A fast DBSCAN clustering algorithm by accelerating neighbor searching using Groups method
Density based clustering methods are proposed for clustering spatial databases with noise. Density Based Spatial Clustering of Applications with Noise (DBSCAN) can discover clusters of arbitrary shape and also handles outliers effectively. DBSCAN obtains clusters by finding the number of points with...
Uloženo v:
| Vydáno v: | Pattern recognition Ročník 58; s. 39 - 48 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.10.2016
|
| Témata: | |
| ISSN: | 0031-3203, 1873-5142 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Density based clustering methods are proposed for clustering spatial databases with noise. Density Based Spatial Clustering of Applications with Noise (DBSCAN) can discover clusters of arbitrary shape and also handles outliers effectively. DBSCAN obtains clusters by finding the number of points within the specified distance from a given point. It involves computing distances from given point to all other points in the dataset. The conventional index based methods construct a hierarchical structure over the dataset to speed-up the neighbor search operations. The hierarchical index-structures fail to scale for datasets of dimensionality above 20. In this paper, we propose a novel graph-based index structure method Groups that accelerates the neighbor search operations and also scalable for high dimensional datasets. Experimental results show that the proposed method improves the speed of DBSCAN by a factor of about 1.5–2.2 on benchmark datasets. The performance of DBSCAN degrades considerably with noise due to unnecessary distance computations introduced by noise points while the proposed method is robust to noise by pruning out noise points early and eliminating the unnecessary distance computations. The cluster results produced by our method are exactly similar to that of DBSCAN but executed at a much faster pace.
•A graph-based index structure is built for speeding up neighbor search operations.•No additional inputs are required to build the index structure.•Proposed method is scalable for high-dimensional datasets.•Handles noise effectively to improve the performance of DBSCAN. |
|---|---|
| AbstractList | Density based clustering methods are proposed for clustering spatial databases with noise. Density Based Spatial Clustering of Applications with Noise (DBSCAN) can discover clusters of arbitrary shape and also handles outliers effectively. DBSCAN obtains clusters by finding the number of points within the specified distance from a given point. It involves computing distances from given point to all other points in the dataset. The conventional index based methods construct a hierarchical structure over the dataset to speed-up the neighbor search operations. The hierarchical index-structures fail to scale for datasets of dimensionality above 20. In this paper, we propose a novel graph-based index structure method Groups that accelerates the neighbor search operations and also scalable for high dimensional datasets. Experimental results show that the proposed method improves the speed of DBSCAN by a factor of about 1.5-2.2 on benchmark datasets. The performance of DBSCAN degrades considerably with noise due to unnecessary distance computations introduced by noise points while the proposed method is robust to noise by pruning out noise points early and eliminating the unnecessary distance computations. The cluster results produced by our method are exactly similar to that of DBSCAN but executed at a much faster pace. Density based clustering methods are proposed for clustering spatial databases with noise. Density Based Spatial Clustering of Applications with Noise (DBSCAN) can discover clusters of arbitrary shape and also handles outliers effectively. DBSCAN obtains clusters by finding the number of points within the specified distance from a given point. It involves computing distances from given point to all other points in the dataset. The conventional index based methods construct a hierarchical structure over the dataset to speed-up the neighbor search operations. The hierarchical index-structures fail to scale for datasets of dimensionality above 20. In this paper, we propose a novel graph-based index structure method Groups that accelerates the neighbor search operations and also scalable for high dimensional datasets. Experimental results show that the proposed method improves the speed of DBSCAN by a factor of about 1.5–2.2 on benchmark datasets. The performance of DBSCAN degrades considerably with noise due to unnecessary distance computations introduced by noise points while the proposed method is robust to noise by pruning out noise points early and eliminating the unnecessary distance computations. The cluster results produced by our method are exactly similar to that of DBSCAN but executed at a much faster pace. •A graph-based index structure is built for speeding up neighbor search operations.•No additional inputs are required to build the index structure.•Proposed method is scalable for high-dimensional datasets.•Handles noise effectively to improve the performance of DBSCAN. |
| Author | Mahesh Kumar, K. Rama Mohan Reddy, A. |
| Author_xml | – sequence: 1 givenname: K. surname: Mahesh Kumar fullname: Mahesh Kumar, K. email: mahesh_cse@outlook.com – sequence: 2 givenname: A. surname: Rama Mohan Reddy fullname: Rama Mohan Reddy, A. email: ramamohansvu@yahoo.com |
| BookMark | eNqFkD1PwzAQhi0EEm3hHzBkZEk4x06TMCCVAgWpggEYmCzHuTSukrjYDlL_PYnKxADLne7jfXX3TMlxZzok5IJCRIHOr7bRTnplNlE8VBGwCCA7IhOapSxMKI-PyQSA0ZDFwE7J1LktAE2HwYR8LIJKOh_c3b4uF8-Banrn0epuE8hmY6z2dRsU-0AqhQ1a6cdJh3pTF8YGDqVV9djq3RhX1vQ7F7Toa1OekZNKNg7Pf_KMvD_cvy0fw_XL6mm5WIeKQ-JDiSxPQWLMMi5LhhzzJKvmFatUTstC5YqnwDBRJZ3zChNaFHmsKC-ZpFBmks3I5cF3Z81nj86LVrvh2kZ2aHonaBYnPGWUwbB6fVhV1jhnsRJK--En03krdSMoiJGn2IoDTzHyFMDEwHMQ81_indWttPv_ZDcHGQ4MvjRa4ZTGTmGpLSovSqP_NvgGysaUsw |
| CitedBy_id | crossref_primary_10_1007_s00466_024_02485_1 crossref_primary_10_3390_app15115969 crossref_primary_10_3390_s24010167 crossref_primary_10_1109_TIA_2023_3284782 crossref_primary_10_3390_su10082614 crossref_primary_10_3390_info10030103 crossref_primary_10_1016_j_asoc_2023_111095 crossref_primary_10_1109_TFUZZ_2023_3247912 crossref_primary_10_3233_IDT_170155 crossref_primary_10_1016_j_neucom_2024_127329 crossref_primary_10_1016_j_ifacol_2021_08_282 crossref_primary_10_1016_j_knosys_2020_106672 crossref_primary_10_3390_electronics11030370 crossref_primary_10_1177_0142331219846239 crossref_primary_10_1080_01490419_2025_2508771 crossref_primary_10_1109_ACCESS_2020_3045182 crossref_primary_10_1016_j_isatra_2021_07_043 crossref_primary_10_1109_ACCESS_2019_2941184 crossref_primary_10_1007_s00521_018_3607_x crossref_primary_10_1109_TIM_2022_3216382 crossref_primary_10_3390_ijgi8050207 crossref_primary_10_1007_s13042_025_02707_9 crossref_primary_10_1088_1742_6596_1994_1_012024 crossref_primary_10_1109_JSTARS_2022_3201991 crossref_primary_10_1016_j_cja_2020_09_035 crossref_primary_10_1016_j_knosys_2022_108288 crossref_primary_10_1007_s13042_024_02104_8 crossref_primary_10_3390_app132212147 crossref_primary_10_1007_s13131_020_1638_5 crossref_primary_10_1155_2022_6181182 crossref_primary_10_1109_JSYST_2021_3072122 crossref_primary_10_3233_JIFS_232780 crossref_primary_10_1016_j_engappai_2025_111042 crossref_primary_10_1016_j_patcog_2020_107411 crossref_primary_10_1007_s42979_021_00736_z crossref_primary_10_1080_17538947_2024_2375112 crossref_primary_10_1016_j_patcog_2018_10_007 crossref_primary_10_1016_j_patcog_2023_109658 crossref_primary_10_1109_ACCESS_2023_3261562 crossref_primary_10_1016_j_chaos_2018_03_010 crossref_primary_10_3390_agriculture13010130 crossref_primary_10_3390_e24070875 crossref_primary_10_1016_j_compbiomed_2019_05_009 crossref_primary_10_1109_TSMC_2018_2884839 crossref_primary_10_3390_math12152382 crossref_primary_10_3390_s23073708 crossref_primary_10_1016_j_eswa_2017_01_024 crossref_primary_10_1016_j_ins_2023_03_067 crossref_primary_10_1016_j_compchemeng_2025_109251 crossref_primary_10_1016_j_enbuild_2018_10_011 crossref_primary_10_3390_fi15010023 crossref_primary_10_3390_app9010031 crossref_primary_10_3390_bdcc2040032 crossref_primary_10_1017_S0890060419000258 crossref_primary_10_1016_j_measurement_2020_108162 crossref_primary_10_1002_adfm_202309108 crossref_primary_10_1109_ACCESS_2020_2972034 crossref_primary_10_1111_gcb_70132 crossref_primary_10_3233_IDA_194978 crossref_primary_10_1016_j_eswa_2023_122229 crossref_primary_10_1109_JBHI_2021_3072628 crossref_primary_10_1016_j_patcog_2023_109889 crossref_primary_10_1016_j_conengprac_2022_105090 crossref_primary_10_1109_JIOT_2021_3100295 crossref_primary_10_1007_s43684_023_00055_5 crossref_primary_10_1038_s41598_023_39058_w crossref_primary_10_1109_ACCESS_2019_2949049 crossref_primary_10_1016_j_eswa_2021_115518 crossref_primary_10_1080_00949655_2022_2098298 crossref_primary_10_1016_j_patcog_2019_01_034 crossref_primary_10_1109_TASE_2025_3596630 crossref_primary_10_3233_JIFS_17034 crossref_primary_10_1109_ACCESS_2018_2877423 crossref_primary_10_1186_s13673_020_00225_x crossref_primary_10_1109_ACCESS_2020_2969440 crossref_primary_10_12677_AAM_2021_1011420 crossref_primary_10_1145_3630635 crossref_primary_10_1016_j_cag_2018_04_007 crossref_primary_10_1007_s11390_020_9933_3 crossref_primary_10_1016_j_neucom_2025_130026 crossref_primary_10_1109_TCSS_2021_3110819 crossref_primary_10_1155_2019_2182615 crossref_primary_10_1016_j_compag_2019_104975 crossref_primary_10_1016_j_future_2024_08_001 crossref_primary_10_1145_3490384 crossref_primary_10_3390_sym14040781 crossref_primary_10_1177_1729881418762302 crossref_primary_10_1007_s11192_016_2146_4 crossref_primary_10_3390_w16070978 crossref_primary_10_1177_0954410017751991 crossref_primary_10_2478_amns_2023_2_00119 crossref_primary_10_1016_j_procs_2018_03_064 crossref_primary_10_1111_exsy_12883 crossref_primary_10_1016_j_datak_2021_101922 crossref_primary_10_1080_08927022_2020_1851028 crossref_primary_10_1108_K_06_2017_0211 crossref_primary_10_1007_s10922_022_09650_y crossref_primary_10_1371_journal_pone_0322738 crossref_primary_10_1007_s00500_020_04881_0 crossref_primary_10_1016_j_patcog_2018_11_010 crossref_primary_10_1109_TGRS_2019_2899337 crossref_primary_10_3233_JIFS_16360 crossref_primary_10_2478_ijmce_2024_0009 crossref_primary_10_3390_math11194075 crossref_primary_10_1016_j_ins_2023_119561 crossref_primary_10_1109_ACCESS_2018_2866364 crossref_primary_10_3390_math10162936 crossref_primary_10_1177_1729881416664901 crossref_primary_10_3390_app15073518 crossref_primary_10_1088_2631_8695_ade02e crossref_primary_10_1177_1748301817735665 crossref_primary_10_1007_s10661_019_7591_0 crossref_primary_10_1016_j_apm_2023_03_021 crossref_primary_10_1016_j_ins_2021_03_057 crossref_primary_10_1007_s00158_023_03724_4 crossref_primary_10_1007_s10844_020_00602_z crossref_primary_10_1007_s00530_018_0601_1 crossref_primary_10_1016_j_plaphe_2025_100008 crossref_primary_10_1049_itr2_12008 crossref_primary_10_1016_j_patcog_2019_05_024 crossref_primary_10_1109_LWC_2025_3575477 crossref_primary_10_1016_j_aap_2019_105256 crossref_primary_10_1088_1742_6596_1325_1_012106 crossref_primary_10_1016_j_eswa_2021_115054 crossref_primary_10_1111_exsy_13062 crossref_primary_10_3390_s17102226 crossref_primary_10_1016_j_asoc_2020_106250 crossref_primary_10_1109_JSTARS_2021_3131187 crossref_primary_10_1007_s10044_019_00809_z crossref_primary_10_3390_s23249876 crossref_primary_10_1109_ACCESS_2023_3262732 crossref_primary_10_1155_2024_2330624 crossref_primary_10_1007_s13042_016_0603_2 crossref_primary_10_1007_s44174_025_00379_1 crossref_primary_10_3390_en12183586 crossref_primary_10_1145_3588912 crossref_primary_10_3390_math12172790 crossref_primary_10_1016_j_neucom_2020_10_114 crossref_primary_10_2478_jaiscr_2021_0019 crossref_primary_10_3390_app10031095 crossref_primary_10_1016_j_future_2019_09_038 crossref_primary_10_1016_j_patcog_2016_12_027 crossref_primary_10_1016_j_jaa_2020_101165 crossref_primary_10_1038_s41598_021_88822_3 crossref_primary_10_3390_electronics13173395 crossref_primary_10_1162_neco_a_01081 crossref_primary_10_1080_01919512_2025_2476719 crossref_primary_10_1371_journal_pone_0313890 crossref_primary_10_1016_j_comcom_2020_12_019 crossref_primary_10_1109_LRA_2021_3062599 crossref_primary_10_3390_rs14041030 crossref_primary_10_1007_s40745_017_0131_2 crossref_primary_10_1016_j_ress_2020_106908 crossref_primary_10_1109_ACCESS_2017_2765337 crossref_primary_10_1111_exsy_12318 crossref_primary_10_1007_s00521_021_06274_2 crossref_primary_10_1016_j_ifacol_2022_05_038 crossref_primary_10_1108_GS_05_2023_0043 crossref_primary_10_1016_j_ins_2017_07_036 crossref_primary_10_1109_ACCESS_2024_3461798 crossref_primary_10_3390_ijgi9120750 crossref_primary_10_1007_s00500_018_3221_y crossref_primary_10_1016_j_eswa_2022_117501 crossref_primary_10_1186_s40537_019_0236_x crossref_primary_10_1007_s11661_024_07473_x crossref_primary_10_1016_j_patcog_2018_05_030 crossref_primary_10_1109_ACCESS_2021_3089036 crossref_primary_10_1016_j_jksuci_2024_102002 crossref_primary_10_1109_ACCESS_2019_2904254 |
| Cites_doi | 10.1016/j.patcog.2005.11.009 10.1109/TSE.1979.234200 10.1609/aaai.v29i1.9547 10.1109/CLOUD.2012.42 10.1016/j.patrec.2009.09.011 10.1016/j.patrec.2009.08.008 10.1109/ICPR.2006.741 10.1145/304182.304187 10.1016/0031-3203(80)90066-7 10.1109/SC.2012.9 10.1016/j.ins.2014.10.023 10.1007/BF01231602 10.1109/TPAMI.2013.2296528 10.1109/ICTAI.2006.83 10.1145/1645953.1646038 10.1016/j.patrec.2011.02.001 10.1109/TCBB.2004.2 10.1016/S0167-7152(02)00421-2 10.1016/j.patcog.2014.05.002 10.1145/276304.276312 10.1023/A:1007692713085 10.1109/34.868688 10.1016/j.patcog.2010.09.008 10.1016/j.patcog.2009.07.010 10.1145/602259.602266 10.1080/01621459.1971.10482356 10.1145/235968.233324 10.1145/331499.331504 10.1109/T-C.1971.223083 10.1080/08839519408945432 10.1109/TNN.2002.1000150 10.1109/TIP.2014.2311377 10.1109/PROC.1968.6414 10.1016/S0031-3203(03)00235-8 10.1080/01621459.1967.10482890 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.patcog.2016.03.008 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| EndPage | 48 |
| ExternalDocumentID | 10_1016_j_patcog_2016_03_008 S0031320316001035 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c405t-ae3970ae2384ad3e4e958f6f3fc91dbc9c4703e5cd164fe51bb92c14d3a10d8a3 |
| ISICitedReferencesCount | 212 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377726900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Sun Sep 28 04:37:20 EDT 2025 Sat Nov 29 03:52:18 EST 2025 Tue Nov 18 22:03:35 EST 2025 Fri Feb 23 02:25:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | DBSCAN Density based clustering Unsupervised learning Neighborhood graph |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c405t-ae3970ae2384ad3e4e958f6f3fc91dbc9c4703e5cd164fe51bb92c14d3a10d8a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1825473130 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1825473130 crossref_citationtrail_10_1016_j_patcog_2016_03_008 crossref_primary_10_1016_j_patcog_2016_03_008 elsevier_sciencedirect_doi_10_1016_j_patcog_2016_03_008 |
| PublicationCentury | 2000 |
| PublicationDate | October 2016 2016-10-00 20161001 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Jain, Murty, Flynn (bib8) 1999; 31 M. Ankerst, M. Breunig, H.P. Kriegel, J. Sander, OPTICS: ordering points to identify the clustering structure, in: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD),1999, pp. 49–60. Fayyad, Shapiro, Smyth, Uthurusamy (bib3) 1996 Viswanath, Babu (bib27) 2009; 30 Chen, Gao, Li (bib32) 2010 Jain (bib6) 2010; 31 G. Nagy, State of the art in pattern recognition, in: Proceedings of IEEE 56, 1968, pp. 836–862. B.R. Dai, I.C. Lin, Efficient map–reduce based DBSCAN algorithm with optimized data partition, in: Proceedings of IEEE 5th International Conference on Cloud Computing (CLOUD), Hawaii, USA, 2012, pp. 59–66. A. Hinneburg, D.A. Keim, An efficient approach to clustering in large multimedia databases with noise, in: Proceedings of the 4 International Conference on KDD, 1998, pp. 58–65. O. Grygorash, Y. Zhou, Z. Jorgensen, Minimum spanning tree-based clustering algorithms, in: Proceedings of IEEE International Conference on Tools with Artificial Intelligence, 2006, pp. 73–81. M. Ester, H.P. Kriegel, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings of the 2nd ACM SIGKDD, Portland, Oregon, 1996, pp. 226–231. Chen, Liu, Qiu, Lai (bib22) 2011; 32 P. Viswanath, R. Pinkesh, l-dbscan: A fast hybrid density based clustering method, in: Proceedings of the 18th International Conference on Pattern Recognition, vol. 1, IEEE Computer Society, Hong Kong, 2006, pp. 912–915. P. Ciaccia, M. Patella, P. Zezula, M-tree: an efficient access method for similarity search in metric spaces, in: Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB),1997, pp. 426–435. S. Guha, R. Rastogi, K. Shim, Cure: an efficient clustering algorithm for large databases, in: Proceedings of the International Conference on Mangement of Data (ACM SIGMOD), 1998, pp.73–84. Lu, Zhao, Cai (bib17) 2006; 39 . Mallah, Cope, Orwell (bib51) 2013 Madeira, Oliveira (bib4) 2004; 1 Yu, Rui, Tao (bib44) 2014; 23 M. Patwary, M.Ali, D. Palsetia, A. Agrawal, W.K. Liao, F. Manne, A. Choudary, A new scalable parallel DBSCAN algorithm using the disjoint-set data structure, in: Proceedings of the International Conference on HPC Networking, Storage and Analysis, 2012, pp. 1–11. A. Frank, A. Asuncion, UCI machine learning repository, 2010. King (bib9) 1967; 62 Pawlak (bib28) 1991 Yu, Hong, Wang, You (bib43) 2014; 47 Loh, Yu (bib30) 2015; 308 Esposito, Malerba, Semeraro (bib50) 1994; 8 Zahn (bib34) 1971; 20 Nigam, McCallum, Thrun, Mitchell (bib18) 2000; 39 Mimaroglu, Erdil (bib42) 2011; 44 Hartigan (bib26) 1975 Shi, Malik (bib39) 2000; 22 Gonzalez, Woods (bib1) 2008 Theodoridis, Koutroumbas (bib2) 2003 A. Guttman, R-trees: a dynamic index structure for spatial searching, in: Proceedings of the 13th International Conference on Management of Data ACM SIGMOD, vol. 2, 1984, pp. 47–57. Bently (bib46) 1979; 5 Karypis, Han, Kumar (bib35) 1999; 32 T. Scott, M. Jeffrey, A. Mario, STR: A Simple and Efficient Algorithm for R-Tree Packing, Technical Report, Institute for Computer Application in Science and Engineering (ICASE), ACM Communications, 1997. C. Böhm, R. Noll, C. Plant, B. W. Reuther, Density-based clustering using graphics processors, in: Proceedings of the Conference on Information and Knowledge Management (CIKM), Hong Kong, China, 2009, pp. 661–670. Zhong, Miao, Wang (bib37) 2010; 43 Chang, Dacheng, Chao (bib14) 2014; 36 X. Chang, T. Dacheng, X. Chao, Multi-view self-paced learning for clustering, in: Proceedings of the 24th International Joint Conference on Artificial Intelligence, 2015, pp. 3974–3980. Barrios, Quiroz (bib38) 2003; 62 Frey, Dueck (bib23) 2005 Z. Tian, R. Raghu, L. Micon, BIRCH: an efficient data clustering method for very large databases, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, 1996, pp.103–114. Toussaint (bib41) 1980; 12 H. Kaya, P. Tufekci , S.F. Gurgen, Local and global learning methods for predicting power of a combined gas & steam turbine, in: Proceedings of the International Conference on Emerging Trends in Computer and Electrical Engineering (ICETCEE), 2012, pp. 13–18. M. Liu, Y. Luo, D. Tao, C. Xu, Y. Wen, Low-rank multi-view learning in matrix completion for multi-label image classification, in: Proceedings of the 29th American Association for Artificial Intelligence (AAAI) National Conference, 2015, pp. 2778-2784. Rand (bib52) 1971; 66 Gueting (bib5) 1994; 3 Chapelle, Schölkopf, Zien (bib15) 2006; vol. 2 Bandyopadhyay (bib40) 2004; 37 Girolami (bib7) 2002; 13 Toussaint (10.1016/j.patcog.2016.03.008_bib41) 1980; 12 10.1016/j.patcog.2016.03.008_bib13 10.1016/j.patcog.2016.03.008_bib16 10.1016/j.patcog.2016.03.008_bib19 Hartigan (10.1016/j.patcog.2016.03.008_bib26) 1975 Mallah (10.1016/j.patcog.2016.03.008_bib51) 2013 Fayyad (10.1016/j.patcog.2016.03.008_bib3) 1996 Chapelle (10.1016/j.patcog.2016.03.008_bib15) 2006; vol. 2 Chang (10.1016/j.patcog.2016.03.008_bib14) 2014; 36 Barrios (10.1016/j.patcog.2016.03.008_bib38) 2003; 62 10.1016/j.patcog.2016.03.008_bib21 10.1016/j.patcog.2016.03.008_bib20 10.1016/j.patcog.2016.03.008_bib25 10.1016/j.patcog.2016.03.008_bib24 Jain (10.1016/j.patcog.2016.03.008_bib8) 1999; 31 10.1016/j.patcog.2016.03.008_bib29 Zahn (10.1016/j.patcog.2016.03.008_bib34) 1971; 20 Yu (10.1016/j.patcog.2016.03.008_bib43) 2014; 47 Shi (10.1016/j.patcog.2016.03.008_bib39) 2000; 22 Bently (10.1016/j.patcog.2016.03.008_bib46) 1979; 5 Loh (10.1016/j.patcog.2016.03.008_bib30) 2015; 308 Jain (10.1016/j.patcog.2016.03.008_bib6) 2010; 31 Chen (10.1016/j.patcog.2016.03.008_bib22) 2011; 32 Viswanath (10.1016/j.patcog.2016.03.008_bib27) 2009; 30 10.1016/j.patcog.2016.03.008_bib31 Nigam (10.1016/j.patcog.2016.03.008_bib18) 2000; 39 10.1016/j.patcog.2016.03.008_bib33 10.1016/j.patcog.2016.03.008_bib36 Rand (10.1016/j.patcog.2016.03.008_bib52) 1971; 66 Esposito (10.1016/j.patcog.2016.03.008_bib50) 1994; 8 Madeira (10.1016/j.patcog.2016.03.008_bib4) 2004; 1 Karypis (10.1016/j.patcog.2016.03.008_bib35) 1999; 32 Yu (10.1016/j.patcog.2016.03.008_bib44) 2014; 23 Lu (10.1016/j.patcog.2016.03.008_bib17) 2006; 39 Gonzalez (10.1016/j.patcog.2016.03.008_bib1) 2008 Pawlak (10.1016/j.patcog.2016.03.008_bib28) 1991 King (10.1016/j.patcog.2016.03.008_bib9) 1967; 62 10.1016/j.patcog.2016.03.008_bib45 10.1016/j.patcog.2016.03.008_bib47 10.1016/j.patcog.2016.03.008_bib49 Girolami (10.1016/j.patcog.2016.03.008_bib7) 2002; 13 10.1016/j.patcog.2016.03.008_bib48 Theodoridis (10.1016/j.patcog.2016.03.008_bib2) 2003 Gueting (10.1016/j.patcog.2016.03.008_bib5) 1994; 3 Chen (10.1016/j.patcog.2016.03.008_bib32) 2010 Bandyopadhyay (10.1016/j.patcog.2016.03.008_bib40) 2004; 37 Zhong (10.1016/j.patcog.2016.03.008_bib37) 2010; 43 Frey (10.1016/j.patcog.2016.03.008_bib23) 2005 10.1016/j.patcog.2016.03.008_bib10 Mimaroglu (10.1016/j.patcog.2016.03.008_bib42) 2011; 44 10.1016/j.patcog.2016.03.008_bib12 10.1016/j.patcog.2016.03.008_bib11 |
| References_xml | – volume: 36 start-page: 1559 year: 2014 end-page: 1572 ident: bib14 article-title: Large margin multi-view information bottleneck publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 39 start-page: 103 year: 2000 end-page: 134 ident: bib18 article-title: Text classification from labeled and unlabeled documents using EM publication-title: Mach. Learn. – volume: 37 start-page: 33 year: 2004 end-page: 45 ident: bib40 article-title: An automatic shape independent clustering technique publication-title: Pattern Recognit. – start-page: 508 year: 2010 end-page: 511 ident: bib32 article-title: Parallel DBSCAN with priority r-tree publication-title: Proceedings of the Information Management Engineering (ICIME) – reference: M. Patwary, M.Ali, D. Palsetia, A. Agrawal, W.K. Liao, F. Manne, A. Choudary, A new scalable parallel DBSCAN algorithm using the disjoint-set data structure, in: Proceedings of the International Conference on HPC Networking, Storage and Analysis, 2012, pp. 1–11. – volume: 32 start-page: 973 year: 2011 end-page: 986 ident: bib22 article-title: APSCAN: a parameter free clustering algorithm publication-title: Pattern Recognit. Lett. – volume: 30 start-page: 1477 year: 2009 end-page: 1488 ident: bib27 article-title: Rough-DBSCAN: a fast hybrid density based clustering method for large data sets publication-title: Pattern Recognit. Lett. – reference: A. Frank, A. Asuncion, UCI machine learning repository, 2010. 〈 – volume: 5 start-page: 333 year: 1979 end-page: 340 ident: bib46 article-title: Multidimensional search trees in database applications publication-title: IEEE Trans. Softw. Eng. – year: 1996 ident: bib3 article-title: Advances in Knowledge Discovery and Data Mining – reference: S. Guha, R. Rastogi, K. Shim, Cure: an efficient clustering algorithm for large databases, in: Proceedings of the International Conference on Mangement of Data (ACM SIGMOD), 1998, pp.73–84. – reference: International Conference on KDD, 1998, pp. 58–65. – volume: 31 start-page: 264 year: 1999 end-page: 323 ident: bib8 article-title: Data clustering: a review publication-title: ACM Comput. Surv. – volume: 39 start-page: 717 year: 2006 end-page: 720 ident: bib17 article-title: An algorithm for semi-supervised learning in image retrieval publication-title: Pattern Recognit. – reference: 〉. – reference: P. Ciaccia, M. Patella, P. Zezula, M-tree: an efficient access method for similarity search in metric spaces, in: Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB),1997, pp. 426–435. – volume: 13 start-page: 780 year: 2002 end-page: 784 ident: bib7 article-title: Mercer kernel-based clustering in feature space publication-title: IEEE Trans. Neural Netw. – year: 2003 ident: bib2 article-title: Pattern Recognition – volume: 1 start-page: 24 year: 2004 end-page: 45 ident: bib4 article-title: Bi-clustering algorithms for biological data analysis: a survey publication-title: IEEE/ACM Trans. Comp. Biol. Bioinforma. – reference: Z. Tian, R. Raghu, L. Micon, BIRCH: an efficient data clustering method for very large databases, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, 1996, pp.103–114. – start-page: 379 year: 2005 end-page: 386 ident: bib23 article-title: Mixture modeling by affinity propagation publication-title: Proceedings of the 18th Neural Information Processing Systems Conference – reference: B.R. Dai, I.C. Lin, Efficient map–reduce based DBSCAN algorithm with optimized data partition, in: Proceedings of IEEE 5th International Conference on Cloud Computing (CLOUD), Hawaii, USA, 2012, pp. 59–66. – year: 2008 ident: bib1 article-title: Digital Image Processing – volume: 62 start-page: 23 year: 2003 end-page: 34 ident: bib38 article-title: A clustering procedure based on the comparison between the publication-title: Stat. Probab. Lett. – reference: G. Nagy, State of the art in pattern recognition, in: Proceedings of IEEE 56, 1968, pp. 836–862. – reference: O. Grygorash, Y. Zhou, Z. Jorgensen, Minimum spanning tree-based clustering algorithms, in: Proceedings of IEEE International Conference on Tools with Artificial Intelligence, 2006, pp. 73–81. – volume: 3 start-page: 357 year: 1994 end-page: 399 ident: bib5 article-title: An introduction to spatial database systems publication-title: VLDB J. – volume: 62 start-page: 86 year: 1967 end-page: 101 ident: bib9 article-title: Step-wise clustering procedures publication-title: J. Am. Stat. Assoc. – start-page: 45 year: 2013 end-page: 54 ident: bib51 article-title: Plant leaf classification using probabilistic integration of shape, texture and margin features, signal processing publication-title: Pattern Recognit. Appl. – volume: 31 start-page: 651 year: 2010 end-page: 666 ident: bib6 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recognit. Lett. – reference: X. Chang, T. Dacheng, X. Chao, Multi-view self-paced learning for clustering, in: Proceedings of the 24th International Joint Conference on Artificial Intelligence, 2015, pp. 3974–3980. – year: 1975 ident: bib26 article-title: Clustering Algorithms – volume: 47 start-page: 3512 year: 2014 end-page: 3519 ident: bib43 article-title: Image clustering based on sparse patch alignment framework publication-title: Pattern Recognit. – volume: 12 start-page: 261 year: 1980 end-page: 268 ident: bib41 article-title: The relative neighborhood graph of a finite planar set publication-title: Pattern Recognit. – reference: T. Scott, M. Jeffrey, A. Mario, STR: A Simple and Efficient Algorithm for R-Tree Packing, Technical Report, Institute for Computer Application in Science and Engineering (ICASE), ACM Communications, 1997. – volume: 66 start-page: 846 year: 1971 end-page: 850 ident: bib52 article-title: Objective criteria for the evaluation of clustering methods publication-title: J. Am. Stat. Assoc. – volume: 22 start-page: 888 year: 2000 end-page: 905 ident: bib39 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 23 start-page: 2019 year: 2014 end-page: 2032 ident: bib44 article-title: Click prediction for web image re-ranking using multimodal sparse coding publication-title: IEEE Trans. Image Process. – volume: vol. 2 year: 2006 ident: bib15 article-title: Semi-Supervised Learning – reference: M. Liu, Y. Luo, D. Tao, C. Xu, Y. Wen, Low-rank multi-view learning in matrix completion for multi-label image classification, in: Proceedings of the 29th American Association for Artificial Intelligence (AAAI) National Conference, 2015, pp. 2778-2784. – volume: 43 start-page: 752 year: 2010 end-page: 766 ident: bib37 article-title: A graph-theoretical clustering method based on two rounds of minimum spanning trees publication-title: Pattern Recognit. – volume: 32 start-page: 68 year: 1999 end-page: 75 ident: bib35 article-title: CHAMELEON: a hierarchical clustering algorithm using dynamic modeling publication-title: IEEE Trans. Comput. – reference: P. Viswanath, R. Pinkesh, l-dbscan: A fast hybrid density based clustering method, in: Proceedings of the 18th International Conference on Pattern Recognition, vol. 1, IEEE Computer Society, Hong Kong, 2006, pp. 912–915. – reference: C. Böhm, R. Noll, C. Plant, B. W. Reuther, Density-based clustering using graphics processors, in: Proceedings of the Conference on Information and Knowledge Management (CIKM), Hong Kong, China, 2009, pp. 661–670. – reference: A. Hinneburg, D.A. Keim, An efficient approach to clustering in large multimedia databases with noise, in: Proceedings of the 4 – reference: H. Kaya, P. Tufekci , S.F. Gurgen, Local and global learning methods for predicting power of a combined gas & steam turbine, in: Proceedings of the International Conference on Emerging Trends in Computer and Electrical Engineering (ICETCEE), 2012, pp. 13–18. – year: 1991 ident: bib28 article-title: Rough Sets: Theoretical Aspects of Reasoning About Data – volume: 20 start-page: 68 year: 1971 end-page: 86 ident: bib34 article-title: Graph-theoretical methods for detecting and describing Gestalt clusters publication-title: IEEE Trans. Comput. – volume: 44 start-page: 694 year: 2011 end-page: 703 ident: bib42 article-title: Combining multiple clusterings using similarity graph publication-title: Pattern Recognit. – reference: M. Ester, H.P. Kriegel, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings of the 2nd ACM SIGKDD, Portland, Oregon, 1996, pp. 226–231. – reference: A. Guttman, R-trees: a dynamic index structure for spatial searching, in: Proceedings of the 13th International Conference on Management of Data ACM SIGMOD, vol. 2, 1984, pp. 47–57. – reference: M. Ankerst, M. Breunig, H.P. Kriegel, J. Sander, OPTICS: ordering points to identify the clustering structure, in: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD),1999, pp. 49–60. – volume: 308 start-page: 94 year: 2015 end-page: 112 ident: bib30 article-title: Fast density-based clustering through dataset partition using graphics processing units publication-title: J. Inf. Sci. – volume: 8 start-page: 33 year: 1994 end-page: 84 ident: bib50 article-title: Multi strategy Learning for document recognition publication-title: Appl. Artif. Intell. – volume: 32 start-page: 68 issue: 8 year: 1999 ident: 10.1016/j.patcog.2016.03.008_bib35 article-title: CHAMELEON: a hierarchical clustering algorithm using dynamic modeling publication-title: IEEE Trans. Comput. – volume: 39 start-page: 717 year: 2006 ident: 10.1016/j.patcog.2016.03.008_bib17 article-title: An algorithm for semi-supervised learning in image retrieval publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2005.11.009 – year: 2008 ident: 10.1016/j.patcog.2016.03.008_bib1 – ident: 10.1016/j.patcog.2016.03.008_bib47 – ident: 10.1016/j.patcog.2016.03.008_bib24 – volume: 5 start-page: 333 issue: 4 year: 1979 ident: 10.1016/j.patcog.2016.03.008_bib46 article-title: Multidimensional search trees in database applications publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.1979.234200 – ident: 10.1016/j.patcog.2016.03.008_bib16 doi: 10.1609/aaai.v29i1.9547 – ident: 10.1016/j.patcog.2016.03.008_bib33 doi: 10.1109/CLOUD.2012.42 – year: 1991 ident: 10.1016/j.patcog.2016.03.008_bib28 – start-page: 45 year: 2013 ident: 10.1016/j.patcog.2016.03.008_bib51 article-title: Plant leaf classification using probabilistic integration of shape, texture and margin features, signal processing publication-title: Pattern Recognit. Appl. – volume: 31 start-page: 651 issue: 8 year: 2010 ident: 10.1016/j.patcog.2016.03.008_bib6 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.09.011 – volume: 30 start-page: 1477 issue: 16 year: 2009 ident: 10.1016/j.patcog.2016.03.008_bib27 article-title: Rough-DBSCAN: a fast hybrid density based clustering method for large data sets publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.08.008 – volume: vol. 2 year: 2006 ident: 10.1016/j.patcog.2016.03.008_bib15 – ident: 10.1016/j.patcog.2016.03.008_bib19 – ident: 10.1016/j.patcog.2016.03.008_bib25 doi: 10.1109/ICPR.2006.741 – start-page: 379 year: 2005 ident: 10.1016/j.patcog.2016.03.008_bib23 article-title: Mixture modeling by affinity propagation publication-title: Proceedings of the 18th Neural Information Processing Systems Conference – ident: 10.1016/j.patcog.2016.03.008_bib21 doi: 10.1145/304182.304187 – volume: 12 start-page: 261 year: 1980 ident: 10.1016/j.patcog.2016.03.008_bib41 article-title: The relative neighborhood graph of a finite planar set publication-title: Pattern Recognit. doi: 10.1016/0031-3203(80)90066-7 – ident: 10.1016/j.patcog.2016.03.008_bib31 doi: 10.1109/SC.2012.9 – volume: 308 start-page: 94 year: 2015 ident: 10.1016/j.patcog.2016.03.008_bib30 article-title: Fast density-based clustering through dataset partition using graphics processing units publication-title: J. Inf. Sci. doi: 10.1016/j.ins.2014.10.023 – volume: 3 start-page: 357 issue: 4 year: 1994 ident: 10.1016/j.patcog.2016.03.008_bib5 article-title: An introduction to spatial database systems publication-title: VLDB J. doi: 10.1007/BF01231602 – volume: 36 start-page: 1559 issue: 8 year: 2014 ident: 10.1016/j.patcog.2016.03.008_bib14 article-title: Large margin multi-view information bottleneck publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.2296528 – ident: 10.1016/j.patcog.2016.03.008_bib48 – ident: 10.1016/j.patcog.2016.03.008_bib36 doi: 10.1109/ICTAI.2006.83 – ident: 10.1016/j.patcog.2016.03.008_bib29 doi: 10.1145/1645953.1646038 – volume: 32 start-page: 973 year: 2011 ident: 10.1016/j.patcog.2016.03.008_bib22 article-title: APSCAN: a parameter free clustering algorithm publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2011.02.001 – start-page: 508 year: 2010 ident: 10.1016/j.patcog.2016.03.008_bib32 article-title: Parallel DBSCAN with priority r-tree publication-title: Proceedings of the Information Management Engineering (ICIME) – volume: 1 start-page: 24 issue: 1 year: 2004 ident: 10.1016/j.patcog.2016.03.008_bib4 article-title: Bi-clustering algorithms for biological data analysis: a survey publication-title: IEEE/ACM Trans. Comp. Biol. Bioinforma. doi: 10.1109/TCBB.2004.2 – volume: 62 start-page: 23 year: 2003 ident: 10.1016/j.patcog.2016.03.008_bib38 article-title: A clustering procedure based on the comparison between the k nearest neighbors graph and the minimal spanning tree publication-title: Stat. Probab. Lett. doi: 10.1016/S0167-7152(02)00421-2 – volume: 47 start-page: 3512 year: 2014 ident: 10.1016/j.patcog.2016.03.008_bib43 article-title: Image clustering based on sparse patch alignment framework publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.05.002 – ident: 10.1016/j.patcog.2016.03.008_bib11 doi: 10.1145/276304.276312 – volume: 39 start-page: 103 year: 2000 ident: 10.1016/j.patcog.2016.03.008_bib18 article-title: Text classification from labeled and unlabeled documents using EM publication-title: Mach. Learn. doi: 10.1023/A:1007692713085 – ident: 10.1016/j.patcog.2016.03.008_bib45 – volume: 22 start-page: 888 year: 2000 ident: 10.1016/j.patcog.2016.03.008_bib39 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.868688 – ident: 10.1016/j.patcog.2016.03.008_bib49 – volume: 44 start-page: 694 year: 2011 ident: 10.1016/j.patcog.2016.03.008_bib42 article-title: Combining multiple clusterings using similarity graph publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2010.09.008 – year: 1996 ident: 10.1016/j.patcog.2016.03.008_bib3 – year: 1975 ident: 10.1016/j.patcog.2016.03.008_bib26 – volume: 43 start-page: 752 year: 2010 ident: 10.1016/j.patcog.2016.03.008_bib37 article-title: A graph-theoretical clustering method based on two rounds of minimum spanning trees publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.07.010 – year: 2003 ident: 10.1016/j.patcog.2016.03.008_bib2 – ident: 10.1016/j.patcog.2016.03.008_bib13 – ident: 10.1016/j.patcog.2016.03.008_bib20 doi: 10.1145/602259.602266 – volume: 66 start-page: 846 issue: 336 year: 1971 ident: 10.1016/j.patcog.2016.03.008_bib52 article-title: Objective criteria for the evaluation of clustering methods publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1971.10482356 – ident: 10.1016/j.patcog.2016.03.008_bib12 doi: 10.1145/235968.233324 – volume: 31 start-page: 264 issue: 3 year: 1999 ident: 10.1016/j.patcog.2016.03.008_bib8 article-title: Data clustering: a review publication-title: ACM Comput. Surv. doi: 10.1145/331499.331504 – volume: 20 start-page: 68 issue: 1 year: 1971 ident: 10.1016/j.patcog.2016.03.008_bib34 article-title: Graph-theoretical methods for detecting and describing Gestalt clusters publication-title: IEEE Trans. Comput. doi: 10.1109/T-C.1971.223083 – volume: 8 start-page: 33 year: 1994 ident: 10.1016/j.patcog.2016.03.008_bib50 article-title: Multi strategy Learning for document recognition publication-title: Appl. Artif. Intell. doi: 10.1080/08839519408945432 – volume: 13 start-page: 780 issue: 3 year: 2002 ident: 10.1016/j.patcog.2016.03.008_bib7 article-title: Mercer kernel-based clustering in feature space publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2002.1000150 – volume: 23 start-page: 2019 issue: 5 year: 2014 ident: 10.1016/j.patcog.2016.03.008_bib44 article-title: Click prediction for web image re-ranking using multimodal sparse coding publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2311377 – ident: 10.1016/j.patcog.2016.03.008_bib10 doi: 10.1109/PROC.1968.6414 – volume: 37 start-page: 33 year: 2004 ident: 10.1016/j.patcog.2016.03.008_bib40 article-title: An automatic shape independent clustering technique publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(03)00235-8 – volume: 62 start-page: 86 issue: 317 year: 1967 ident: 10.1016/j.patcog.2016.03.008_bib9 article-title: Step-wise clustering procedures publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1967.10482890 |
| SSID | ssj0017142 |
| Score | 2.6044576 |
| Snippet | Density based clustering methods are proposed for clustering spatial databases with noise. Density Based Spatial Clustering of Applications with Noise (DBSCAN)... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 39 |
| SubjectTerms | Benchmarking Clustering Clusters Computation DBSCAN Density Density based clustering Neighborhood graph Noise Pattern recognition Searching Unsupervised learning |
| Title | A fast DBSCAN clustering algorithm by accelerating neighbor searching using Groups method |
| URI | https://dx.doi.org/10.1016/j.patcog.2016.03.008 https://www.proquest.com/docview/1825473130 |
| Volume | 58 |
| WOSCitedRecordID | wos000377726900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFLYQ8LCXXdimwS4y0t4qV3Ud5_KYbUy7AEIaSN2T5TgOBZW0atKJ_fsdX-JUoMF42EtUuY2V9vt6zvG5IvSeMq1pxQtScckJCDxJZBkroiicmVVqlKRF-jA5Pk4nk-zEpzU3dpxAUtfp9XW2-K9QwxqAbUpnHwB32BQW4DWADleAHa7_BHw-qGTTDj59-GGGOarZyrRCsKWIs_P58qKdXhmTUyoFCsfAD-_Uxj8KZBj4wAIsrZrgmWr8mOl1O_bEtuU0pTA-_6iP5h_JqW6mg5C7_X3Yx5KuJAiRqY0alE6658N1vwONQwZbkKWMEjYesXVZ6tqwe2HouhR5ter6ad4S2M53cDlcgOKZn5tUu9g3ne0VVBeUv6G3QjZhl6h2KdwuwuwiRkzYKvCtccIzENlb-deDybcQYUpo5DrJ-2_RlVXa3L_bT_M3s-WGArdWyelT9NgfJ3DuaPAMbeh6Bz3pRnVgL7mfo585NqzAjhW4ZwUOrMDFb7zOCtyxAgdWYMsK7FiBHSteoLPPB6cfvxA_VYMoMM5bIjWYoCOpwVaLZMl0pDOeVnHFKpXRslCZikALaK5KOElXmtOiyMaKRiWTdFSmkr1Em_W81q8QHkc6jiTThTTlkgXsK-OKK9BZvOCgancR6340oXzLeTP5ZCbugmwXkXDXwrVcuefzSYeH8GajMwcFkOyeO_c7-ARIVRMqk7WerxpBjeMkYWDg7T3waV6jR_2_5Q3abJcr_RZtq1_tRbN851n4B32HnQ8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+DBSCAN+clustering+algorithm+by+accelerating+neighbor+searching+using+Groups+method&rft.jtitle=Pattern+recognition&rft.au=Mahesh+Kumar%2C+K.&rft.au=Rama+Mohan+Reddy%2C+A.&rft.date=2016-10-01&rft.issn=0031-3203&rft.volume=58&rft.spage=39&rft.epage=48&rft_id=info:doi/10.1016%2Fj.patcog.2016.03.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2016_03_008 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |