08.002
10.1073/pnas.88.6.2297
ContentType Journal Article
Copyright 2016
Copyright_xml – notice: 2016
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2016.01.040
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 156
ExternalDocumentID 10_1016_j_knosys_2016_01_040
S0950705116000708
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c405t-b55ac06da00b4b6d369e8af83535beee2e652dfbb80c7c787ba6bb9465af64893
ISICitedReferencesCount 189
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374603400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Mon Sep 29 05:26:42 EDT 2025
Tue Nov 18 22:24:52 EST 2025
Sat Nov 29 06:41:29 EST 2025
Fri Feb 23 02:28:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Myocardial infarction
Entropy
Discrete wavelet transform
Classifier
Electrocardiogram
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-b55ac06da00b4b6d369e8af83535beee2e652dfbb80c7c787ba6bb9465af64893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1816034412
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1816034412
crossref_primary_10_1016_j_knosys_2016_01_040
crossref_citationtrail_10_1016_j_knosys_2016_01_040
elsevier_sciencedirect_doi_10_1016_j_knosys_2016_01_040
PublicationCentury 2000
PublicationDate 2016-05-01
2016-05-00
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Knowledge-based systems
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Reddy, Svensson, Haisty, Pahlm (bib0014) 1992
Lu, Ong, Chia (bib0049) 2000; 27
Lahiri, Kumar, Mishra, Sarkar, Roy (bib0050) 2009; 68
Desai, Martis, Nayak, Sarika, Nayak, Shirva, Nayak, Mudassir (bib0046) 2015
Farmer (bib0025) 1982; 37
Zhang, Cowan, Bluemke, Finn, Fonseca, Kadish, Lee, Lima, Suinesiaputra, Young, Medrano-Gracia (bib0005) 2014; 9
Tragardh, Claesson, Wagner, Zhou, Pahlm (bib0012) 2007; 27
Banarjee, Mitra (bib0042) 2012; 1
Sun, Lu, Yang, Li (bib0043) 2012; 59
Sprott (bib0038) 2003
Arif, Malagore, Afsar (bib0041) 2012; 36
Luna, Fiol-Sala, Antman (bib0011) 2006
Li, Ouyang, Richards (bib0047) 2007; 77
Timmis (bib0007) 1994; 71
Pincus (bib0023) 1991; 88
Renyi (bib0028) 1961; 1
Goldberger, Amaral, Glass, Hausdorff, Ivanov (bib0018) 2000; 101
Kaspar, Schuster (bib0037) 1987; 36
Zanin, Zunino, Rosso, Papo (bib0048) 2012; 14
WHO (bib0001) 2011
Tong, Bezerianos, Malhotra, Zhu, Thakor (bib0031) 2003; 314
Higuchi (bib0034) 1988; 31
Roger (bib0002) 2007; 91
Rosso, Blanco, Yordanova, Kolev, Figliola, Schurmann, Basar (bib0032) 2001; 105
Liu, Liu, Wang, Huang, Li, Zheng, Luo, Zhou (bib0045) 2014; 61
Bandt, Pompe (bib0026) 2002; 88
Gomez, Mediavilla, Hornero, Abasolo, Fernandez (bib0035) 2009; 31
Mandelbrot (bib0033) 1982
AHA (bib0003) 2013; 127
Timmis (bib0006) 1990; 301
Duda, Peter, David (bib0040) 2012
Lewis K.M., Handal K. Sensible Analysis of the 12 Lead ECG, 1st edition, 2000.
McDarby, Celler, Lovell (bib0015) 1998
Pan, Tompkins (bib0020) 2006
Bozzola, Bortolan, Combi, Pinciroli, Brohet (bib0016) 1996
Kolmogorov (bib0036) 1963; 25
Martis, Acharya, Lim (bib0019) 2012; 8
AHA (bib0004) 2015; 131
Bezerianos, Tong, Thakor (bib0030) 2003; 31
Grassberger (bib0029) 1991; 256
Mair, Smidt, Lechleitner, Dienstl, Puschendorf (bib0009) 1995; 108
Shannon (bib0027) 1948; 27
Addison (bib0021) 2005; 26
Martis, Chakraborty, Ray (bib0017) 2009
Rosenstein, Colins, De Luca (bib0039) 1993; 65
Lee, Cross, Garthwaite, Dickie, Ross, Walton, Jennings (bib0008) 1994; 71
Safdarian, Dabanloo, Attarodi (bib0044) 2014; 7
Acharya, Fujita, Sudarshan, Bhat, Koh (bib0022) 2015; 88
Kosko (bib0024) 1986; 40
Faust, Acharya, Tamura (bib0013) 2012; 5
Bandt (10.1016/j.knosys.2016.01.040_bib0026) 2002; 88
Li (10.1016/j.knosys.2016.01.040_bib0047) 2007; 77
Goldberger (10.1016/j.knosys.2016.01.040_bib0018) 2000; 101
Pincus (10.1016/j.knosys.2016.01.040_bib0023) 1991; 88
Timmis (10.1016/j.knosys.2016.01.040_bib0007) 1994; 71
Arif (10.1016/j.knosys.2016.01.040_bib0041) 2012; 36
McDarby (10.1016/j.knosys.2016.01.040_bib0015) 1998
Gomez (10.1016/j.knosys.2016.01.040_bib0035) 2009; 31
Rosso (10.1016/j.knosys.2016.01.040_bib0032) 2001; 105
10.1016/j.knosys.2016.01.040_bib0010
Pan (10.1016/j.knosys.2016.01.040_bib0020) 2006
Faust (10.1016/j.knosys.2016.01.040_bib0013) 2012; 5
AHA (10.1016/j.knosys.2016.01.040_bib0003) 2013; 127
Higuchi (10.1016/j.knosys.2016.01.040_bib0034) 1988; 31
Tong (10.1016/j.knosys.2016.01.040_bib0031) 2003; 314
Tragardh (10.1016/j.knosys.2016.01.040_bib0012) 2007; 27
Reddy (10.1016/j.knosys.2016.01.040_bib0014) 1992
Safdarian (10.1016/j.knosys.2016.01.040_bib0044) 2014; 7
Liu (10.1016/j.knosys.2016.01.040_bib0045) 2014; 61
Addison (10.1016/j.knosys.2016.01.040_bib0021) 2005; 26
Bozzola (10.1016/j.knosys.2016.01.040_bib0016) 1996
Banarjee (10.1016/j.knosys.2016.01.040_bib0042) 2012; 1
Farmer (10.1016/j.knosys.2016.01.040_bib0025) 1982; 37
Mandelbrot (10.1016/j.knosys.2016.01.040_bib0033) 1982
Kaspar (10.1016/j.knosys.2016.01.040_bib0037) 1987; 36
Bezerianos (10.1016/j.knosys.2016.01.040_bib0030) 2003; 31
Martis (10.1016/j.knosys.2016.01.040_bib0017) 2009
Rosenstein (10.1016/j.knosys.2016.01.040_bib0039) 1993; 65
Renyi (10.1016/j.knosys.2016.01.040_bib0028) 1961; 1
Acharya (10.1016/j.knosys.2016.01.040_bib0022) 2015; 88
Lee (10.1016/j.knosys.2016.01.040_bib0008) 1994; 71
AHA (10.1016/j.knosys.2016.01.040_bib0004) 2015; 131
Desai (10.1016/j.knosys.2016.01.040_bib0046) 2015
Roger (10.1016/j.knosys.2016.01.040_bib0002) 2007; 91
Luna (10.1016/j.knosys.2016.01.040_bib0011) 2006
Zanin (10.1016/j.knosys.2016.01.040_bib0048) 2012; 14
Kolmogorov (10.1016/j.knosys.2016.01.040_bib0036) 1963; 25
Kosko (10.1016/j.knosys.2016.01.040_bib0024) 1986; 40
Lahiri (10.1016/j.knosys.2016.01.040_bib0050) 2009; 68
Martis (10.1016/j.knosys.2016.01.040_bib0019) 2012; 8
WHO (10.1016/j.knosys.2016.01.040_bib0001)
Duda (10.1016/j.knosys.2016.01.040_bib0040) 2012
Shannon (10.1016/j.knosys.2016.01.040_bib0027) 1948; 27
Grassberger (10.1016/j.knosys.2016.01.040_bib0029) 1991; 256
Lu (10.1016/j.knosys.2016.01.040_bib0049) 2000; 27
Timmis (10.1016/j.knosys.2016.01.040_bib0006) 1990; 301
Sprott (10.1016/j.knosys.2016.01.040_bib0038) 2003
Mair (10.1016/j.knosys.2016.01.040_bib0009) 1995; 108
Sun (10.1016/j.knosys.2016.01.040_bib0043) 2012; 59
Zhang (10.1016/j.knosys.2016.01.040_bib0005) 2014; 9
References_xml – year: 1982
  ident: bib0033
  article-title: The Fractal Geometry of Nature
– reference: Lewis K.M., Handal K. Sensible Analysis of the 12 Lead ECG, 1st edition, 2000.
– volume: 105
  start-page: 65
  year: 2001
  end-page: 75
  ident: bib0032
  article-title: Wavelet entropy: a new tool for analysis of short duration electrical signals
  publication-title: J. Neurosci. Methods
– volume: 27
  start-page: 387
  year: 2000
  end-page: 390
  ident: bib0049
  article-title: An automated ECG classification system based on a neuro-fuzzy system
  publication-title: Comput. Cardiol.
– volume: 108
  start-page: 1502
  year: 1995
  end-page: 1509
  ident: bib0009
  article-title: A decision tree for the early diagnosis of acute myocardial infarction in nontraumatic chest pain patients at hospital admission
  publication-title: Chest
– volume: 256
  start-page: 15
  year: 1991
  end-page: 33
  ident: bib0029
  article-title: Information and complexity measures in dynamical systems
  publication-title: Information Dynamics
– start-page: 667
  year: 1992
  end-page: 670
  ident: bib0014
  article-title: Neural network versus electrocardiographer and conventional computer criteria in diagnosing anterior infarct from the ECG
  publication-title: Proc. Comput. Cardiol.
– volume: 65
  start-page: 117
  year: 1993
  end-page: 134
  ident: bib0039
  article-title: A practical method for calculating largest Lyapunov exponent from small data sets
  publication-title: Physica D
– year: 2003
  ident: bib0038
  article-title: Chaos and Time-Series Analysis
– volume: 36
  start-page: 279
  year: 2012
  end-page: 289
  ident: bib0041
  article-title: Detection and Localization of Myocardial Infarction Using K-nearest Neighbor Classifier
  publication-title: J. Med. Syst.
– year: 2006
  ident: bib0011
  article-title: The 12 Lead ECG in ST Elevation Myocardial Infarction: A Practical Approach for Clinicians
– volume: 77
  start-page: 70
  year: 2007
  ident: bib0047
  article-title: Predictability analysis of absence seizures with permutation entropy
  publication-title: Epilepsy Res
– volume: 26
  start-page: R155
  year: 2005
  end-page: R199
  ident: bib0021
  article-title: Wavelet transforms and the ECG: a review
  publication-title: Physiol. Meas.
– start-page: 31
  year: 1998
  end-page: 32
  ident: bib0015
  article-title: Characterizing the discrete wavelet transform of an ECG signal with simple parameters for use in automated diagnosis
  publication-title: 2nd International Conference on Bioelectromagnetism
– year: 2006
  ident: bib0020
  article-title: A Real Time QRS Detection Algorithm
– volume: 31
  start-page: 277
  year: 1988
  end-page: 283
  ident: bib0034
  article-title: Approach to an irregular time series on the basis of the fractal theory
  publication-title: Physics D
– start-page: 1
  year: 2009
  end-page: 4
  ident: bib0017
  article-title: An integrated ECG feature extraction scheme using PCA and wavelet transform
  publication-title: 2009 India Annual IEEE Conference (INDICON)
– volume: 314
  start-page: 354
  year: 2003
  end-page: 361
  ident: bib0031
  article-title: Parameterized entropy analysis of EEG following hypoxic ischemic brain injury
  publication-title: Phys. Lett. A
– volume: 36
  start-page: 842
  year: 1987
  ident: bib0037
  article-title: Easily calculable measure for the complexity of spatiotemporal patterns
  publication-title: Phys. Rev.
– volume: 91
  start-page: 537
  year: 2007
  end-page: 552
  ident: bib0002
  article-title: Epidemiology of myocardial infarction
  publication-title: Med. Clin. N. Am.
– volume: 71
  start-page: 311
  year: 1994
  end-page: 315
  ident: bib0008
  article-title: Comparison of the value of novel rapid measurement of myoglobin, creatine kinase, and creatine kinase-MB with the electrocardiogram for the diagnosis of acute myocardial infarction
  publication-title: Br. Heart J.
– volume: 37
  start-page: 1304
  year: 1982
  end-page: 1325
  ident: bib0025
  article-title: Information dimension and the probabilistic structure of chaos
  publication-title: Naturforsch. Z.
– volume: 131
  start-page: e29
  year: 2015
  end-page: e322
  ident: bib0004
  article-title: Heart disease and stroke statistics, A report from the American Heart Association
  publication-title: Circulation
– volume: 127
  start-page: e6
  year: 2013
  end-page: e245
  ident: bib0003
  article-title: Heart disease and stroke statistics, A report from the American Heart Association (AHA)
  publication-title: Circulation
– year: 2012
  ident: bib0040
  article-title: Pattern Classification
– start-page: 241
  year: 1996
  end-page: 244
  ident: bib0016
  article-title: A hybrid neuro-fuzzy system for ECG classification of myocardial infarction
  publication-title: Proc. Comput. Cardiol.
– volume: 301
  start-page: 941
  year: 1990
  end-page: 942
  ident: bib0006
  article-title: Early diagnosis of acute myocardial infarction
  publication-title: BMJ
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: bib0018
  article-title: PhysioBank, PhysioToolKit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 88
  start-page: 85
  year: 2015
  end-page: 96
  ident: bib0022
  article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review
  publication-title: Knowledge Based Syst.
– volume: 27
  start-page: 379
  year: 1948
  end-page: 423
  ident: bib0027
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
– volume: 1
  start-page: 88
  year: 2012
  end-page: 92
  ident: bib0042
  article-title: Cross wavelet transform based analysis of electrocardiogram signals
  publication-title: Int. J. Electr. Electron. Comput. Eng.
– volume: 61
  start-page: 178
  year: 2014
  end-page: 184
  ident: bib0045
  article-title: A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection
  publication-title: Comput. Biol. Med.
– volume: 1
  start-page: 547
  year: 1961
  end-page: 561
  ident: bib0028
  article-title: On measures of entropy and information
  publication-title: Proc. Fourth Berkeley Symp. On Math. Sttis. And Prob.
– volume: 40
  start-page: 165
  year: 1986
  end-page: 174
  ident: bib0024
  article-title: Fuzzy entropy and conditioning
  publication-title: Inf. Sci.
– volume: 31
  start-page: 306
  year: 2009
  end-page: 313
  ident: bib0035
  article-title: Use of the Higuchi's fractal dimension for the analysis of MEG recordings from Alzheimer's disease patients
  publication-title: Med. Eng. Phys.
– volume: 88
  year: 2002
  ident: bib0026
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Rev. Lett.
– volume: 27
  start-page: 368
  year: 2007
  end-page: 374
  ident: bib0012
  article-title: Detection of acute myocardial infarction using 12-lead ECG plus inverted leads versus the 16-lead ECG (with additional posterior and right-sided chest electrodes)
  publication-title: Clin. Physiol. Funct. Imaging
– start-page: 153
  year: 2015
  end-page: 162
  ident: bib0046
  article-title: Discrete cosine transform features in automated classification of cardiac arrhythmia beats
  publication-title: Emerging Research in Computing, Information, Communication and Applications
– volume: 5
  start-page: 15
  year: 2012
  end-page: 28
  ident: bib0013
  article-title: Formal design methods for reliable computer-aided diagnosis: a review
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 9
  year: 2014
  ident: bib0005
  article-title: Atlas-based quantification of cardiac remodeling due to myocardial infarction
  publication-title: PLoS One
– volume: 31
  start-page: 221
  year: 2003
  end-page: 232
  ident: bib0030
  article-title: Time dependent entropy of EEG rhythm changes following brain ischemia
  publication-title: Ann. Biomed. Eng.
– volume: 68
  start-page: 866
  year: 2009
  end-page: 870
  ident: bib0050
  article-title: Analysis of ECG signal by chaos principle to help automatic diagnosis of myocardial infarction
  publication-title: J. Sci. Ind. Res.
– volume: 88
  start-page: 2297
  year: 1991
  end-page: 2301
  ident: bib0023
  article-title: Approximate entropy as a measure of system complexity
  publication-title: Proc. Natl. Acad. Sci.
– volume: 59
  year: 2012
  ident: bib0043
  article-title: ECG analysis using multiple instance learning for myocardial infarction detection
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2011
  ident: bib0001
  article-title: Fact Sheet
– volume: 71
  start-page: 309
  year: 1994
  end-page: 310
  ident: bib0007
  article-title: Will serum enzymes and other proteins find a clinical application in the early diagnosis of myocardial infarction?
  publication-title: Br. Heart J.
– volume: 8
  start-page: 437
  year: 2012
  end-page: 448
  ident: bib0019
  article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform
  publication-title: Knowledge Based-Syst.
– volume: 7
  start-page: 818
  year: 2014
  end-page: 824
  ident: bib0044
  article-title: A new pattern recognition method for detection and localization of myocardial infarction using t-wave integral and total integral as extracted features from one cycle of ECG signal
  publication-title: J. Biomed. Sci. Eng.
– volume: 14
  start-page: 1553
  year: 2012
  end-page: 1577
  ident: bib0048
  article-title: Permutation entropy and its main biomedical and econophysics application: a review
  publication-title: Entropy
– volume: 25
  start-page: 369
  year: 1963
  end-page: 376
  ident: bib0036
  article-title: On tables of random numbers
  publication-title: Sankhya: Indian J. Statist. Ser. A. (1961–2002)
– ident: 10.1016/j.knosys.2016.01.040_bib0001
– volume: 105
  start-page: 65
  year: 2001
  ident: 10.1016/j.knosys.2016.01.040_bib0032
  article-title: Wavelet entropy: a new tool for analysis of short duration electrical signals
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(00)00356-3
– volume: 7
  start-page: 818
  year: 2014
  ident: 10.1016/j.knosys.2016.01.040_bib0044
  article-title: A new pattern recognition method for detection and localization of myocardial infarction using t-wave integral and total integral as extracted features from one cycle of ECG signal
  publication-title: J. Biomed. Sci. Eng.
  doi: 10.4236/jbise.2014.710081
– year: 2003
  ident: 10.1016/j.knosys.2016.01.040_bib0038
– volume: 5
  start-page: 15
  year: 2012
  ident: 10.1016/j.knosys.2016.01.040_bib0013
  article-title: Formal design methods for reliable computer-aided diagnosis: a review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2012.2184750
– volume: 256
  start-page: 15
  year: 1991
  ident: 10.1016/j.knosys.2016.01.040_bib0029
  article-title: Information and complexity measures in dynamical systems
  publication-title: Information Dynamics
  doi: 10.1007/978-1-4899-2305-9_2
– year: 2012
  ident: 10.1016/j.knosys.2016.01.040_bib0040
– volume: 1
  start-page: 547
  year: 1961
  ident: 10.1016/j.knosys.2016.01.040_bib0028
  article-title: On measures of entropy and information
– volume: 37
  start-page: 1304
  year: 1982
  ident: 10.1016/j.knosys.2016.01.040_bib0025
  article-title: Information dimension and the probabilistic structure of chaos
  publication-title: Naturforsch. Z.
  doi: 10.1515/zna-1982-1117
– start-page: 31
  year: 1998
  ident: 10.1016/j.knosys.2016.01.040_bib0015
  article-title: Characterizing the discrete wavelet transform of an ECG signal with simple parameters for use in automated diagnosis
– volume: 25
  start-page: 369
  year: 1963
  ident: 10.1016/j.knosys.2016.01.040_bib0036
  article-title: On tables of random numbers
  publication-title: Sankhya: Indian J. Statist. Ser. A. (1961–2002)
– volume: 26
  start-page: R155
  issue: 5
  year: 2005
  ident: 10.1016/j.knosys.2016.01.040_bib0021
  article-title: Wavelet transforms and the ECG: a review
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/26/5/R01
– volume: 27
  start-page: 368
  year: 2007
  ident: 10.1016/j.knosys.2016.01.040_bib0012
  article-title: Detection of acute myocardial infarction using 12-lead ECG plus inverted leads versus the 16-lead ECG (with additional posterior and right-sided chest electrodes)
  publication-title: Clin. Physiol. Funct. Imaging
  doi: 10.1111/j.1475-097X.2007.00761.x
– volume: 301
  start-page: 941
  year: 1990
  ident: 10.1016/j.knosys.2016.01.040_bib0006
  article-title: Early diagnosis of acute myocardial infarction
  publication-title: BMJ
  doi: 10.1136/bmj.301.6758.941
– volume: 91
  start-page: 537
  year: 2007
  ident: 10.1016/j.knosys.2016.01.040_bib0002
  article-title: Epidemiology of myocardial infarction
  publication-title: Med. Clin. N. Am.
  doi: 10.1016/j.mcna.2007.03.007
– volume: 314
  start-page: 354
  year: 2003
  ident: 10.1016/j.knosys.2016.01.040_bib0031
  article-title: Parameterized entropy analysis of EEG following hypoxic ischemic brain injury
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(03)00949-6
– volume: 68
  start-page: 866
  year: 2009
  ident: 10.1016/j.knosys.2016.01.040_bib0050
  article-title: Analysis of ECG signal by chaos principle to help automatic diagnosis of myocardial infarction
  publication-title: J. Sci. Ind. Res.
– volume: 65
  start-page: 117
  year: 1993
  ident: 10.1016/j.knosys.2016.01.040_bib0039
  article-title: A practical method for calculating largest Lyapunov exponent from small data sets
  publication-title: Physica D
  doi: 10.1016/0167-2789(93)90009-P
– volume: 88
  year: 2002
  ident: 10.1016/j.knosys.2016.01.040_bib0026
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Rev. Lett.
  doi: 10.1103/PhysRevLett.88.174102
– volume: 61
  start-page: 178
  year: 2014
  ident: 10.1016/j.knosys.2016.01.040_bib0045
  article-title: A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.08.010
– volume: 14
  start-page: 1553
  year: 2012
  ident: 10.1016/j.knosys.2016.01.040_bib0048
  article-title: Permutation entropy and its main biomedical and econophysics application: a review
  publication-title: Entropy
  doi: 10.3390/e14081553
– volume: 59
  issue: 12
  year: 2012
  ident: 10.1016/j.knosys.2016.01.040_bib0043
  article-title: ECG analysis using multiple instance learning for myocardial infarction detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2213597
– volume: 9
  year: 2014
  ident: 10.1016/j.knosys.2016.01.040_bib0005
  article-title: Atlas-based quantification of cardiac remodeling due to myocardial infarction
  publication-title: PLoS One
– volume: 71
  start-page: 311
  year: 1994
  ident: 10.1016/j.knosys.2016.01.040_bib0008
  article-title: Comparison of the value of novel rapid measurement of myoglobin, creatine kinase, and creatine kinase-MB with the electrocardiogram for the diagnosis of acute myocardial infarction
  publication-title: Br. Heart J.
  doi: 10.1136/hrt.71.4.311
– volume: 108
  start-page: 1502
  year: 1995
  ident: 10.1016/j.knosys.2016.01.040_bib0009
  article-title: A decision tree for the early diagnosis of acute myocardial infarction in nontraumatic chest pain patients at hospital admission
  publication-title: Chest
  doi: 10.1378/chest.108.6.1502
– volume: 36
  start-page: 842
  year: 1987
  ident: 10.1016/j.knosys.2016.01.040_bib0037
  article-title: Easily calculable measure for the complexity of spatiotemporal patterns
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.36.842
– volume: 31
  start-page: 306
  year: 2009
  ident: 10.1016/j.knosys.2016.01.040_bib0035
  article-title: Use of the Higuchi's fractal dimension for the analysis of MEG recordings from Alzheimer's disease patients
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2008.06.010
– volume: 1
  start-page: 88
  issue: 2
  year: 2012
  ident: 10.1016/j.knosys.2016.01.040_bib0042
  article-title: Cross wavelet transform based analysis of electrocardiogram signals
  publication-title: Int. J. Electr. Electron. Comput. Eng.
– volume: 31
  start-page: 277
  year: 1988
  ident: 10.1016/j.knosys.2016.01.040_bib0034
  article-title: Approach to an irregular time series on the basis of the fractal theory
  publication-title: Physics D
  doi: 10.1016/0167-2789(88)90081-4
– ident: 10.1016/j.knosys.2016.01.040_bib0010
– volume: 8
  start-page: 437
  issue: 5
  year: 2012
  ident: 10.1016/j.knosys.2016.01.040_bib0019
  article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform
  publication-title: Knowledge Based-Syst.
– start-page: 667
  year: 1992
  ident: 10.1016/j.knosys.2016.01.040_bib0014
  article-title: Neural network versus electrocardiographer and conventional computer criteria in diagnosing anterior infarct from the ECG
  publication-title: Proc. Comput. Cardiol.
  doi: 10.1109/CIC.1992.269345
– volume: 71
  start-page: 309
  year: 1994
  ident: 10.1016/j.knosys.2016.01.040_bib0007
  article-title: Will serum enzymes and other proteins find a clinical application in the early diagnosis of myocardial infarction?
  publication-title: Br. Heart J.
  doi: 10.1136/hrt.71.4.309
– volume: 27
  start-page: 387
  year: 2000
  ident: 10.1016/j.knosys.2016.01.040_bib0049
  article-title: An automated ECG classification system based on a neuro-fuzzy system
  publication-title: Comput. Cardiol.
– volume: 88
  start-page: 85
  year: 2015
  ident: 10.1016/j.knosys.2016.01.040_bib0022
  article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review
  publication-title: Knowledge Based Syst.
  doi: 10.1016/j.knosys.2015.08.004
– volume: 40
  start-page: 165
  year: 1986
  ident: 10.1016/j.knosys.2016.01.040_bib0024
  article-title: Fuzzy entropy and conditioning
  publication-title: Inf. Sci.
  doi: 10.1016/0020-0255(86)90006-X
– start-page: 1
  year: 2009
  ident: 10.1016/j.knosys.2016.01.040_bib0017
  article-title: An integrated ECG feature extraction scheme using PCA and wavelet transform
– year: 2006
  ident: 10.1016/j.knosys.2016.01.040_bib0011
– year: 2006
  ident: 10.1016/j.knosys.2016.01.040_bib0020
– start-page: 241
  year: 1996
  ident: 10.1016/j.knosys.2016.01.040_bib0016
  article-title: A hybrid neuro-fuzzy system for ECG classification of myocardial infarction
  publication-title: Proc. Comput. Cardiol.
– volume: 36
  start-page: 279
  year: 2012
  ident: 10.1016/j.knosys.2016.01.040_bib0041
  article-title: Detection and Localization of Myocardial Infarction Using K-nearest Neighbor Classifier
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-010-9474-3
– volume: 27
  start-page: 379
  year: 1948
  ident: 10.1016/j.knosys.2016.01.040_bib0027
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– start-page: 153
  year: 2015
  ident: 10.1016/j.knosys.2016.01.040_bib0046
  article-title: Discrete cosine transform features in automated classification of cardiac arrhythmia beats
– volume: 101
  start-page: e215
  year: 2000
  ident: 10.1016/j.knosys.2016.01.040_bib0018
  article-title: PhysioBank, PhysioToolKit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 127
  start-page: e6
  year: 2013
  ident: 10.1016/j.knosys.2016.01.040_bib0003
  article-title: Heart disease and stroke statistics, A report from the American Heart Association (AHA)
  publication-title: Circulation
– volume: 131
  start-page: e29
  year: 2015
  ident: 10.1016/j.knosys.2016.01.040_bib0004
  article-title: Heart disease and stroke statistics, A report from the American Heart Association
  publication-title: Circulation
– volume: 31
  start-page: 221
  year: 2003
  ident: 10.1016/j.knosys.2016.01.040_bib0030
  article-title: Time dependent entropy of EEG rhythm changes following brain ischemia
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1541013
– year: 1982
  ident: 10.1016/j.knosys.2016.01.040_bib0033
– volume: 77
  start-page: 70
  year: 2007
  ident: 10.1016/j.knosys.2016.01.040_bib0047
  article-title: Predictability analysis of absence seizures with permutation entropy
  publication-title: Epilepsy Res
  doi: 10.1016/j.eplepsyres.2007.08.002
– volume: 88
  start-page: 2297
  year: 1991
  ident: 10.1016/j.knosys.2016.01.040_bib0023
  article-title: Approximate entropy as a measure of system complexity
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.88.6.2297
SSID ssj0002218
Score 2.5538619
Snippet Identification and timely interpretation of changes occurring in the 12 electrocardiogram (ECG) leads is crucial to identify the types of myocardial infarction...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 146
SubjectTerms Automation
Classification
Classifier
Computer programs
Discrete wavelet transform
Electrocardiogram
Entropy
Myocardial infarction
Nonlinearity
Position (location)
Software
Title Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads
URI https://dx.doi.org/10.1016/j.knosys.2016.01.040
https://www.proquest.com/docview/1816034412
Volume 99
WOSCitedRecordID wos000374603400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBYh3cNedh_rbmiwt-AgO7Zs7y2Mlm4dZaztyJuRLJk46-yS2KV52C_bn9vRzTYNo9tgLybItmx8vuh8OtL5DkJvk4gBbxPc81lMPBjwpMeIYF4giZBxwWE8DHWxifjkJFks0s-j0U-XC3N1EVdVcn2dXv5XU0MbGFulzv6FubtOoQF-g9HhCGaH4x8Zft42NdBQIJJCNtJWAq_ERHstm3WpV9W30LDWeSPwWPgI-kSrYwe2OI4-r_dvmZzofCAVvnFq1K7ESqMqUJi0Ycd2j13AzlPOUljZ6I7Fz1XK11az1_Pp5AtbyUqsOzdx2K5KQ22P2PdS1P3ylYDJ-NIEbr-WYssmx9MuVqyjRKfLdvKpXA4jGj7t9w-aMNtOqo2NVxIvJladVprROolhehCSdDicm3pLdjx28U3j2n2jYb7jNUwAYzX9VtXwIdR-P6q1XI2Q1A097lP1JupFfKoIlko03wviKE3GaG_-4WDxsSMCQaDDy92bu8xNvb1w91m_Y0Y3OIImPmcP0D07Y8Fzg7SHaCSrR-i-qwaCrXN4jH50wMMd8DAADw-Bh-sC98DDPfCwBh7eAd47zPAAdljDTvXSwQ5r2D1B54cHZ--PPFvcw8thjtB4PIpYTqhghPCQUzGjqUxYAROCWcSllIGkUSAKzhOSxzm4Fc4o52lII1ZQpZj0FI2rupLPEA5EDJOOqGAhJ6GIklSp8okgz0WayCAs9tHMfdgst8r3qgDLRea2OK4yY45MmSMjfgbm2Eded9elUX655frY2Syz7NWw0gxgdsudb5yJMxjc1Yodq2TdbjKg31RpcvrB83_u_QW62__JXqJxs27lK3Qnv2rKzfq1xewvhmnUQA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+detection+and+localization+of+myocardial+infarction+using+electrocardiogram%3A+a+comparative+study+of+different+leads&rft.jtitle=Knowledge-based+systems&rft.au=Acharya%2C+U.+Rajendra&rft.au=Fujita%2C+Hamido&rft.au=Sudarshan%2C+Vidya+K.&rft.au=Oh%2C+Shu+Lih&rft.date=2016-05-01&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=99&rft.spage=146&rft.epage=156&rft_id=info:doi/10.1016%2Fj.knosys.2016.01.040&rft.externalDocID=S0950705116000708
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon