A fast DBSCAN clustering algorithm by accelerating neighbor searching using Groups method

Density based clustering methods are proposed for clustering spatial databases with noise. Density Based Spatial Clustering of Applications with Noise (DBSCAN) can discover clusters of arbitrary shape and also handles outliers effectively. DBSCAN obtains clusters by finding the number of points with...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition Ročník 58; s. 39 - 48
Hlavní autoři: Mahesh Kumar, K., Rama Mohan Reddy, A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2016
Témata:
ISSN:0031-3203, 1873-5142
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Density based clustering methods are proposed for clustering spatial databases with noise. Density Based Spatial Clustering of Applications with Noise (DBSCAN) can discover clusters of arbitrary shape and also handles outliers effectively. DBSCAN obtains clusters by finding the number of points within the specified distance from a given point. It involves computing distances from given point to all other points in the dataset. The conventional index based methods construct a hierarchical structure over the dataset to speed-up the neighbor search operations. The hierarchical index-structures fail to scale for datasets of dimensionality above 20. In this paper, we propose a novel graph-based index structure method Groups that accelerates the neighbor search operations and also scalable for high dimensional datasets. Experimental results show that the proposed method improves the speed of DBSCAN by a factor of about 1.5–2.2 on benchmark datasets. The performance of DBSCAN degrades considerably with noise due to unnecessary distance computations introduced by noise points while the proposed method is robust to noise by pruning out noise points early and eliminating the unnecessary distance computations. The cluster results produced by our method are exactly similar to that of DBSCAN but executed at a much faster pace. •A graph-based index structure is built for speeding up neighbor search operations.•No additional inputs are required to build the index structure.•Proposed method is scalable for high-dimensional datasets.•Handles noise effectively to improve the performance of DBSCAN.
AbstractList Density based clustering methods are proposed for clustering spatial databases with noise. Density Based Spatial Clustering of Applications with Noise (DBSCAN) can discover clusters of arbitrary shape and also handles outliers effectively. DBSCAN obtains clusters by finding the number of points within the specified distance from a given point. It involves computing distances from given point to all other points in the dataset. The conventional index based methods construct a hierarchical structure over the dataset to speed-up the neighbor search operations. The hierarchical index-structures fail to scale for datasets of dimensionality above 20. In this paper, we propose a novel graph-based index structure method Groups that accelerates the neighbor search operations and also scalable for high dimensional datasets. Experimental results show that the proposed method improves the speed of DBSCAN by a factor of about 1.5-2.2 on benchmark datasets. The performance of DBSCAN degrades considerably with noise due to unnecessary distance computations introduced by noise points while the proposed method is robust to noise by pruning out noise points early and eliminating the unnecessary distance computations. The cluster results produced by our method are exactly similar to that of DBSCAN but executed at a much faster pace.
Density based clustering methods are proposed for clustering spatial databases with noise. Density Based Spatial Clustering of Applications with Noise (DBSCAN) can discover clusters of arbitrary shape and also handles outliers effectively. DBSCAN obtains clusters by finding the number of points within the specified distance from a given point. It involves computing distances from given point to all other points in the dataset. The conventional index based methods construct a hierarchical structure over the dataset to speed-up the neighbor search operations. The hierarchical index-structures fail to scale for datasets of dimensionality above 20. In this paper, we propose a novel graph-based index structure method Groups that accelerates the neighbor search operations and also scalable for high dimensional datasets. Experimental results show that the proposed method improves the speed of DBSCAN by a factor of about 1.5–2.2 on benchmark datasets. The performance of DBSCAN degrades considerably with noise due to unnecessary distance computations introduced by noise points while the proposed method is robust to noise by pruning out noise points early and eliminating the unnecessary distance computations. The cluster results produced by our method are exactly similar to that of DBSCAN but executed at a much faster pace. •A graph-based index structure is built for speeding up neighbor search operations.•No additional inputs are required to build the index structure.•Proposed method is scalable for high-dimensional datasets.•Handles noise effectively to improve the performance of DBSCAN.
Author Mahesh Kumar, K.
Rama Mohan Reddy, A.
Author_xml – sequence: 1
  givenname: K.
  surname: Mahesh Kumar
  fullname: Mahesh Kumar, K.
  email: mahesh_cse@outlook.com
– sequence: 2
  givenname: A.
  surname: Rama Mohan Reddy
  fullname: Rama Mohan Reddy, A.
  email: ramamohansvu@yahoo.com
BookMark eNqFkD1PwzAQhi0EEm3hHzBkZEk4x06TMCCVAgWpggEYmCzHuTSukrjYDlL_PYnKxADLne7jfXX3TMlxZzok5IJCRIHOr7bRTnplNlE8VBGwCCA7IhOapSxMKI-PyQSA0ZDFwE7J1LktAE2HwYR8LIJKOh_c3b4uF8-Banrn0epuE8hmY6z2dRsU-0AqhQ1a6cdJh3pTF8YGDqVV9djq3RhX1vQ7F7Toa1OekZNKNg7Pf_KMvD_cvy0fw_XL6mm5WIeKQ-JDiSxPQWLMMi5LhhzzJKvmFatUTstC5YqnwDBRJZ3zChNaFHmsKC-ZpFBmks3I5cF3Z81nj86LVrvh2kZ2aHonaBYnPGWUwbB6fVhV1jhnsRJK--En03krdSMoiJGn2IoDTzHyFMDEwHMQ81_indWttPv_ZDcHGQ4MvjRa4ZTGTmGpLSovSqP_NvgGysaUsw
CitedBy_id crossref_primary_10_1007_s00466_024_02485_1
crossref_primary_10_3390_app15115969
crossref_primary_10_3390_s24010167
crossref_primary_10_1109_TIA_2023_3284782
crossref_primary_10_3390_su10082614
crossref_primary_10_3390_info10030103
crossref_primary_10_1016_j_asoc_2023_111095
crossref_primary_10_1109_TFUZZ_2023_3247912
crossref_primary_10_3233_IDT_170155
crossref_primary_10_1016_j_neucom_2024_127329
crossref_primary_10_1016_j_ifacol_2021_08_282
crossref_primary_10_1016_j_knosys_2020_106672
crossref_primary_10_3390_electronics11030370
crossref_primary_10_1177_0142331219846239
crossref_primary_10_1080_01490419_2025_2508771
crossref_primary_10_1109_ACCESS_2020_3045182
crossref_primary_10_1016_j_isatra_2021_07_043
crossref_primary_10_1109_ACCESS_2019_2941184
crossref_primary_10_1007_s00521_018_3607_x
crossref_primary_10_1109_TIM_2022_3216382
crossref_primary_10_3390_ijgi8050207
crossref_primary_10_1007_s13042_025_02707_9
crossref_primary_10_1088_1742_6596_1994_1_012024
crossref_primary_10_1109_JSTARS_2022_3201991
crossref_primary_10_1016_j_cja_2020_09_035
crossref_primary_10_1016_j_knosys_2022_108288
crossref_primary_10_1007_s13042_024_02104_8
crossref_primary_10_3390_app132212147
crossref_primary_10_1007_s13131_020_1638_5
crossref_primary_10_1155_2022_6181182
crossref_primary_10_1109_JSYST_2021_3072122
crossref_primary_10_3233_JIFS_232780
crossref_primary_10_1016_j_engappai_2025_111042
crossref_primary_10_1016_j_patcog_2020_107411
crossref_primary_10_1007_s42979_021_00736_z
crossref_primary_10_1080_17538947_2024_2375112
crossref_primary_10_1016_j_patcog_2018_10_007
crossref_primary_10_1016_j_patcog_2023_109658
crossref_primary_10_1109_ACCESS_2023_3261562
crossref_primary_10_1016_j_chaos_2018_03_010
crossref_primary_10_3390_agriculture13010130
crossref_primary_10_3390_e24070875
crossref_primary_10_1016_j_compbiomed_2019_05_009
crossref_primary_10_1109_TSMC_2018_2884839
crossref_primary_10_3390_math12152382
crossref_primary_10_3390_s23073708
crossref_primary_10_1016_j_eswa_2017_01_024
crossref_primary_10_1016_j_ins_2023_03_067
crossref_primary_10_1016_j_compchemeng_2025_109251
crossref_primary_10_1016_j_enbuild_2018_10_011
crossref_primary_10_3390_fi15010023
crossref_primary_10_3390_app9010031
crossref_primary_10_3390_bdcc2040032
crossref_primary_10_1017_S0890060419000258
crossref_primary_10_1016_j_measurement_2020_108162
crossref_primary_10_1002_adfm_202309108
crossref_primary_10_1109_ACCESS_2020_2972034
crossref_primary_10_1111_gcb_70132
crossref_primary_10_3233_IDA_194978
crossref_primary_10_1016_j_eswa_2023_122229
crossref_primary_10_1109_JBHI_2021_3072628
crossref_primary_10_1016_j_patcog_2023_109889
crossref_primary_10_1016_j_conengprac_2022_105090
crossref_primary_10_1109_JIOT_2021_3100295
crossref_primary_10_1007_s43684_023_00055_5
crossref_primary_10_1038_s41598_023_39058_w
crossref_primary_10_1109_ACCESS_2019_2949049
crossref_primary_10_1016_j_eswa_2021_115518
crossref_primary_10_1080_00949655_2022_2098298
crossref_primary_10_1016_j_patcog_2019_01_034
crossref_primary_10_1109_TASE_2025_3596630
crossref_primary_10_3233_JIFS_17034
crossref_primary_10_1109_ACCESS_2018_2877423
crossref_primary_10_1186_s13673_020_00225_x
crossref_primary_10_1109_ACCESS_2020_2969440
crossref_primary_10_12677_AAM_2021_1011420
crossref_primary_10_1145_3630635
crossref_primary_10_1016_j_cag_2018_04_007
crossref_primary_10_1007_s11390_020_9933_3
crossref_primary_10_1016_j_neucom_2025_130026
crossref_primary_10_1109_TCSS_2021_3110819
crossref_primary_10_1155_2019_2182615
crossref_primary_10_1016_j_compag_2019_104975
crossref_primary_10_1016_j_future_2024_08_001
crossref_primary_10_1145_3490384
crossref_primary_10_3390_sym14040781
crossref_primary_10_1177_1729881418762302
crossref_primary_10_1007_s11192_016_2146_4
crossref_primary_10_3390_w16070978
crossref_primary_10_1177_0954410017751991
crossref_primary_10_2478_amns_2023_2_00119
crossref_primary_10_1016_j_procs_2018_03_064
crossref_primary_10_1111_exsy_12883
crossref_primary_10_1016_j_datak_2021_101922
crossref_primary_10_1080_08927022_2020_1851028
crossref_primary_10_1108_K_06_2017_0211
crossref_primary_10_1007_s10922_022_09650_y
crossref_primary_10_1371_journal_pone_0322738
crossref_primary_10_1007_s00500_020_04881_0
crossref_primary_10_1016_j_patcog_2018_11_010
crossref_primary_10_1109_TGRS_2019_2899337
crossref_primary_10_3233_JIFS_16360
crossref_primary_10_2478_ijmce_2024_0009
crossref_primary_10_3390_math11194075
crossref_primary_10_1016_j_ins_2023_119561
crossref_primary_10_1109_ACCESS_2018_2866364
crossref_primary_10_3390_math10162936
crossref_primary_10_1177_1729881416664901
crossref_primary_10_3390_app15073518
crossref_primary_10_1088_2631_8695_ade02e
crossref_primary_10_1177_1748301817735665
crossref_primary_10_1007_s10661_019_7591_0
crossref_primary_10_1016_j_apm_2023_03_021
crossref_primary_10_1016_j_ins_2021_03_057
crossref_primary_10_1007_s00158_023_03724_4
crossref_primary_10_1007_s10844_020_00602_z
crossref_primary_10_1007_s00530_018_0601_1
crossref_primary_10_1016_j_plaphe_2025_100008
crossref_primary_10_1049_itr2_12008
crossref_primary_10_1016_j_patcog_2019_05_024
crossref_primary_10_1109_LWC_2025_3575477
crossref_primary_10_1016_j_aap_2019_105256
crossref_primary_10_1088_1742_6596_1325_1_012106
crossref_primary_10_1016_j_eswa_2021_115054
crossref_primary_10_1111_exsy_13062
crossref_primary_10_3390_s17102226
crossref_primary_10_1016_j_asoc_2020_106250
crossref_primary_10_1109_JSTARS_2021_3131187
crossref_primary_10_1007_s10044_019_00809_z
crossref_primary_10_3390_s23249876
crossref_primary_10_1109_ACCESS_2023_3262732
crossref_primary_10_1155_2024_2330624
crossref_primary_10_1007_s13042_016_0603_2
crossref_primary_10_1007_s44174_025_00379_1
crossref_primary_10_3390_en12183586
crossref_primary_10_1145_3588912
crossref_primary_10_3390_math12172790
crossref_primary_10_1016_j_neucom_2020_10_114
crossref_primary_10_2478_jaiscr_2021_0019
crossref_primary_10_3390_app10031095
crossref_primary_10_1016_j_future_2019_09_038
crossref_primary_10_1016_j_patcog_2016_12_027
crossref_primary_10_1016_j_jaa_2020_101165
crossref_primary_10_1038_s41598_021_88822_3
crossref_primary_10_3390_electronics13173395
crossref_primary_10_1162_neco_a_01081
crossref_primary_10_1080_01919512_2025_2476719
crossref_primary_10_1371_journal_pone_0313890
crossref_primary_10_1016_j_comcom_2020_12_019
crossref_primary_10_1109_LRA_2021_3062599
crossref_primary_10_3390_rs14041030
crossref_primary_10_1007_s40745_017_0131_2
crossref_primary_10_1016_j_ress_2020_106908
crossref_primary_10_1109_ACCESS_2017_2765337
crossref_primary_10_1111_exsy_12318
crossref_primary_10_1007_s00521_021_06274_2
crossref_primary_10_1016_j_ifacol_2022_05_038
crossref_primary_10_1108_GS_05_2023_0043
crossref_primary_10_1016_j_ins_2017_07_036
crossref_primary_10_1109_ACCESS_2024_3461798
crossref_primary_10_3390_ijgi9120750
crossref_primary_10_1007_s00500_018_3221_y
crossref_primary_10_1016_j_eswa_2022_117501
crossref_primary_10_1186_s40537_019_0236_x
crossref_primary_10_1007_s11661_024_07473_x
crossref_primary_10_1016_j_patcog_2018_05_030
crossref_primary_10_1109_ACCESS_2021_3089036
crossref_primary_10_1016_j_jksuci_2024_102002
crossref_primary_10_1109_ACCESS_2019_2904254
Cites_doi 10.1016/j.patcog.2005.11.009
10.1109/TSE.1979.234200
10.1609/aaai.v29i1.9547
10.1109/CLOUD.2012.42
10.1016/j.patrec.2009.09.011
10.1016/j.patrec.2009.08.008
10.1109/ICPR.2006.741
10.1145/304182.304187
10.1016/0031-3203(80)90066-7
10.1109/SC.2012.9
10.1016/j.ins.2014.10.023
10.1007/BF01231602
10.1109/TPAMI.2013.2296528
10.1109/ICTAI.2006.83
10.1145/1645953.1646038
10.1016/j.patrec.2011.02.001
10.1109/TCBB.2004.2
10.1016/S0167-7152(02)00421-2
10.1016/j.patcog.2014.05.002
10.1145/276304.276312
10.1023/A:1007692713085
10.1109/34.868688
10.1016/j.patcog.2010.09.008
10.1016/j.patcog.2009.07.010
10.1145/602259.602266
10.1080/01621459.1971.10482356
10.1145/235968.233324
10.1145/331499.331504
10.1109/T-C.1971.223083
10.1080/08839519408945432
10.1109/TNN.2002.1000150
10.1109/TIP.2014.2311377
10.1109/PROC.1968.6414
10.1016/S0031-3203(03)00235-8
10.1080/01621459.1967.10482890
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patcog.2016.03.008
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
EndPage 48
ExternalDocumentID 10_1016_j_patcog_2016_03_008
S0031320316001035
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c405t-ae3970ae2384ad3e4e958f6f3fc91dbc9c4703e5cd164fe51bb92c14d3a10d8a3
ISICitedReferencesCount 212
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377726900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sun Sep 28 04:37:20 EDT 2025
Sat Nov 29 03:52:18 EST 2025
Tue Nov 18 22:03:35 EST 2025
Fri Feb 23 02:25:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords DBSCAN
Density based clustering
Unsupervised learning
Neighborhood graph
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-ae3970ae2384ad3e4e958f6f3fc91dbc9c4703e5cd164fe51bb92c14d3a10d8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825473130
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1825473130
crossref_citationtrail_10_1016_j_patcog_2016_03_008
crossref_primary_10_1016_j_patcog_2016_03_008
elsevier_sciencedirect_doi_10_1016_j_patcog_2016_03_008
PublicationCentury 2000
PublicationDate October 2016
2016-10-00
20161001
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: October 2016
PublicationDecade 2010
PublicationTitle Pattern recognition
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jain, Murty, Flynn (bib8) 1999; 31
M. Ankerst, M. Breunig, H.P. Kriegel, J. Sander, OPTICS: ordering points to identify the clustering structure, in: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD),1999, pp. 49–60.
Fayyad, Shapiro, Smyth, Uthurusamy (bib3) 1996
Viswanath, Babu (bib27) 2009; 30
Chen, Gao, Li (bib32) 2010
Jain (bib6) 2010; 31
G. Nagy, State of the art in pattern recognition, in: Proceedings of IEEE 56, 1968, pp. 836–862.
B.R. Dai, I.C. Lin, Efficient map–reduce based DBSCAN algorithm with optimized data partition, in: Proceedings of IEEE 5th International Conference on Cloud Computing (CLOUD), Hawaii, USA, 2012, pp. 59–66.
A. Hinneburg, D.A. Keim, An efficient approach to clustering in large multimedia databases with noise, in: Proceedings of the 4
International Conference on KDD, 1998, pp. 58–65.
O. Grygorash, Y. Zhou, Z. Jorgensen, Minimum spanning tree-based clustering algorithms, in: Proceedings of IEEE International Conference on Tools with Artificial Intelligence, 2006, pp. 73–81.
M. Ester, H.P. Kriegel, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings of the 2nd ACM SIGKDD, Portland, Oregon, 1996, pp. 226–231.
Chen, Liu, Qiu, Lai (bib22) 2011; 32
P. Viswanath, R. Pinkesh, l-dbscan: A fast hybrid density based clustering method, in: Proceedings of the 18th International Conference on Pattern Recognition, vol. 1, IEEE Computer Society, Hong Kong, 2006, pp. 912–915.
P. Ciaccia, M. Patella, P. Zezula, M-tree: an efficient access method for similarity search in metric spaces, in: Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB),1997, pp. 426–435.
S. Guha, R. Rastogi, K. Shim, Cure: an efficient clustering algorithm for large databases, in: Proceedings of the International Conference on Mangement of Data (ACM SIGMOD), 1998, pp.73–84.
Lu, Zhao, Cai (bib17) 2006; 39
.
Mallah, Cope, Orwell (bib51) 2013
Madeira, Oliveira (bib4) 2004; 1
Yu, Rui, Tao (bib44) 2014; 23
M. Patwary, M.Ali, D. Palsetia, A. Agrawal, W.K. Liao, F. Manne, A. Choudary, A new scalable parallel DBSCAN algorithm using the disjoint-set data structure, in: Proceedings of the International Conference on HPC Networking, Storage and Analysis, 2012, pp. 1–11.
A. Frank, A. Asuncion, UCI machine learning repository, 2010.
King (bib9) 1967; 62
Pawlak (bib28) 1991
Yu, Hong, Wang, You (bib43) 2014; 47
Loh, Yu (bib30) 2015; 308
Esposito, Malerba, Semeraro (bib50) 1994; 8
Zahn (bib34) 1971; 20
Nigam, McCallum, Thrun, Mitchell (bib18) 2000; 39
Mimaroglu, Erdil (bib42) 2011; 44
Hartigan (bib26) 1975
Shi, Malik (bib39) 2000; 22
Gonzalez, Woods (bib1) 2008
Theodoridis, Koutroumbas (bib2) 2003
A. Guttman, R-trees: a dynamic index structure for spatial searching, in: Proceedings of the 13th International Conference on Management of Data ACM SIGMOD, vol. 2, 1984, pp. 47–57.
Bently (bib46) 1979; 5
Karypis, Han, Kumar (bib35) 1999; 32
T. Scott, M. Jeffrey, A. Mario, STR: A Simple and Efficient Algorithm for R-Tree Packing, Technical Report, Institute for Computer Application in Science and Engineering (ICASE), ACM Communications, 1997.
C. Böhm, R. Noll, C. Plant, B. W. Reuther, Density-based clustering using graphics processors, in: Proceedings of the Conference on Information and Knowledge Management (CIKM), Hong Kong, China, 2009, pp. 661–670.
Zhong, Miao, Wang (bib37) 2010; 43
Chang, Dacheng, Chao (bib14) 2014; 36
X. Chang, T. Dacheng, X. Chao, Multi-view self-paced learning for clustering, in: Proceedings of the 24th International Joint Conference on Artificial Intelligence, 2015, pp. 3974–3980.
Barrios, Quiroz (bib38) 2003; 62
Frey, Dueck (bib23) 2005
Z. Tian, R. Raghu, L. Micon, BIRCH: an efficient data clustering method for very large databases, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, 1996, pp.103–114.
Toussaint (bib41) 1980; 12
H. Kaya, P. Tufekci , S.F. Gurgen, Local and global learning methods for predicting power of a combined gas & steam turbine, in: Proceedings of the International Conference on Emerging Trends in Computer and Electrical Engineering (ICETCEE), 2012, pp. 13–18.
M. Liu, Y. Luo, D. Tao, C. Xu, Y. Wen, Low-rank multi-view learning in matrix completion for multi-label image classification, in: Proceedings of the 29th American Association for Artificial Intelligence (AAAI) National Conference, 2015, pp. 2778-2784.
Rand (bib52) 1971; 66
Gueting (bib5) 1994; 3
Chapelle, Schölkopf, Zien (bib15) 2006; vol. 2
Bandyopadhyay (bib40) 2004; 37
Girolami (bib7) 2002; 13
Toussaint (10.1016/j.patcog.2016.03.008_bib41) 1980; 12
10.1016/j.patcog.2016.03.008_bib13
10.1016/j.patcog.2016.03.008_bib16
10.1016/j.patcog.2016.03.008_bib19
Hartigan (10.1016/j.patcog.2016.03.008_bib26) 1975
Mallah (10.1016/j.patcog.2016.03.008_bib51) 2013
Fayyad (10.1016/j.patcog.2016.03.008_bib3) 1996
Chapelle (10.1016/j.patcog.2016.03.008_bib15) 2006; vol. 2
Chang (10.1016/j.patcog.2016.03.008_bib14) 2014; 36
Barrios (10.1016/j.patcog.2016.03.008_bib38) 2003; 62
10.1016/j.patcog.2016.03.008_bib21
10.1016/j.patcog.2016.03.008_bib20
10.1016/j.patcog.2016.03.008_bib25
10.1016/j.patcog.2016.03.008_bib24
Jain (10.1016/j.patcog.2016.03.008_bib8) 1999; 31
10.1016/j.patcog.2016.03.008_bib29
Zahn (10.1016/j.patcog.2016.03.008_bib34) 1971; 20
Yu (10.1016/j.patcog.2016.03.008_bib43) 2014; 47
Shi (10.1016/j.patcog.2016.03.008_bib39) 2000; 22
Bently (10.1016/j.patcog.2016.03.008_bib46) 1979; 5
Loh (10.1016/j.patcog.2016.03.008_bib30) 2015; 308
Jain (10.1016/j.patcog.2016.03.008_bib6) 2010; 31
Chen (10.1016/j.patcog.2016.03.008_bib22) 2011; 32
Viswanath (10.1016/j.patcog.2016.03.008_bib27) 2009; 30
10.1016/j.patcog.2016.03.008_bib31
Nigam (10.1016/j.patcog.2016.03.008_bib18) 2000; 39
10.1016/j.patcog.2016.03.008_bib33
10.1016/j.patcog.2016.03.008_bib36
Rand (10.1016/j.patcog.2016.03.008_bib52) 1971; 66
Esposito (10.1016/j.patcog.2016.03.008_bib50) 1994; 8
Madeira (10.1016/j.patcog.2016.03.008_bib4) 2004; 1
Karypis (10.1016/j.patcog.2016.03.008_bib35) 1999; 32
Yu (10.1016/j.patcog.2016.03.008_bib44) 2014; 23
Lu (10.1016/j.patcog.2016.03.008_bib17) 2006; 39
Gonzalez (10.1016/j.patcog.2016.03.008_bib1) 2008
Pawlak (10.1016/j.patcog.2016.03.008_bib28) 1991
King (10.1016/j.patcog.2016.03.008_bib9) 1967; 62
10.1016/j.patcog.2016.03.008_bib45
10.1016/j.patcog.2016.03.008_bib47
10.1016/j.patcog.2016.03.008_bib49
Girolami (10.1016/j.patcog.2016.03.008_bib7) 2002; 13
10.1016/j.patcog.2016.03.008_bib48
Theodoridis (10.1016/j.patcog.2016.03.008_bib2) 2003
Gueting (10.1016/j.patcog.2016.03.008_bib5) 1994; 3
Chen (10.1016/j.patcog.2016.03.008_bib32) 2010
Bandyopadhyay (10.1016/j.patcog.2016.03.008_bib40) 2004; 37
Zhong (10.1016/j.patcog.2016.03.008_bib37) 2010; 43
Frey (10.1016/j.patcog.2016.03.008_bib23) 2005
10.1016/j.patcog.2016.03.008_bib10
Mimaroglu (10.1016/j.patcog.2016.03.008_bib42) 2011; 44
10.1016/j.patcog.2016.03.008_bib12
10.1016/j.patcog.2016.03.008_bib11
References_xml – volume: 36
  start-page: 1559
  year: 2014
  end-page: 1572
  ident: bib14
  article-title: Large margin multi-view information bottleneck
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 39
  start-page: 103
  year: 2000
  end-page: 134
  ident: bib18
  article-title: Text classification from labeled and unlabeled documents using EM
  publication-title: Mach. Learn.
– volume: 37
  start-page: 33
  year: 2004
  end-page: 45
  ident: bib40
  article-title: An automatic shape independent clustering technique
  publication-title: Pattern Recognit.
– start-page: 508
  year: 2010
  end-page: 511
  ident: bib32
  article-title: Parallel DBSCAN with priority r-tree
  publication-title: Proceedings of the Information Management Engineering (ICIME)
– reference: M. Patwary, M.Ali, D. Palsetia, A. Agrawal, W.K. Liao, F. Manne, A. Choudary, A new scalable parallel DBSCAN algorithm using the disjoint-set data structure, in: Proceedings of the International Conference on HPC Networking, Storage and Analysis, 2012, pp. 1–11.
– volume: 32
  start-page: 973
  year: 2011
  end-page: 986
  ident: bib22
  article-title: APSCAN: a parameter free clustering algorithm
  publication-title: Pattern Recognit. Lett.
– volume: 30
  start-page: 1477
  year: 2009
  end-page: 1488
  ident: bib27
  article-title: Rough-DBSCAN: a fast hybrid density based clustering method for large data sets
  publication-title: Pattern Recognit. Lett.
– reference: A. Frank, A. Asuncion, UCI machine learning repository, 2010. 〈
– volume: 5
  start-page: 333
  year: 1979
  end-page: 340
  ident: bib46
  article-title: Multidimensional search trees in database applications
  publication-title: IEEE Trans. Softw. Eng.
– year: 1996
  ident: bib3
  article-title: Advances in Knowledge Discovery and Data Mining
– reference: S. Guha, R. Rastogi, K. Shim, Cure: an efficient clustering algorithm for large databases, in: Proceedings of the International Conference on Mangement of Data (ACM SIGMOD), 1998, pp.73–84.
– reference: International Conference on KDD, 1998, pp. 58–65.
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: bib8
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
– volume: 39
  start-page: 717
  year: 2006
  end-page: 720
  ident: bib17
  article-title: An algorithm for semi-supervised learning in image retrieval
  publication-title: Pattern Recognit.
– reference: 〉.
– reference: P. Ciaccia, M. Patella, P. Zezula, M-tree: an efficient access method for similarity search in metric spaces, in: Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB),1997, pp. 426–435.
– volume: 13
  start-page: 780
  year: 2002
  end-page: 784
  ident: bib7
  article-title: Mercer kernel-based clustering in feature space
  publication-title: IEEE Trans. Neural Netw.
– year: 2003
  ident: bib2
  article-title: Pattern Recognition
– volume: 1
  start-page: 24
  year: 2004
  end-page: 45
  ident: bib4
  article-title: Bi-clustering algorithms for biological data analysis: a survey
  publication-title: IEEE/ACM Trans. Comp. Biol. Bioinforma.
– reference: Z. Tian, R. Raghu, L. Micon, BIRCH: an efficient data clustering method for very large databases, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, 1996, pp.103–114.
– start-page: 379
  year: 2005
  end-page: 386
  ident: bib23
  article-title: Mixture modeling by affinity propagation
  publication-title: Proceedings of the 18th Neural Information Processing Systems Conference
– reference: B.R. Dai, I.C. Lin, Efficient map–reduce based DBSCAN algorithm with optimized data partition, in: Proceedings of IEEE 5th International Conference on Cloud Computing (CLOUD), Hawaii, USA, 2012, pp. 59–66.
– year: 2008
  ident: bib1
  article-title: Digital Image Processing
– volume: 62
  start-page: 23
  year: 2003
  end-page: 34
  ident: bib38
  article-title: A clustering procedure based on the comparison between the
  publication-title: Stat. Probab. Lett.
– reference: G. Nagy, State of the art in pattern recognition, in: Proceedings of IEEE 56, 1968, pp. 836–862.
– reference: O. Grygorash, Y. Zhou, Z. Jorgensen, Minimum spanning tree-based clustering algorithms, in: Proceedings of IEEE International Conference on Tools with Artificial Intelligence, 2006, pp. 73–81.
– volume: 3
  start-page: 357
  year: 1994
  end-page: 399
  ident: bib5
  article-title: An introduction to spatial database systems
  publication-title: VLDB J.
– volume: 62
  start-page: 86
  year: 1967
  end-page: 101
  ident: bib9
  article-title: Step-wise clustering procedures
  publication-title: J. Am. Stat. Assoc.
– start-page: 45
  year: 2013
  end-page: 54
  ident: bib51
  article-title: Plant leaf classification using probabilistic integration of shape, texture and margin features, signal processing
  publication-title: Pattern Recognit. Appl.
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: bib6
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognit. Lett.
– reference: X. Chang, T. Dacheng, X. Chao, Multi-view self-paced learning for clustering, in: Proceedings of the 24th International Joint Conference on Artificial Intelligence, 2015, pp. 3974–3980.
– year: 1975
  ident: bib26
  article-title: Clustering Algorithms
– volume: 47
  start-page: 3512
  year: 2014
  end-page: 3519
  ident: bib43
  article-title: Image clustering based on sparse patch alignment framework
  publication-title: Pattern Recognit.
– volume: 12
  start-page: 261
  year: 1980
  end-page: 268
  ident: bib41
  article-title: The relative neighborhood graph of a finite planar set
  publication-title: Pattern Recognit.
– reference: T. Scott, M. Jeffrey, A. Mario, STR: A Simple and Efficient Algorithm for R-Tree Packing, Technical Report, Institute for Computer Application in Science and Engineering (ICASE), ACM Communications, 1997.
– volume: 66
  start-page: 846
  year: 1971
  end-page: 850
  ident: bib52
  article-title: Objective criteria for the evaluation of clustering methods
  publication-title: J. Am. Stat. Assoc.
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  ident: bib39
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 23
  start-page: 2019
  year: 2014
  end-page: 2032
  ident: bib44
  article-title: Click prediction for web image re-ranking using multimodal sparse coding
  publication-title: IEEE Trans. Image Process.
– volume: vol. 2
  year: 2006
  ident: bib15
  article-title: Semi-Supervised Learning
– reference: M. Liu, Y. Luo, D. Tao, C. Xu, Y. Wen, Low-rank multi-view learning in matrix completion for multi-label image classification, in: Proceedings of the 29th American Association for Artificial Intelligence (AAAI) National Conference, 2015, pp. 2778-2784.
– volume: 43
  start-page: 752
  year: 2010
  end-page: 766
  ident: bib37
  article-title: A graph-theoretical clustering method based on two rounds of minimum spanning trees
  publication-title: Pattern Recognit.
– volume: 32
  start-page: 68
  year: 1999
  end-page: 75
  ident: bib35
  article-title: CHAMELEON: a hierarchical clustering algorithm using dynamic modeling
  publication-title: IEEE Trans. Comput.
– reference: P. Viswanath, R. Pinkesh, l-dbscan: A fast hybrid density based clustering method, in: Proceedings of the 18th International Conference on Pattern Recognition, vol. 1, IEEE Computer Society, Hong Kong, 2006, pp. 912–915.
– reference: C. Böhm, R. Noll, C. Plant, B. W. Reuther, Density-based clustering using graphics processors, in: Proceedings of the Conference on Information and Knowledge Management (CIKM), Hong Kong, China, 2009, pp. 661–670.
– reference: A. Hinneburg, D.A. Keim, An efficient approach to clustering in large multimedia databases with noise, in: Proceedings of the 4
– reference: H. Kaya, P. Tufekci , S.F. Gurgen, Local and global learning methods for predicting power of a combined gas & steam turbine, in: Proceedings of the International Conference on Emerging Trends in Computer and Electrical Engineering (ICETCEE), 2012, pp. 13–18.
– year: 1991
  ident: bib28
  article-title: Rough Sets: Theoretical Aspects of Reasoning About Data
– volume: 20
  start-page: 68
  year: 1971
  end-page: 86
  ident: bib34
  article-title: Graph-theoretical methods for detecting and describing Gestalt clusters
  publication-title: IEEE Trans. Comput.
– volume: 44
  start-page: 694
  year: 2011
  end-page: 703
  ident: bib42
  article-title: Combining multiple clusterings using similarity graph
  publication-title: Pattern Recognit.
– reference: M. Ester, H.P. Kriegel, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings of the 2nd ACM SIGKDD, Portland, Oregon, 1996, pp. 226–231.
– reference: A. Guttman, R-trees: a dynamic index structure for spatial searching, in: Proceedings of the 13th International Conference on Management of Data ACM SIGMOD, vol. 2, 1984, pp. 47–57.
– reference: M. Ankerst, M. Breunig, H.P. Kriegel, J. Sander, OPTICS: ordering points to identify the clustering structure, in: Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD),1999, pp. 49–60.
– volume: 308
  start-page: 94
  year: 2015
  end-page: 112
  ident: bib30
  article-title: Fast density-based clustering through dataset partition using graphics processing units
  publication-title: J. Inf. Sci.
– volume: 8
  start-page: 33
  year: 1994
  end-page: 84
  ident: bib50
  article-title: Multi strategy Learning for document recognition
  publication-title: Appl. Artif. Intell.
– volume: 32
  start-page: 68
  issue: 8
  year: 1999
  ident: 10.1016/j.patcog.2016.03.008_bib35
  article-title: CHAMELEON: a hierarchical clustering algorithm using dynamic modeling
  publication-title: IEEE Trans. Comput.
– volume: 39
  start-page: 717
  year: 2006
  ident: 10.1016/j.patcog.2016.03.008_bib17
  article-title: An algorithm for semi-supervised learning in image retrieval
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2005.11.009
– year: 2008
  ident: 10.1016/j.patcog.2016.03.008_bib1
– ident: 10.1016/j.patcog.2016.03.008_bib47
– ident: 10.1016/j.patcog.2016.03.008_bib24
– volume: 5
  start-page: 333
  issue: 4
  year: 1979
  ident: 10.1016/j.patcog.2016.03.008_bib46
  article-title: Multidimensional search trees in database applications
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.1979.234200
– ident: 10.1016/j.patcog.2016.03.008_bib16
  doi: 10.1609/aaai.v29i1.9547
– ident: 10.1016/j.patcog.2016.03.008_bib33
  doi: 10.1109/CLOUD.2012.42
– year: 1991
  ident: 10.1016/j.patcog.2016.03.008_bib28
– start-page: 45
  year: 2013
  ident: 10.1016/j.patcog.2016.03.008_bib51
  article-title: Plant leaf classification using probabilistic integration of shape, texture and margin features, signal processing
  publication-title: Pattern Recognit. Appl.
– volume: 31
  start-page: 651
  issue: 8
  year: 2010
  ident: 10.1016/j.patcog.2016.03.008_bib6
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– volume: 30
  start-page: 1477
  issue: 16
  year: 2009
  ident: 10.1016/j.patcog.2016.03.008_bib27
  article-title: Rough-DBSCAN: a fast hybrid density based clustering method for large data sets
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.08.008
– volume: vol. 2
  year: 2006
  ident: 10.1016/j.patcog.2016.03.008_bib15
– ident: 10.1016/j.patcog.2016.03.008_bib19
– ident: 10.1016/j.patcog.2016.03.008_bib25
  doi: 10.1109/ICPR.2006.741
– start-page: 379
  year: 2005
  ident: 10.1016/j.patcog.2016.03.008_bib23
  article-title: Mixture modeling by affinity propagation
  publication-title: Proceedings of the 18th Neural Information Processing Systems Conference
– ident: 10.1016/j.patcog.2016.03.008_bib21
  doi: 10.1145/304182.304187
– volume: 12
  start-page: 261
  year: 1980
  ident: 10.1016/j.patcog.2016.03.008_bib41
  article-title: The relative neighborhood graph of a finite planar set
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(80)90066-7
– ident: 10.1016/j.patcog.2016.03.008_bib31
  doi: 10.1109/SC.2012.9
– volume: 308
  start-page: 94
  year: 2015
  ident: 10.1016/j.patcog.2016.03.008_bib30
  article-title: Fast density-based clustering through dataset partition using graphics processing units
  publication-title: J. Inf. Sci.
  doi: 10.1016/j.ins.2014.10.023
– volume: 3
  start-page: 357
  issue: 4
  year: 1994
  ident: 10.1016/j.patcog.2016.03.008_bib5
  article-title: An introduction to spatial database systems
  publication-title: VLDB J.
  doi: 10.1007/BF01231602
– volume: 36
  start-page: 1559
  issue: 8
  year: 2014
  ident: 10.1016/j.patcog.2016.03.008_bib14
  article-title: Large margin multi-view information bottleneck
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.2296528
– ident: 10.1016/j.patcog.2016.03.008_bib48
– ident: 10.1016/j.patcog.2016.03.008_bib36
  doi: 10.1109/ICTAI.2006.83
– ident: 10.1016/j.patcog.2016.03.008_bib29
  doi: 10.1145/1645953.1646038
– volume: 32
  start-page: 973
  year: 2011
  ident: 10.1016/j.patcog.2016.03.008_bib22
  article-title: APSCAN: a parameter free clustering algorithm
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.02.001
– start-page: 508
  year: 2010
  ident: 10.1016/j.patcog.2016.03.008_bib32
  article-title: Parallel DBSCAN with priority r-tree
  publication-title: Proceedings of the Information Management Engineering (ICIME)
– volume: 1
  start-page: 24
  issue: 1
  year: 2004
  ident: 10.1016/j.patcog.2016.03.008_bib4
  article-title: Bi-clustering algorithms for biological data analysis: a survey
  publication-title: IEEE/ACM Trans. Comp. Biol. Bioinforma.
  doi: 10.1109/TCBB.2004.2
– volume: 62
  start-page: 23
  year: 2003
  ident: 10.1016/j.patcog.2016.03.008_bib38
  article-title: A clustering procedure based on the comparison between the k nearest neighbors graph and the minimal spanning tree
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/S0167-7152(02)00421-2
– volume: 47
  start-page: 3512
  year: 2014
  ident: 10.1016/j.patcog.2016.03.008_bib43
  article-title: Image clustering based on sparse patch alignment framework
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.05.002
– ident: 10.1016/j.patcog.2016.03.008_bib11
  doi: 10.1145/276304.276312
– volume: 39
  start-page: 103
  year: 2000
  ident: 10.1016/j.patcog.2016.03.008_bib18
  article-title: Text classification from labeled and unlabeled documents using EM
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007692713085
– ident: 10.1016/j.patcog.2016.03.008_bib45
– volume: 22
  start-page: 888
  year: 2000
  ident: 10.1016/j.patcog.2016.03.008_bib39
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
– ident: 10.1016/j.patcog.2016.03.008_bib49
– volume: 44
  start-page: 694
  year: 2011
  ident: 10.1016/j.patcog.2016.03.008_bib42
  article-title: Combining multiple clusterings using similarity graph
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.09.008
– year: 1996
  ident: 10.1016/j.patcog.2016.03.008_bib3
– year: 1975
  ident: 10.1016/j.patcog.2016.03.008_bib26
– volume: 43
  start-page: 752
  year: 2010
  ident: 10.1016/j.patcog.2016.03.008_bib37
  article-title: A graph-theoretical clustering method based on two rounds of minimum spanning trees
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.07.010
– year: 2003
  ident: 10.1016/j.patcog.2016.03.008_bib2
– ident: 10.1016/j.patcog.2016.03.008_bib13
– ident: 10.1016/j.patcog.2016.03.008_bib20
  doi: 10.1145/602259.602266
– volume: 66
  start-page: 846
  issue: 336
  year: 1971
  ident: 10.1016/j.patcog.2016.03.008_bib52
  article-title: Objective criteria for the evaluation of clustering methods
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1971.10482356
– ident: 10.1016/j.patcog.2016.03.008_bib12
  doi: 10.1145/235968.233324
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  ident: 10.1016/j.patcog.2016.03.008_bib8
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/331499.331504
– volume: 20
  start-page: 68
  issue: 1
  year: 1971
  ident: 10.1016/j.patcog.2016.03.008_bib34
  article-title: Graph-theoretical methods for detecting and describing Gestalt clusters
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1971.223083
– volume: 8
  start-page: 33
  year: 1994
  ident: 10.1016/j.patcog.2016.03.008_bib50
  article-title: Multi strategy Learning for document recognition
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839519408945432
– volume: 13
  start-page: 780
  issue: 3
  year: 2002
  ident: 10.1016/j.patcog.2016.03.008_bib7
  article-title: Mercer kernel-based clustering in feature space
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2002.1000150
– volume: 23
  start-page: 2019
  issue: 5
  year: 2014
  ident: 10.1016/j.patcog.2016.03.008_bib44
  article-title: Click prediction for web image re-ranking using multimodal sparse coding
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2311377
– ident: 10.1016/j.patcog.2016.03.008_bib10
  doi: 10.1109/PROC.1968.6414
– volume: 37
  start-page: 33
  year: 2004
  ident: 10.1016/j.patcog.2016.03.008_bib40
  article-title: An automatic shape independent clustering technique
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(03)00235-8
– volume: 62
  start-page: 86
  issue: 317
  year: 1967
  ident: 10.1016/j.patcog.2016.03.008_bib9
  article-title: Step-wise clustering procedures
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1967.10482890
SSID ssj0017142
Score 2.6044576
Snippet Density based clustering methods are proposed for clustering spatial databases with noise. Density Based Spatial Clustering of Applications with Noise (DBSCAN)...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 39
SubjectTerms Benchmarking
Clustering
Clusters
Computation
DBSCAN
Density
Density based clustering
Neighborhood graph
Noise
Pattern recognition
Searching
Unsupervised learning
Title A fast DBSCAN clustering algorithm by accelerating neighbor searching using Groups method
URI https://dx.doi.org/10.1016/j.patcog.2016.03.008
https://www.proquest.com/docview/1825473130
Volume 58
WOSCitedRecordID wos000377726900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFLYQ8LCXXdimwS4y0t4qV3Ud5_KYbUy7AEIaSN2T5TgOBZW0atKJ_fsdX-JUoMF42EtUuY2V9vt6zvG5IvSeMq1pxQtScckJCDxJZBkroiicmVVqlKRF-jA5Pk4nk-zEpzU3dpxAUtfp9XW2-K9QwxqAbUpnHwB32BQW4DWADleAHa7_BHw-qGTTDj59-GGGOarZyrRCsKWIs_P58qKdXhmTUyoFCsfAD-_Uxj8KZBj4wAIsrZrgmWr8mOl1O_bEtuU0pTA-_6iP5h_JqW6mg5C7_X3Yx5KuJAiRqY0alE6658N1vwONQwZbkKWMEjYesXVZ6tqwe2HouhR5ter6ad4S2M53cDlcgOKZn5tUu9g3ne0VVBeUv6G3QjZhl6h2KdwuwuwiRkzYKvCtccIzENlb-deDybcQYUpo5DrJ-2_RlVXa3L_bT_M3s-WGArdWyelT9NgfJ3DuaPAMbeh6Bz3pRnVgL7mfo585NqzAjhW4ZwUOrMDFb7zOCtyxAgdWYMsK7FiBHSteoLPPB6cfvxA_VYMoMM5bIjWYoCOpwVaLZMl0pDOeVnHFKpXRslCZikALaK5KOElXmtOiyMaKRiWTdFSmkr1Em_W81q8QHkc6jiTThTTlkgXsK-OKK9BZvOCgancR6340oXzLeTP5ZCbugmwXkXDXwrVcuefzSYeH8GajMwcFkOyeO_c7-ARIVRMqk7WerxpBjeMkYWDg7T3waV6jR_2_5Q3abJcr_RZtq1_tRbN851n4B32HnQ8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+DBSCAN+clustering+algorithm+by+accelerating+neighbor+searching+using+Groups+method&rft.jtitle=Pattern+recognition&rft.au=Mahesh+Kumar%2C+K.&rft.au=Rama+Mohan+Reddy%2C+A.&rft.date=2016-10-01&rft.issn=0031-3203&rft.volume=58&rft.spage=39&rft.epage=48&rft_id=info:doi/10.1016%2Fj.patcog.2016.03.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2016_03_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon